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Laboratory of Computational Neuroscience, EPFL, CH-1015 Lausanne, Switzerland

Available online 2 February 2006
Abstract

This work presents a neural model of self-localisation implemented on a simulated mobile robot with a realistic visual input. A

population of modelled place cells with overlapping receptive fields is constructed online during exploration. In contrast to similar

models of place cells, parameters of neurons in the sensory pathway adapt online to the environments statistics in order to maximise

information transmission. The robot’s position can be decoded from the population activity with high accuracy. The information

transmission rate of the cells is comparable to the information rate of biological place cells.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A large body of experimental data suggests that rats are
able to build a spatial representation of the environment
they are located in. Such a representation may reside in
spatially tuned neurons (i.e. place cells) found in the rat
hippocampus [7]. External sensory input (primarily visual)
plays a major role in controlling the formation of such a
representation, along with self-motion information [8].
While properties of self-motion signals do not change from
one environment to another, external stimuli can vary
significantly. In neural models of place cells, the external
input is often represented as a response of filters applied to
visual images [1], as bearing and distance of landmarks
encoded by coarse fields of activations [5] or as distances to
walls [6]. In these models, the location sensitivity of
modelled hippocampal neurons is achieved by comparing
previously stored and currently perceived sensory inputs.
This comparison is usually performed by a set of sensory
neurons whose activity reflects the similarity between the
inputs. In most models so far, parameters of the sensory
neurons remain constant during learning, i.e. they must be
tuned by the user in order to be valid in environments with
potentially different statistics.
e front matter r 2006 Elsevier B.V. All rights reserved.
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However, experimental data suggest that neurons are
able to adjust their input/output relation (i.e. transfer
function) taking into account the stimuli statistics [4,12].
Moreover, the principle governing such adaptation seems
to be the maximisation of information that a neuron
transmits [2,4]. Here, we apply this principle in a model of
place cells that adapt online to the environment statistics
and allow for the decoding of the current location with a
small error.
2. Model

Our self-localisation model is implemented and tested on
a simulated mobile robot receiving realistic two-dimen-
sional visual input. While the robot explores a novel
environment, two populations of artificial neurons are
incrementally created. (i) Sensory cells store low-level
visual features extracted from the input. A simple and fast
online algorithm is used to adapt the responses of these
neurons to transmit maximum information by taking into
account the distribution of the inputs. (ii) Visual place cells

extract location-dependent information from the sensory
activity. Their transfer function depends on a single
parameter which is chosen to maximise information rate
and location specificity of the cells.
During exploration, a snapshot of the environment is

taken by the video camera mounted on the robot (200�

www.elsevier.com/locate/neucom


ARTICLE IN PRESS
D. Sheynikhovich et al. / Neurocomputing 69 (2006) 1211–12141212
horizontal view field) at each time step. The input image is
sampled with a uniform rectangular grid of 96� 12 points
where at each point of the grid we place a set of 8 two-
dimensional Gabor filters with different orientations [1].
The set of responses I ¼ frGk g

K
k¼1 of K ¼ 8� 96� 12 ¼

9216 filters constitutes a local view and serves as an input to
the layer of sensory cells (SC).

A new SC is recruited for each local view. The SC
receives inputs from all K filters. Synaptic connections
between SC i and filter k are set by one-shot Hebbian
learning rule as wSC

ik ¼ rSCi rGk , where rSCi ¼ 1 at creation.
Weights wSC

ik store the local view Ii extracted from the
image. At this and subsequent time steps the synaptic input
to the SC is calculated as a normalised difference Di ¼

kI�Iik2 between the newly observed (I) and the stored
(Ii) local views (at creation time Di ¼ 0). Before calculat-
ing Di, the local views are aligned with an arbitrarily chosen
directional frame, and only the responses corresponding to
overlapping sectors of the visual field are taken into
account. We assume that directional information necessary
for such an alignment is available from the head direction
system of the rat [10].

We consider each SC as a rate-coding neuron with a
non-linear transfer function and firing rate rSCi 2 ½0; 1�.
Such a neuron transmits maximum information if its
output firing rate takes all values in the range equally often,
i.e. the firing rate distribution is uniform (i.e. maximum
entropy distribution) [3]. The transfer function that makes
the output distribution uniform corresponds to the integral
of the input distribution. An online calculation of this
optimal transfer function is implemented at each sensory
cell by keeping a history of its inputs and calculating an
approximation of the integral for each new input. In
particular, we define the firing rate of SC i at time step t to
be

rSCi ðtÞ ¼ N�1
XN

n¼1

HðDiðt� nÞ � DiðtÞÞ, (1)

where DiðtÞ is the input to cell i at time step t, N is the
memory size and H is the Heaviside step function.

The activity of a single SC reflects how well a single local
view is recognised. In order to combine information from
several local views in a location-sensitive unit, all simulta-
neously active SCs are connected to a newly created visual
place cell (VPC). A new VPC is created at each time step
unless a sufficient number of VPCs are highly active, i.e.
the location is already encoded by the VPC population.
Connection weights VPC!SC are set by the one-shot
Hebbian learning rule as before. A VPC activity is defined
by a piecewise linear transfer function with an activity
threshold ya

rVPCi ¼

0 if kihioya;

1 if kihi41;
kihi � ya
1� ya

otherwise;

8>>><
>>>:

(2)
where hi ¼
P

jwijr
SC
j is the input potential of cell i, and

ki ¼ 1=h0
i determines its saturation potential, with h0

i

standing for the input potential at the time when the cell
was recruited.
The rate at which the activity of a cell transmits

information about the locations of the robot (or a rat)
can be calculated as

I ¼

Z
x

rðxÞ log2
rðxÞ

r
pðxÞdx, (3)

where x is the spatial location, rðxÞ is the mean firing rate at
that location, r ¼

R
x

rðxÞpðxÞdx is the overall mean firing
rate and pðxÞ is the probability density for the robot being
at location x [11]. The information rate I measures how
much information in bits a neuron transmits per unit time,
whereas the normalised information I=r measures the
specificity of the cell in bits per unit of firing rate (bits/spike
in real neurons). We choose ya such that the location
sensitivity of the VPC neurons was as high as possible
without loss in the rate of information transmitted (see
below).
Online adaptation in the SC population ensures that the

input to the VPC population is independent from the visual
stimuli statistics. A natural parameter adaptation in the
VPC population can thus be performed over a much longer
time-scale, whereas here we use an offline procedure for
this purpose.

3. Simulations and results

The model was tested in three different simulated
environments: an open arena (Box 1) of 80� 80 cm placed
in a room with standard office equipment, a rectangular
box (Box 2) of 100� 50 cm with high black walls with
distinct visual patterns in the corners, and a cylinder (Box
3) of 80 cm in diameter with a panoramic photograph of
Swiss mountains as wall texture. We let the robot explore
each of the boxes for several thousand time steps, such that
about 30 VPCs were highly active (rVPC40:8) in any
location inside the corresponding box. To illustrate the
adaptation in the sensory population, we plot normalised
histograms of the inputs Di in Box 1 and Box 2 in Fig. 1a.
In each sensory cell, its history is a sample of size N ¼ 100
from a distribution corresponding to one of the histo-
grams. The adaptation rule Eq. (1) results in a transfer
function with a sigmoid-like form whose steepest part
corresponds to the area of most frequently occurring
differences (marked by squares and triangles for Box 1 and
2, respectively), such that the resulting output distribution
is close to uniform and information transmission is
maximised [4].
The firing rate of the VPCs (Eq. (2)) depends on the

activity threshold ya. Values of ya close to 1 lead to a high
sensitivity of the VPCs to the exact positions where they
were recruited. At low values of ya the VPCs will be as
sensitive to position as the sensory cells (r ¼ 0:5 due to the
uniformity of the output distribution). This is illustrated in
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Fig. 1. (a) Normalised histograms of differences Di with optimal transfer functions for Box 1 (squares) and Box 2 (triangles); (b,c) SC and VPC location

specificity I=r in bits per unit rate (b) and information rate I in bits/s (c) averaged over 50 cells versus ya. The vertical lines on both panels correspond to a

ya that maximises I; (d) The standard deviations of position estimation error along horizontal and vertical directions in percents of the length of the

environment along that direction. For the cylinder (Box 3) only the locations close to the centre were analysed.
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Fig. 1b where we plot the dependency of cell specificity I=r

on the values of ya. In contrast, the rate of position
information I (Eq. (3), Fig. 1c) has a maximum at ya ¼ 0:5.
Intuitively it means that if a cell’s spatial receptive field is
very small, the activity of this cell is not informative most
of the time. On the other hand, if the specificity of the cell is
too low, the cell is active in a large portion of the
environment making the cell non-informative again.

To calculate the gain in the information rate of the place
cells compared to the sensory cells, we calculated I and I=r

for the sensory cells using Eq. (3). The result (I ¼ 0:102 and
I=r ¼ 0:204) suggests that the combination of information
from several sensory cells into one place cell indeed leads to
an increase of both information rate and location specificity
(at the optimal value of ya ¼ 0:5 in the VPC population
I ¼ 0:297 and I=r ¼ 1:227, Fig. 1b, c). As reported in [11,9]
the information per spike of CA1 place cells (i.e. I=r) is
around 1.5–2.5 bits which is slightly more than the
information per unit rate in the model. Higher information
rate in biological place cells may be due to the combination
of different sensory modalities in addition to vision [9].

In order to estimate the accuracy of self-localisation, we
let the robot move in random directions for another 1000
time steps (with fixed population sizes). At each time step
the error between actual position and its estimation
encoded by the VPC population was calculated. Fig. 1d
shows the standard deviations of the error for the three test
environments. In spite of the fact that the environments
had such different statistics, as illustrated in Fig. 1a, the SD
of localisation error is limited to 7% of the length of the
environment. Exactly the same model was used in all the
three environments.

4. Conclusions

We presented a simple biologically plausible model of
self-localisation which is able to build an accurate spatial
representation in statistically different environments. A
slightly different approach to the problem of sensory
adaptation could be to assume a particular type of the
transfer function, e.g. a sigmoid, and use an online
algorithm to learn the optimal parameters [3]. Results of
simulations assuming such a parameterised transfer func-
tion were identical to those reported here, but required a
careful choice of initial parameter values (data not shown).
The method presented here is not exclusive to visual input
and can be applied to other types of sensory processing.
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