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Abstract. The firing activities of place cells in the rat hippocampus ex-
hibit strong correlations to the animal’s location. External (e.g. visual)
as well as internal (proprioceptive and vestibular) sensory information
take part in controlling hippocampal place fields. Previously it has been
observed that when rats shuttle between a movable origin and a fixed
target the hippocampus encodes position in two different frames of ref-
erence. This paper presents a new model of hippocampal place cells that
explains place coding in multiple reference frames by continuous inter-
action between visual and self-motion information. The model is tested
using a simulated mobile robot in a real-world experimental paradigm.

1 Introduction

Place cells in the rat hippocampus are active only when the rat is in a specific
region within an environment. This location-sensitive firing is influenced by both
internal (e.g. self-motion) and external (e.g. visual) sensory inputs [1]. Electro-
physiological studies reveal that the firing pattern of a place cell is sensitive to
the position of visual landmarks placed around [2], but also within [3] the envi-
ronment. However, using path integration (PI) [4], the animal is also capable of
returning to the starting point of a journey based on internal cues only (i.e. hom-
ing). In this case no external cues are available and place cell activity depends
only on PI [5]. Finally, behavioural experiments with rodents indicate that PI
can be recalibrated using visual information [4].

In order to investigate how external sensory input and internal information
control the location-specific activity of the hippocampal place cells, Gothard et
al. [6] propose an experimental paradigm where rats alternate between a mov-
able box at one end of a linear track and a fixed reward site at the other end.
Depending on the type of information the animal uses to update its spatial rep-
resentation, place cells activity can be aligned to the movable box or to the fixed
visual cues. Their recordings show that in the initial part of the journey, place
cells fire at fixed distances relative to the point of departure (box for outbound,
fixed site for inbound), whereas towards the end of the journey, cells are aligned
with the destination (fixed site for outbound, box for inbound). They conclude
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that the spatial representation is initially driven by PI, and, as the rat moves
farther along the track, it becomes tied to the external cues.

This paper proposes a new neural model of the rat hippocampus. A repre-
sentation of space is built by combining visual sensory input and self-motion
information. The model resolves ambiguities in the visual data by means of path
integration, whereas external input is used to prevent the accumulation of errors
inherent to the PI. The interaction between the two sources of information is
evaluated in the experimental paradigm described above using a simulated mo-
bile robot. The firing profiles of modelled place cells exhibit properties similar
to real hippocampal neurons.

2 Model Description

The model architecture (Fig. 1) is based on the anatomy of the rat hippocampal
formation. It is consistent with fundamental electro-physiological properties of
place cells [1]. This work extends previous models [7,8,9] by equipping them with
a new visual system that can deal with realistic sensory input and an adaptive
recalibration mechanism used to combine path integration and visual input.

Visual input Self−motion information

calibrate

CDC

VPC PI

HPC

Fig. 1. Model architecture. It consists of four interconnected populations of rate-coded
neurons. Column difference cells (CDC) store visual stimuli and drive visual place
cells (VPC). Self-motion information drives the path integrator (PI). VPC calibrate PI
and they both project to the combined hippocampal place cells (HPC).

2.1 Visual Place Code

The model’s visual processing is based on low-level feature matching, rather than
explicit object recognition. Complex Gabor wavelets with 8 different orientations
serve as feature extractors. They are evaluated at all points of a rectangular grid.
An example response of this “artificial retina” is shown in Fig. 2.

Each retinal response is translated into neural activity. During an experiment,
cells are “recruited” as needed. Thus the number of cells grows with time. It is
assumed that there are enough cells to represent the entire environment.
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Fig. 2. Responses of an artificial 15×3 retina of Gabor filters to an input image of 280◦

horizontal view field. Each point of the grid contains 8 filters of different orientations.
The thick lines indicate the direction and “strength” of edges near each retinal point.
Two retinal columns at positions s and s + δn are highlighted.

During environment exploration, a set of “column difference cells” (CDCs) is
recruited at each time step. CDC n stores the difference dn = f(sn +δn)−f(sn)
between two retinal columns s and s + δ, where f(sn) is the vector of all filter
activities at column s (Fig. 2). At a later time step, CDC n responds to the new
input with a firing rate

rn = k · exp
{
− min

s
[(f (s + δn) − f(s)) − dn]2

}
, (1)

where k is a normalisation constant. Spatial firing is obtained by combining the
responses of several CDCs one synapse downstream in a population of visual
place cells (VPCs). One-shot Hebbian learning is applied to tune the synaptic
strengths wij between each active CDC j and a newly recruited VPC i to wij =
rj · ri. The new cell should be maximally active (ri = 1) for the current afferent
CDC projection. This is achieved by using a piecewise linear activation function:

ri =

⎧
⎨
⎩

0 if κihi < θlow

1 if κihi > 1
(κihi − θlow)(1 − θlow) otherwise

(2)

where hi =
∑

j wijrj is the input potential of the VPC neuron i, κi = 1/h0
i

determines the saturation potential of the neuron (with h0
i standing for the

input potential at the time when neuron i was recruited) and θlow = 0.2 is the
minimal input to activate the neuron.

The resulting place code represents the robot’s position Pv within the envi-
ronment, estimated by visual information only. The encoded location is extracted
from the population activity using a population vector:

Pv =
∑

i ri · xi∑
i ri

, (3)

where xi is the position of the robot where VPC i was recruited.
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2.2 Path Integration

The input to the path integrator are the rotation and displacement signals from
the robot’s odometers. After each movement a new estimated position of the
robot in an abstract Cartesian coordinate frame is calculated using standard
trigonometric formulas. In order to neurally represent the position we employ
a population of “path integration cells” (PI) such that each cell j is assigned a
preferred position pj in the abstract frame. Firing rate of the cell is defined as:

rj = e
− (‖Po−pj‖2)2

2σ2
o , (4)

where Po is the internal odometric position estimate.
In order to decrease the mismatch between the estimated positions Po and

Pv, the path integrator is recalibrated using vision at each time step:

P = Po − β · (Po − Pv) , (5)

where β = 0.1 determines the influence of the visual cues.

2.3 Hippocampal Place Cells

VPC and PI place cells project to a layer of hippocampal place cells (HPCs)
(Fig.1). At each time step a place cell is recruited and its afferent connections
from the VPC and PI are initialised using one-shot Hebbian rule. The firing rate
of HPC neuron i is defined by (2) where the afferent cells are the PI and VPC.

3 Results and Conclusions

Gothard et al. [6] proposed an experimental paradigm to study how path inte-
gration and visual input contribute to the hippocampal representation of space.
Rats were trained to shuttle back and forth on a linear track with a movable
box located at one end of the track and a fixed reward site at the other (box1
configuration, Fig. 3(a)). During the journeys from the box to the fixed site (out-
bound journey), the box was moved randomly between five locations (box1 to
box5). Once the animal reached the fixed site, it started the inbound journey to
the box (now located at a new position). Cell recordings show that in the initial
part of the journey place cells fired at fixed distances relative to the point of
departure (box for outbound, fixed site for inbound), whereas towards the end
of the journey cells were aligned with the destination (fixed site for outbound,
box for inbound) [6].

We apply the same experimental setup for our model. The place fields of
four HPCs for the five box configurations are shown in Fig. 3(b). Consistent
with observation in rats, HPCs initially fire with respect to the starting point,
whereas towards the end of the journey, place fields align with the destination.

This change of reference frame in the model is explained by the interaction
between internal and external information: in the inbound and outbound jour-
neys visual information recalibrates the path integrator (PI) to either end of the
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Fig. 3. (a) Experimental setup of Gothard et al. [6]. The rat shuttles between a fixed
site and a box, which is displaced during outbound journeys to five different locations
(box1 to box5). (b) Firing profiles of four modelled place cells. Two cells are active
during the inbound journey (left), and two during the outbound journey (right) for the
five box configurations. Black dots show the place field displacements with respect to
box1 condition, lines approximate the displacement slopes S (see text).
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Fig. 4. Displacement slopes of place cells versus the location of maximum firing in the
box1 configuration. Slopes are normalised to be 0 for cells whose place fields do not
shift following the box shift and 1 for cells whose place fields shift together with the
box. (a) Our model. (b) Experimental results in rats (Redrawn from [6]).

well known box1 configuration. After leaving the box in the outbound journey,
a mismatch occurs between vision and PI if the configuration differs from box1.
This inconsistency is gradually reduced by recalibrating PI (5), until the repre-
sentations are congruent near the end of the track. Later, during the inbound
journey, another mismatch appears and again, PI recalibration by vision resolves
the conflicting information. To quantify how the receptive fields of the place cells
shift for the different configurations (box1 to box5) we calculate their displace-
ment slopes [6]. This slope results from a linear fit of the place field shifts of a
cell in box2 to box5 with respect to box1. Shifted positions are determined by
the location of the maximum cross-correlation of the place field with respect to
the box1 condition. The displacement slopes in the HPC population are shown
in Fig. 4(a). Both for inbound and outbound directions, cells firing near the fixed
end in the box1 condition do not exhibit a shift in their receptive fields whereas
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neurons which fire close to the box shift along with the box. These results are
similar to animal experiments (Fig. 4(b)). However, in the outbound case, the
distribution of displacement slopes differs from [6]. One possible explanation is
that this distribution depends on the environment. In particular, the size of the
box may influence its relevance when the rat visually localises itself.

This paper presents a model of hippocampal place cells based on interact-
ing visual and self-motion sensory input. In contrast to previous models, this
proposal is based on a visual system which uses low-level feature matching in-
stead of abstract landmark detection. It is thus capable of working with realistic
visual input. The model is able to build a stable place code. Moreover, it repro-
duces changes in this representation in a conflict situation as the one described
above [6]. The receptive fields encode the agent’s position with respect to two
reference frames: Initially, the place code is aligned to internal coordinates given
by path integration. After some time, the representation systematically shifts
to an external reference frame given by visual cues. This supports the idea of
a competition between the different sources of information in order to keep a
consistent representation of space.
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