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In contrast to predictions derived from the associative learning theory, a number of
behavioral studies suggested the absence of competition between geometric cues and
landmarks in some experimental paradigms. In parallel to these studies, neurobiological
experiments suggested the existence of separate independent memory systems which may
not always interact according to classic associative principles. In this paper we attempt to
combine these two lines of research by proposing amodel of spatial learning that is based on
the theory of multiple memory systems. In our model, a place-based locale strategy uses
activities of modeled hippocampal place cells to drive navigation to a hidden goal, while a
stimulus–response taxon strategy, presumably mediated by the dorso-lateral striatum,
learns landmark-approaching behavior. A strategy selection network, proposed to reside in
the prefrontal cortex, implements a simple reinforcement learning rule to switch behavioral
strategies. The model is used to reproduce the results of a behavioral experiment in which
an interaction between a landmark and geometric cues was studied. We show that this
model, built on the basis of neurobiological data, can explain the lack of competition
between the landmark and geometry, potentiation of geometry learning by the landmark,
and blocking. Namely, we propose that the geometry potentiation is a consequence of
cooperation betweenmemory systems during learning, while blocking is due to competition
between the memory systems during action selection.
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1. Introduction

A long-standing question in behavioral neuroscience is
whether spatial learning can be accounted for by the
traditional associative theory of learning. The associative
theory posits that all available cues compete for control over
behavior (Pavlov, 1927). In contrast, cognitive theorists since
Tolman propose that some spatial tasks require integration of
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multiple cues in order to form amap-like representation of the
environment, which is then used to navigate (Tolman, 1948).
The issue of an interaction between geometric cues and other
spatial cues during goal navigation has gained a considerable
interest during the last few decades partly because of its
relation to this general question (Cheng and Newcombe, 2005;
Pearce et al., 2001). Geometric cues are defined by the shape of
the testing arena, such that e.g. a food hidden in one corner of
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a rectangular room can be found with 50% probability based
only on the geometric cues (which in this case can be
represented by a corner with, e.g. long wall on the right and
short wall on the left). Spatial cues of other types, e.g. a beacon
attached to the goal or a cue-card on the wall, can also signal
the goal location. The associative theory predicts that
geometric cues should compete with these other cues. The
cue competition manifests itself with such phenomena as
blocking (Kamin, 1969) and overshadowing (Pavlov, 1927). In
blocking, if a cue alone is learned to reliably predict the
reward, it will prevent (or block) learning about subsequently
added cues that predict the reward as well. In overshadowing,
if the two cues are present from the outset of training, the
association between one of the cues and reward will be
learned less well than if the training were performedwith that
cue alone (the cue is said to be overshadowed by the second
cue during training). In the spatial domain, blocking would
occur if learning that a landmark predictswell the location of a
goal would prevent the animal from learning the position of
the goal with respect to the shape of the testing arena (Wall
et al., 2004). Quite a few behavioral studies have been
performed to test whether blocking and overshadowing
actually occur between geometric and non-geometric cues,
but the results are controversial (for reviews see Cheng and
Newcombe, 2005; Miller and Shettleworth, 2007). In particular,
most studies report that geometric cues neither block nor
overshadow other cues (Wall et al., 2004; Hayward et al., 2003;
McGregor et al., 2009; Pearce et al., 2001). Moreover, in even a
sharper contrast to what is predicted from cue competition,
the presence of non-geometric cues signaling goal location
seems to potentiate learning of geometric cues, rather than to
diminish it in some studies (Pearce et al., 2001; Graham et al.,
2006). On the contrary, a few studies report that blocking and
overshadowing phenomena do occur in some experimental
paradigms (Pearce et al., 2006; Pearce, 2009).

Recently, Miller and Shettleworth (2007) proposed a purely
associative model that provides the first explanation of
independence, enhancement, or blocking between geometric
and non-geometric cues during learning. In this model, based
on classical conditioning principles (Rescorla and Wagner,
1972), all sensory cues that might potentially influence goal
learning are assigned corresponding associative strengths,
which measure how well a reward is predicted by the cue.
During learning, the associative strength of a cue is updated
depending on whether the reward was obtained or not and on
how frequently the sensory cue is observed. Miller and
Shettleworth (2007, 2008) have shown that the model is able
to reproduce a large array of behavioral data due to a property
termed feature enhancement. Feature enhancement occurs early
in training, when the associative strength of geometry is not
well learned, and is responsible for the absence of blocking
and overshadowing as well as potentiation of geometry
learning. Late in training, the learning of the feature over-
shadows geometry learning.

In our previous work (Sheynikhovich et al., 2009) we
proposed amodel of spatial learning that attempted to explain
rat behavior in navigation tasks using available knowledge
about anatomical connections between neural structures
implicated in navigation and neural activity within these
structures. In particular, we have shown that the model was
Please cite this article as: Sheynikhovich, D., Arleo, A., A reinfo
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able to reproduce the key results by Cheng (1986), who was the
first to show experimentally that the relationship between
geometry and feature learning might not be consistent with
the general associative theory of learning (see Pearce et al.,
2001; Shettleworth, 1998). This model is based on the
assumption that separate independent memory systems in
the rat's brain govern different navigational strategies (Fig. 1B).
The first, taxon strategy is assumed to be mediated by the
dorso-lateral striatum and learns the association between
visual cues and rewarded motor responses using a simple
reinforcement learning rule. This strategy is responsible for
what is usually termed ‘feature’- or ‘landmark’- or ‘beacon’-
learning in the geometry-related literature (Cheng, 1986; Wall
et al., 2004; Pearce et al., 2001). The second, locale strategy uses
spatial representation built on the basis of simulated hippo-
campal place cells and entorhinal grid cells in order to find the
goal location. We proposed that environmental geometry is
implicitly encoded in the activities of place cells and so the
behavioral decisions usually attributed to the influence of
geometric cuesmight be explained by the sensory information
processing during locale strategy. In this earlier model, the
selection between different strategies during goal navigation
was implemented using a simple scheme in which the
strategy that was more successful during a fixed number of
preceding trials was chosen for the next trial. Such a simple
strategy selection scheme did not allow us to address
questions related to the issue of competition between
environmental geometry and other spatial cues, although a
mere presence of independent strategies already suggested
that their learning was not always subject to blocking and
overshadowing phenomena (Sheynikhovich et al., 2009).

In the present paper we propose that a similar model, but
augmented with a simple strategy selection rule, can be used
to address questions of blocking and overshadowing between
geometric cues and landmarks. In this new model, a strategy
selection network (Fig. 1A), presumably located in the
prefrontal cortex, governs the choice between memory
systems using a reinforcement learning rule similar to that
of Chavarriaga et al. (2005a,b) (see also Dollé et al., 2010).We do
not attempt here to apply this model to reproduce an
extensive set of available experimental data on this subject.
Rather, we show that the proposed model possesses proper-
ties that are similar to feature enhancement in the associative
model by Miller and Shettleworth (2007), and hence may
explain a similar array of data. The advantage of our model
compared to other similar models (Miller and Shettleworth,
2007; Miller and Shettleworth, 2008; Dawson et al., 2010) is that
geometric cues in the model are encoded implicitly by the
locale strategy and so the modeler is not required to explicitly
insert into the model such parameters as ‘background cues’,
‘correct/incorrect geometry’, wall lengths, etc. Moreover, the
model architecture can be mapped on the biological network
implicated in behavior, works in realistic time scale and
generates trajectories of simulated animals during learning
instead of providing rather abstract predictions of behavior in
terms of choice probabilities.

In the following section we briefly introduce, following
Miller and Shettleworth (2007), the property of feature
enhancement, using as an example their simulation of the
behavioral task described in Wall et al. (2004). In the Results
rcement learning approach to model interactions between
s. (2010), doi:10.1016/j.brainres.2010.09.091
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Fig. 1 – The architecture of the navigationmodel. Open (filled) circles denote inactive (active) cells; the large open arrows denote all
to all feed-forward projections between corresponding neural structures; the large filled arrows denotemotor output of themodel;
the small filled arrows in the DLS and NA denote preferred direction of the motor (action) cells in these structures; ball-arrows
denote inhibition. SC— sensory cortex, DLS— dorso-lateral striatum, HPC— hippocampous, NA— nucleus accumbens, PFC —
prefrontal cortex. A. The strategy selection network consisting of two units that correspond to the two strategies shown in B. B.
Taxon and locale strategy networks that correspond to the striatal and hippocampal memory systems, respectively. C. An
illustration of a general experimental setup. The rhombus denotes the rat, the black parallelogram denotes the landmark. The
visual angleα that the landmark takes at thepositionoccupiedby the rat corresponds to thenumber of active sensory cells in B.See
Experimental procedures for a detailed description.

3B R A I N R E S E A R C H X X ( 2 0 1 0 ) X X X – X X X
section we show that our model can be used to reproduce rat
behavior in the same task and that feature enhancement
occurs in our model as well.

1.1. Experiment of Wall et al. (2004) and
feature enhancement

Feature enhancement can be understood by considering the
application of the model of Miller and Shettleworth (2007) to
simulate rat behavior in the experiment of Wall et al. (2004). In
phase 1 of this experiment, two groups of rats were trained to
find food in a corner of a square enclosure (Fig. 2A, Phase 1).
Please cite this article as: Sheynikhovich, D., Arleo, A., A reinfo
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For the first (blocking) group, the corner associated with the
food was marked with a landmark. For the second (control)
group, no landmark was present to distinguish the rewarded
corner from the other corners. The starting positions varied
from trial to trial. After training to criterion, the blocking group
learned that the landmark was a good predictor of the food
location, while choices of the control group were random,
ensuring that neither geometric nor other cues could have
been used to remember the goal location for this group. In
phase 2 of the experiment, both groups were retrained in a
rectangular enclosure with the same landmark indicating the
correct corner (Fig. 2A, Phase 2). The associative theory would
rcement learning approach to model interactions between
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Fig. 2 – A. The experimental design in the study of Wall et al.
(2004). The rectangles denote environmental enclosures, the
black circle denotes goal location and the black triangle
denotes the placement of a landmark in this experiment (see
text for details of the experiment). B. The evolution of the
associative value of the correct geometry in the model of
Miller and Shettleworth (2007) during phase 2 of the
simulated experiment outlined in A.
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predict that if the landmark was in competition with the
geometric cues, rats in the blocking groupwould not be able to
learn that the geometry of the environment could be used to
reach the goal with 50% probability. This is because the
landmark was already known to be a good predictor of reward
from phase 1. In contrast to this prediction, the test performed
in the rectangular environment in the absence of the
landmark (Fig. 2A, Test) resulted in both groups going equally
often to the correct corner and its diagonally opposite corner,
and almost never to the other two corners. The preference for
the two geometrically correct corners shows that the training
with the landmark did not block geometry learning in this
case.

In order to model rats choices in this experiment, (Miller
and Shettleworth, 2007) assumed that four types of cues were
important during this phase: (i) the feature; (ii) the ‘correct
geometry’, i.e. some aspects of geometry that are common for
the correct and its diagonally opposite corner; (iii) the
‘incorrect geometry’ of the other two corners; and (iv)
background cues present in all the corners (the presence of
background cues ensures that all four corners are chosen at
random in the absence of any specific information). Feature
enhancement can be observed if we consider the associative
value of the correct geometry in this model (Fig. 2B, see Miller
and Shettleworth, 2007). The presence of the feature early in
training results in a higher associative value of the correct
geometry in the blocking group relative to the control group.
Later in training, an overshadowing occurs so that the
Please cite this article as: Sheynikhovich, D., Arleo, A., A reinfo
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associative value of geometry in the control group becomes
smaller than that in the blocking group. In a number of
simulations the authors have demonstrated that the same
feature enhancement effect can be used to explain a large
variety of related experimental data (Cheng, 1986; Pearce et al.,
2001; Graham et al., 2006; Pearce et al., 2006).
2. Results

2.1. Simulation 1: modeling the experiment of Wall
et al. (2004)

We first testedwhether ourmodel can reproduce the principal
results of Wall et al. (2004) (i.e. of their Experiment 3). We used
two identical groups (the blocking group and the control group) of
50 simulated rats each. In phase 1 of the simulated experi-
ment, the blocking groupwas trained in a square environment
with a landmark in the North–East corner, while the control
group was trained in the same environment but without the
landmark (see Experimental procedures and Fig. 2A). The
performance was measured by counting the first visits to
different corners of the training environment across blocks of
training trials. A trial outcome was considered ‘correct’ when
the first visited corner was the rewarded (i.e. North–East)
corner and ‘rotational error’when the first corner was the one
diagonally opposite to the rewarded corner. ‘Near error’ and
‘Far error’ corresponded to trials in which the South–East and
North–West corners, respectively, were visited first.

The average percentages of different outcomes for each
group are shown in Figs. 3A,B. As expected, only the blocking
group was able to increase the number of correct outcomes
with training, while the outcomes of the control group
remained at chance level for all trials. Learning in the blocking
group is due to the taxon strategy which learned to turn
towards the landmark. This is illustrated in Figs. 3C–F by
navigation maps and sample trajectories generated in our
model by the end of phase 1. The navigation maps show for
each sample location of the environment the optimal action
proposed by a particular strategy.

In order to test the performance of the two groups during
phase 2 of the experiment, the simulated animals from phase
1 were retrained in a rectangular environment with the
landmark in the North–East corner for both groups (see
Fig. 2A). The mean outcomes for each group are shown in
Fig. 4. Similarly to the rats in the experiment of Wall et al.
(2004), simulated animals from the blocking group were
choosing the correct corner most of the time starting from
the beginning of training. This is because the taxon strategy
transferred landmark-related information from the previous
phase. In contrast, the control groupwas at chance level at the
beginning of training, but quickly increased the rate of correct
responses due to the presence of unambiguous information
about the goal location.

In addition to reproducing the rates of correct choices in
the two experimental groups, the model also reproduces the
elevated number of rotational errors relative to other errors
during phase 2 (Wall et al., 2004). Indeed, in both simulated
groups the proportion of rotational errors in the total number
rcement learning approach to model interactions between
s. (2010), doi:10.1016/j.brainres.2010.09.091
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Fig. 3 – A–B. Percentages of different trial outcomes across training of simulated rats in the blocking group (A) and control group
(B) during phase 1 of simulation 1. C–D. Navigation maps for the taxon strategy (C) and the locale strategy (D) generated by two
simulated animals during phase 1. E–F. Example of the trajectory of a simulated animal from the blocking group (E) and from the
control group (F) at the end of training in phase 1 of simulation 1. The large black circle denotes the rat; small red circle denotes
the goal.

5B R A I N R E S E A R C H X X ( 2 0 1 0 ) X X X – X X X

Please cite this article as: Sheynikhovich, D., Arleo, A., A reinforcement learning approach to model interactions between
landmarks and geometric cues during spatial learning, Brain Res. (2010), doi:10.1016/j.brainres.2010.09.091

http://dx.doi.org/10.1016/j.brainres.2010.09.091


B

A

Fig. 4 – Percentages of different trial outcomes for the
blocking group (A) and control group (B) during phase 2 of
simulation 1.

Fig. 5 – The proportion of rotational errors in the total number
of errors for the blocking (circles) and control (triangles)
groups across blocks of training trials in phase 2 of
simulation 1.

6 B R A I N R E S E A R C H X X ( 2 0 1 0 ) X X X – X X X

Please cite this article as: Sheynikhovich, D., Arleo, A., A reinfo
landmarks and geometric cues during spatial learning, Brain Re
of errors was high (Fig. 5). Moreover, this proportion was
higher in the blocking group than in the control group,
consistent with the experimental data. Average ratios of the
number of rotational errors over the total number of errors
were 90% for the blocking group, versus 50% for the control
group in our simulations. These ratios in the experiments
were 61% versus 47% for the blocking and control groups
respectively (Wall et al., 2004). This result is important because
it contradicts the prediction derived from the associative
theory: since the landmark already predicts well the goal
position for the blocking group in phase 2, learning of
geometry should be blocked and no more rotational errors
than other errors should be made by this group, which is not
the case in the experiment as well as in our simulation.

The final probe trial was performed after training in phase
2. Simulated rats from both groups were run in the same
rectangle as was used in phase 2, but in the absence of the
landmark. In our simulation, the proportion of choices of the
two geometrically correct corners (i.e. the rewarded corner
and its diagonally opposite) was 94% for the blocking group
and 90% for the control group, suggesting that the goal
information from the training phase was transferred to the
testing environment by both groups. This is comparable with
the numbers reported byWall et al. (2004) (83% and 75% for the
blocking and control groups respectively). Similarly to the
results of phase 2, these results contradict the prediction of
the associative theory.

In modeling this experiment, Miller and Shettleworth
(2007) observed feature enhancement, i.e. a speed-up of
geometry learning in the presence of a landmark. A similar
speed-up is observed in our model, as shown by the higher
percentage of rotational errors in the blocking group relative to
controls (Fig. 5), suggesting that geometry was learned faster
by the rats in this group. This effect is due to the influence of
training in phase 1, and the mechanism of this effect in our
model is illustrated by the next simulation.

2.2. Simulation 2: cooperation between strategies

In addition to competition between the strategies during
selection, a cooperation between strategies during learning
takes place in our model. Namely, when the simulated animal
performs a movement generated by, e.g., the taxon strategy
network, this action is considered to be an ‘exploratory’ action
by the locale strategy network (see Experimental procedures).
If the behavior generated by the taxon strategy is nearly
optimal, then these ‘exploratory’ actions result in faster
learning within the locale strategy, because exploration is
done always in the correct direction. In phase 2 of simulation 1
the simulated rats from the blocking group re-used informa-
tion about the goal from phase 1 and had a high success rate
from the beginning of phase 2 (see Fig. 4A). In these simulated
animals, the faster learning of the locale strategy (expressed
by the high number of rotational errors, Fig. 5) is due to the
cooperative interactions between the two strategies. In
contrast, in the control group both taxon and locale strategies
learned simultaneously during phase 2 and hence no cooper-
ation effect was observed.

To demonstrate the strategy cooperation effect even more
explicitly, we performed the following computer simulation.
rcement learning approach to model interactions between
s. (2010), doi:10.1016/j.brainres.2010.09.091
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In phase 1 we trained two groups of simulated rats (referred to
as taxon group and locale group) identically to phase 1 in
simulation 1. In phase 2, we switched off strategy competition
for both groups such that the taxon group always selected the
taxon strategy, whereas the locale group always selected the
locale strategy. The experimental environment was identical
to that used in phase 2 of simulation 1. We tested how much
was learned about geometry in the two groups by performing a
test trial (identical to the probe trial in the previous simula-
tion) after each training trial during phase 2. Since no landmark
was present during the test trials, the amount of knowledge
about geometry was reflected in the proportion of geometri-
cally correct choices (i.e. how often the correct and its
diagonally opposite corners were selected). Fig. 6 shows the
proportion of geometrically correct choices for the taxon and
locale groups as a function of the number of testing trials. It
can be observed that even though the locale strategywas never
chosen by the taxon group during training, the geometrically
correct corners were chosen by that group more often than by
the locale group during the test trials. This result clearly
demonstrates the effect of strategy cooperation in our model:
the presence of the predictive landmark during phase 2 sped
up learning of geometry. Thus, cooperation between naviga-
tional strategies in our model results in the effect similar to
feature enhancement in the model of Miller and Shettleworth
(2007).

2.3. Simulation 3: blocking within the taxon network

The final simulation demonstrates that learning in the taxon
strategy network in our model occurs in agreement with the
classical associative learning theory and is subject to blocking.
It is important, since in our model the taxon strategy network
represents stimulus–response learning in the dorsal striatum.
Experimental results from a number of studies (Doeller and
Burgess, 2008; Balleine et al., 2007; Williams and Eskandar,
2006) support the notion that learning in the dorsal striatum
Fig. 6 – The proportion of choices of geometrically correct
corners (i.e. correct and its diagonally opposite) for taxon
(squares) and locale (crosses) groups across blocks of testing
trials in phase 2 of simulation 2. The difference is statistically
significant (one-way ANOVA, p<0.05) in all blocks except
block 7.
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obeys associative reinforcement with a single error-prediction
signal (Rescorla and Wagner, 1972).

In this simulation, we used the square environment as
before with either one or two landmarks present at the goal
corner of the environment. We used a standard blocking
protocol (see e.g. Waelti et al., 2001) in which a group of
simulated animals (the blocking group) was trained to turn
towards a landmark from the center of the environment
during the first (pre-training) phase. During the second
(compound) phase, the pre-trained landmark was presented
together with a second, target, landmark at the same corner.
Since the pre-trained landmark is a good predictor of reward at
the outset of the compound phase, it should block learning to
turn towards the target landmark. The second, control group,
was presented with both landmarks from the beginning of
training, in which case no blocking should occur. The test was
performed by presenting the target landmark alone to both
groups. According to the associative learning theory, the
performance of the blocking group during the test phase
should be worse than that of the control group as a
consequence of blocking. In this task, the position of the
simulated rat was always fixed at the center of the environ-
ment and the rewardwas givenwhen the simulated rat turned
towards the hidden goal position (at the North–East corner,
see Experimental procedures).

According to the Rescorla–Wagner model of classical
conditioning, blocking will occur if the associative strength
of the reward-predicting stimulus will be close to its asymp-
totic value as a result of pre-training (Rescorla and Wagner,
1972). The difference between the two corresponds in our
model to the difference δ(t) (Eq. (4)) between the expected and
actual reward linked to the reward-predicting cue (landmark
in our case). Therefore, in order to ensure that blocking will
happen, we trained simulated animals in the pre-training
phase until δ(t) reached a small value. The learning curve of
the blocking group with the corresponding evolution of δ(t) are
shown in Fig. 7. After training block 30 (i.e. when the value of
δ(t) was close to 0), the pre-training phase ended and the next,
compound phase, started.

During the compound phase, a second landmark was
added to the environment and training continued for another
5 blocks of trials. In animal studies, a test trial is usually
performed by presenting the added landmark alone after a
number of compound training trials.We took the advantage of
a computer experiment by performing the test trial after each
compound training trial (i.e. the training and test trials were
interlaced). This way we could measure the rate of learning of
the blocked landmark. In Fig. 8 we plot the performance of the
simulated rats from the blocking group during blocks of test
trials (dashed line, Blocking 1), that is compared to the
performance of the control group (solid line, Control) which
was trained with both landmarks from the beginning. The
strong blocking effect is expressed in the absence of learning
of the second landmark in the blocking group compared to the
fast learning in the control group.

To show that the blocking effect can be diminished by
insufficient pre-training, we performed two additional experi-
ments which were identical to the one just described, but in
which pre-training was stopped after trial block 20 and trial
block 10 (marked by dotted lines in Fig. 7). As shown in Fig. 8, a
rcement learning approach to model interactions between
s. (2010), doi:10.1016/j.brainres.2010.09.091

http://dx.doi.org/10.1016/j.brainres.2010.09.091


B

A

Fig. 7 – Learning in the blocking group during the pre-training
phase of simulation 3. A. The percentage of correct choices
(i.e. when the simulated rat turned towards the landmark)
across blocks of training trials. B. Reward-prediction error δ(t)
(±STD) as a function of training block number. Dotted lines
mark training blocks after which pre-training stopped for
different simulations (see text).

Fig. 8 – Blocking during the compound phase of simulation 3.
Percentages of correct choices for the control group (solid line)
and blocking group (dashed lines) across blocks of training
trials. For the blocking group, pre-training phase was
stopped at trial 30 (Blocking 1), trial 20 (Blocking 2) or trial 10
(Blocking 3). Blocking effect disappears if the pre-training
phase is not sufficiently long.
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smaller number of pre-training trials results in the weakening
(dashed line, Blocking 2) or disappearance (dashed line,
Blocking 3) of the blocking effect.
3. Discussion

In this paper we propose a new approach to the issue of how
geometric cues interact with landmarks during spatial learn-
ing. This approach uses available knowledge about anatomy
and neurophysiology of brain networks implicated in naviga-
tion in order to explain behavioral data traditionally analyzed
on the basis of associative theory of learning (Jeffery, 2010;
Pearce, 2009). The architecture of the model presented in this
paper is based on the theory of separate memory systems in
the brain of the rat (White and McDonald, 2002) which is in
turn built upon the body of neurophysiological and lesion
studies. In this theory, the hippocampus (HPC) is responsible
for stimulus-stimulus associations and multi-sensory inte-
Please cite this article as: Sheynikhovich, D., Arleo, A., A reinfo
landmarks and geometric cues during spatial learning, Brain Re
gration, while the dorso-lateral striatum (DLS) is responsible
for the formation of stimulus–response associations and
reactive behavior. The behavioral role of the locale and
taxon networks in the present model corresponds to the role
of the HPC and DLS for rat behavior. In addition, the model
includes a strategy selection network that is responsible for
switching behavioral strategies. A number of studies suggest
that the prefrontal cortex (PFC) can support strategy switching
during goal-oriented behavior (Rich and Shapiro, 2007, 2009;
Ragozzino et al., 1999).

The advantage of this approach is that the behavior of the
model in a particular task can be related with the function of
and neural activity within the existing neural structures. In
particular, in our previous work we have suggested that rat
behavior in the experiment of Cheng (1986), who was the first
to test non-competitive interaction between landmarks and
geometry in a behavioral paradigm, can be explained by an
interaction between behavioral strategies mediated by differ-
ent memory systems. On the basis of our results we proposed
that symmetric errors often committed by rats and other
animals in environments with ambiguous shape may result
specifically from the use of the HPC-based memory system,
mediating locale strategy. This suggestion permitted us to
relate results of geometry-related experiments to neurophys-
iological data about activity of place cells and grid cells in
environmentswith variable shape (Sheynikhovich et al., 2009).
In the model presented here we used a simplified implemen-
tation of locale strategy in which place cells were modeled by
Gaussian functions. Nevertheless, this simple model includes
the ability to generate symmetric errors in a way similar to
that proposed in Sheynikhovich et al. (2009). These errors
result from mis-estimation of an allocentric head direction
during self-localization (see Experimental procedures).

One of thepurposes of the present paperwas to compare our
model with the associative model of Miller and Shettleworth
(2007). Several conclusions can bemade in relation to this issue.
rcement learning approach to model interactions between
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First, learning to approach the landmark did not block
subsequent learning of geometric cues in our simulations.
Moreover, an elevated proportion of rotational errors in the
blocking group during phase 2 of simulation 1 (Fig. 5) suggests
that presence of the landmark increased the speed with which
geometry was learned. These results are consistent with
experimental data showing absence of blocking and over-
shadowing between landmarks and environmental geometry
aswell as potentiation of geometry learning by landmarks (Wall
et al., 2004; Hayward et al., 2003, 2004; Cheng and Newcombe,
2005; Pearce et al., 2001). In our model, the absence of
overshadowing and blocking is due to parallel learning in the
HPC- and DLS-mediated memory systems, and corresponding
navigation strategies. Indeed, learning in both systems occurs
when movements performed by one of the systems lead to
reward.Theonly condition for learning is that there should exist
some stable relationship between sensory inputs, movements
and reward (obviously, if no landmark is present in the
environment, the taxon strategy will not be able to learn). The
effect of potentiation of geometry learning by landmarks in our
model is due to strategy cooperation, as demonstrated by
simulation 2.

Miller and Shettleworth (2007, 2008) provided a similar but
slightly different explanation for the absence of blocking and
overshadowing. In their model, associative strengths of
sensory cues that co-occur with reward will increase with
training (provided zero initial conditions). This increase occurs
in parallel for all cues, including geometric and non-geometric
cues. This parallel learning property is somewhat similar to
the parallel learning of strategies in our model. However, in
our model the different types of cues are separated into two
groups according the memory systems that work with these
types of cues. By construction of the model, all geometric cues
are encoded implicitly by the place cell activities and so will be
dealt with by the HPC-mediated memory system and locale
strategy. Landmarks, beacons and other cues that can be used
to drive stimulus–response associations will be processed by
the DLS-mediated system and (possibly multiple) taxon
strategies.

Second, since the HPC- and DLS-mediated systems learn in
parallel, one of these systems cannot prevent the other from
learning. However, effects similar to blocking can be induced
on the level of strategy selection. Consider the probe trial in
our simulation 1. At the time of the probe trial, the value of the
taxon strategy in the blocking group is higher than that in the
control group due to longer training with the landmark. Recall
that in our model, when no landmark is present, taxon
strategy proposes movements in random directions and so
simulated rats in the blocking group should make more
random movements than those in the control group during
the test. However this difference can hardly be seen, because
the stochasticity in strategy choice (Eq. (2)) leads to selection of
the locale strategy on some time steps inducing a bias towards
geometrically correct corners. Suppose that we modify the
selection rule such that after some point in training (e.g. when
reward prediction error δ in Eq. (3) will become smaller than
some threshold within certain time window) strategy selec-
tion will not be stochastic anymore so that the best (i.e. taxon)
strategy is exclusively selected in the blocking group. Suppose
that by the time when this happens, the control group has not
Please cite this article as: Sheynikhovich, D., Arleo, A., A reinfo
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yet reached the threshold. In this case, the behavior of
simulated animals from the blocking group during the probe
trial will be random, corresponding to blocking, while the
controls will be biased towards the geometrically correct
corners, as before. Note that increasing parameter β in Eq. (2)
will essentially lead to exclusive selection of the winner
strategy and so blocking can be introduced in the model by
making β depending on the inverse of δ. On the basis of present
results we cannot say whether such a model of blocking is
capable of reproducing related experimental data (Pearce,
2009).

The last issue that we would like to mention in relation to
the comparison between out model and that of Miller and
Shettleworth concerns different predictions derived from
these models for a landmark transfer test described in Miller
and Shettleworth (2008). In our model, taxon strategy learns
egocentric rotations relative to the representation of a
landmark in the view field. The behavior generated by this
strategy can be approaching the landmark as well as going in
the direction opposite to the landmark, and this behavior can
be transferred between different environments. Consider the
experiment in which animals are trained to approach the
corner opposite to a corner with the landmark in a rectangular
environment. Our model predicts that if the animals were
tested in a square environment with the landmark in one of
the corners, they would go more often to the corner opposite
to the landmark. In contrast, the model of Miller and Shettle-
worth (2008) predicts equal choice probability for the three
corners without the landmark.

An important aspect of the model is that learning in the
three different subnetworks is governed by the same TD-
learning algorithm. However, due to differences in the inputs
to these networks, their properties differ. Namely: (i) Learning
in the taxon strategy network is consistent with the classical
associative theory as shown by the results of simulation 3; (ii)
In the locale strategy network, inputs are given by the
Gaussian-like activities of simulated place cells. As in many
models of place cells, we assume here that their place-
sensitive activity results from integration of multi-sensory
information at a particular location, and hence is not based on
cue competition. Integration of multi-sensory input can be
implemented by unsupervised Hebbian-like learning rules
during environment exploration (see Redish, 1999, for review).
The reward-based learning is required to generate goal-
directed behavior on the basis of the learned place code. (iii)
Behavior of the full model results from competitive and
cooperative interactions between the two strategies and in
general cannot be described by the associative theory (simula-
tions 1 and 2). These properties are consistent with the view
that striatal learning is controlled by single error signal
(reward-prediction error), while leaning in the hippocampus
is based (at least partially) on reward-independent associative
learning (Doeller and Burgess, 2008; Doeller et al., 2008).

One observation about strategy cooperation in our model
may be interesting in light of the results by Doeller and
Burgess (2008) concerning an asymmetry in blocking between
environmental boundaries and landmarks in human virtual
reality study. They found that learning a hidden goal location
with respect to boundaries blocked subsequent landmark
learning, but no blockingwas observedwhen the goal was first
rcement learning approach to model interactions between
s. (2010), doi:10.1016/j.brainres.2010.09.091

http://dx.doi.org/10.1016/j.brainres.2010.09.091


10 B R A I N R E S E A R C H X X ( 2 0 1 0 ) X X X – X X X
paired with the landmark. From our simulation 2 it is clear
that learning with the landmark in phase 1 does not block but
helps geometry learning in phase 2, which is consistent with
these results. What happens if the learning with respect to
geometry occurs in phase 1 and the landmark is introduced in
phase 2? In the study of Doeller and Burgess (2008), the
landmark was not always in the field of view during phase 2.
Our model suggests that in this case movements according to
the locale strategy cannot be mapped to egocentric turns
required by the taxon network to learn and so the taxon
network will not learn from movements generated by the
locale strategy during these periods of time. It is an open
question whether this observation can be used to explain
some of the results reported by Doeller and Burgess (2008).

Finally, we note here that our model cannot provide clear
explanation for the experimental data suggesting that locale
strategies dominate in the beginning of learning, while locale
strategies take over after prolonged training (Packard and
McGaugh, 1996, Sheynikhovich et al., 2010). In our model, the
strategy, that better predicts reward, will dominate. This leads
to a speculation that, at least in the plusmaze, the place code is
more accurate than sensory cues in the beginning of training,
with sensory cues gaining more accuracy with prolonged
training. Testing this suggestion is thematter of a future study.
4. Experimental procedures

Our neural network model of navigation consists of three
interconnected (sub-)networks that represent neural struc-
tures participating in navigation behavior (Figs. 1A,B). The
first, taxon network, is responsible for stimulus–response
behavior, such as approaching a visible landmark. Itmodels
the anatomical connections between sensory cortices (SC),
that encode a visual representation of the landmark, and
motor-related activity of the dorso-lateral striatum (DLS) of
the basal ganglia. The second, locale network, is responsible
for map-based navigation, usually attributed to the hippo-
campus (HPC). The input of this network is represented by
the activities of simulated place cells, and themotor actions
are assumed to be generated by the nucleus accumbens
(NA) of the basal ganglia, which receives direct projection
fromtheHPC (seeRedish, 1999, for review).The last, strategy
selection network, is responsible for the choice of a strategy
(i.e., taxon or locale) that will take control over behavior.
This function is usually attributed to the prefrontal cortex
(PFC), which is required for strategy switching and where
different subpopulations of neuronswere shown to code for
different navigation strategies (Rich and Shapiro, 2007,
2009). The input to the strategy selection network is
represented by the combined activities of place cells and
landmark-encoding cells and corresponds to the connec-
tions from the HPC and DLS to the PFC.

Each of the three networks has the same simple
architecture of a single-layer perceptron. The input layer
encodes sensory input to thenetwork,while theoutput layer
represents actions that this network generates. Learning of
the weights in each network is described by a standard
temporal-difference learning rule known as Q-learning,
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while action selection is performed according to ‘softmax’
criterion (seeLearningequationsbelow). The threenetworks
are hierarchically organized in two levels: the two networks
of the lower level (taxon and locale) learn the corresponding
strategies,while a single network of the upper level (strategy
selection network) learns to select which of the two
networks of the lower level will take control over behavior.
The selection is assumed to occur by inhibiting the motor
output of the non-winner strategy. Below we describe the
inputs and outputs of the three networks, learning equa-
tions and experimental setup.

4.1. Taxon strategy

Inputs of the taxon strategy network encode a visual
representation of Nlm landmarks (Nlm=1 in Simulations 1
and 2, and Nlm=2 in Simulation 3) modeled by Nlm

populations consisting of Nsc sensory cells. In each
population, the activity of j-th sensory cell signals either
presence (rscj =0) or absence (rscj =0) of the corresponding
landmark in the egocentric direction ϕj=2πj /Nsc (in the
egocentric reference frame, the zero direction coincides
with the head direction of the simulated animal). The
number of active units in each population corresponds to
the visual angle that the corresponding landmark takes at
the position occupied by the simulated rat (see Fig. 1C).

The sensory units project toNtax taxon-action cells with
weightswij

tax. Each taxon-action cell encodes an egocentric
rotation by angle ξitax=2πi /Ntax. The activities of the taxon-
action cells are calculated according to Eq. (1). The actual
rotation to be performed on the next step is chosen based
on these activities according to Eq. (2). During training,
weights wij

tax are updated using Eq. (3) at each time step.
Note that the absence of landmarks in the environment

corresponds to the zero activation of the sensory cells.
This leads to a pseudo-random action choice in the taxon
network (see Eq. (2)) which corresponds to movements in
pseudo-random directions. Such a behavioral response is
in agreement with studies showing that animal perfor-
mance drops to chance when the reward-related stimulus
is removed (see, e.g., Roberts and Pearce, 1999).

4.2. Locale strategy

Inputs of the locale strategy network represent the position
of the simulated rat in the environment and aremodeled by
the activities of Npc simulated place cells with Gaussian
spatial receptive fields, centers of which are distributed
uniformly over the environment. More precisely, the
activity of place cell j is calculated as rjpc=exp(−dj2/2σ2),
where σ is the width of receptive field and dj is the distance
between the position of the simulated animal in the maze
and the center of the j-th receptive field.

Place cells project toNloc place-action cells withweights
wij

loc. Each place-action cell encodes the allocentric direc-
tion ofmovement ξiloc=2πi /Nloc. The activities of the place-
action cells are calculated according to Eq. (1). The
direction of movement to be performed is chosen based
on these activities according to Eq. (2). During learning,
weights wij

loc are updated using Eq. (3) at each time step. In
rcement learning approach to model interactions between
s. (2010), doi:10.1016/j.brainres.2010.09.091
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all the simulations in this paper we assumed that place
cells were created before the training trials started.

In our earlier work (Sheynikhovich et al., 2009) we
proposed that geometric cues present in the environment
can be implicitly encoded in the activities of place cells. If
the shape of the environment is non-symmetric then
population activity of place cells can be used to decode the
true position of the animal. If, in contrast, the environmen-
tal shape is ambiguous, then the location signaled by the
place cells is subject to symmetrical errors. In this model,
symmetric errors in the place cell activities result from the
error in the estimation of allocentric head direction. The
results from this earlier work can be summarized in the
following simple assumptions used to generate place cell
activity in the current model: (i) The simulated animal
performs reorientation at the start of each trial. This process
results in anestimationof the allocentric orientationΦup to
the symmetric error (in the present model we discard noise
in direction estimation coming from other sources). For
example, if the true initial orientation in a (twofold
symmetric) rectangular environment is π /2, then the
estimated orientation Φ can be either π/2 or 3π/2, with
equal probability (irrespective of whether landmarks are
present or not). (ii) The activities of place cells after
reorientation correspond to the estimated orientation Φ. In
our example, assume that the trueposition of the simulated
animal in the rectangle was the center of the southern wall
looking towards the center. If reorientation results in a
symmetric error (i.e. Φ=3π/2) then the place cell activities
would not correspond to the true position, but to its
rotationally opposite (i.e. the center of the norther wall). In
the present simulations this is done algorithmically by
resetting the centers of the receptive fields in accord with
the estimation Φ. (iii) Once the reorientation is performed,
estimation Φ is taken as if it were the ‘true’ allocentric
direction and subsequentmovement directions ξiloc dictated
by the locale strategy are calculated relative to this
estimated head direction. In our example, if the action
generated by the locale strategy corresponds to the allo-
centric movement in the direction of π/4, the simulated
animalwill actuallymove in the direction of 5π /4 due to the
symmetric error committedduring reorientation.After each
time step during a trial, the estimation of the allocentric
orientation is updated according to

Φ tð Þ = Φ t−1ð Þ + ΔΦ;

where ΔΦ is the rotation angle since the previous time step.
Estimation Φ is a simple model of the internal direction
estimation thought to beperformedby theheaddirection cell
network in the rat (Arleo and Gerstner, 2001; Wiener and
Taube, 2005).

Under the assumptions described above, the simulated
animal will be subject to symmetric errors during goal
navigation in environments with ambiguous shape
(Cheng, 1986). Importantly, these errors cannot be de-
creased by longer reward-based training, since they are
committed during reorientation at the level of place cells,
i.e. upstream of the place-action learning network that is
updated during training (Sheynikhovich et al., 2009).
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4.3. Selection between strategies

Inputs to the strategy selection network are represented by
the combined activities ofNpc+Nsc input cells from taxonand
locale strategy networks. An intuition for this particular
choice of input is the following: given all available informa-
tion at the current location, the selection network decides
which strategy should be chosen to take control over
behavior.

The input cells project to two strategy-selective (action)
cells with weights wsel

ij. The two strategy-selective cells
code for taxon and locale strategies, respectively. Activity
of a strategy-selective cell is calculated according to Eq. (1).
A winner strategy is selected on each time step according
to the action selection scheme Eq. (2). During training,
weights wsel

ij are updated using Eq. (3) at each time step.
An important property of themodel is thatmotor actions,

performed by thewinner strategy, are considered ‘explorato-
ry’ by the other strategy. In this way, both strategies learn
after a motor action is performed. We assume here that
information about the motor action to be performed (that
may be present in the brain in the form of, e.g., an efference
copy, see Andersen et al. (1997)) is shared between the taxon
and locale subnetworks. However, since actions in these
subnetworks are defined in different spatial reference frames
(i.e. an egocentric frame for the taxon strategy and an
allocentric one for the locale strategy), a conversion between
these reference frames must be performed before learning
(Andersen et al., 1997). This conversion depends on the
current estimation of the allocentric orientation Φ (see the
previous section) and is implemented as follows:

• Suppose that at time t the taxon strategy is the winner and
an egocentric turn by ξitax is to be performed. In the local
strategy subnetwork, this action is converted to ξiloc=Φ+ξitax

and considered as ‘exploratory’, similarly to internally
generated (i.e., according to Eq. (2)) exploratory actions.

• If the locale strategy is the winner and a movement in the
allocentric direction ξiloc is to be performed, then this action
is converted to ξitax=ξiloc−Φ in the taxon strategy network
and is considered as ‘exploratory’ by that network.

4.4. Learning equations

Basic learning equations in our model implement standard
Q-learning algorithm (Sutton and Barto, 1998) where states
and actions are encoded in the firing rates of activities of
input and output neurons, respectively (Arleo and Gerstner,
2000; Sheynikhovich et al., 2009). More precisely, a state st at
time t is represented by the activities of input units rjstate(t).
These project via connections with weights wij to action
units with activities riaction:

ractioni tð Þ = ∑
j
wijr

state tð Þ
j : ð1Þ

Each action unit i represents an action ai available in the
state st. Activity of an action cell (Eq. (1)) is interpreted as the
Q-valueQ(st,ai) of performing action ai at state st. The action
at, that will actually be performed at time t, is chosen
rcement learning approach to model interactions between
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stochastically from all available actions on the basis of the
Q-values according to the softmax criterion (Sutton and
Barto, 1998).Moreprecisely, theprobability thatactionaiwill
be chosen at time t is given by:

p at = aið Þ = exp βQ st;aið Þð Þ
∑jexp βQ st; aj

� �� � ð2Þ

with β as a constant parameter (see Table 1 for parameter
values). The stochastic action choice (Eq. (2)) ensures that
different actions are explored during learning.

During learning, the weights wij are adjusted on each
time step according to the standard temporal-difference
learning rule:

Δwij tð Þ = ηδ tð Þeij tð Þ ð3Þ
where η is the learning rate,

δ tð Þ = Rt + γQ st;a�t
� �

−Q st−1; at−1ð Þ ð4Þ

is the reward prediction error and eij(t) is the eligibility trace
which memorized state-action pairs activated in the past.
The eligibility trace of a synapse (Sutton and Barto, 1998) is
increasedeach timethesynapseparticipates ingeneratinga
movement, i.e. eij(t+1)=eij(t)+rjstate(t) if action ai is performed
at time t. All eligibility traces decay with time according to
eij(t+1)=γλeij(t), where 0<γ,λ<1. In Eq. (4), Q(st,at*) is the Q-
value of the optimal action at time t, i.e. at*=argmax iQ(st,ai),
while Q(st−1,at−1) is the Q-value of the action actually
chosen at time t−1 (due to the stochastic action choice,
Eq. (2), the optimal action is not always chosen).

4.5. Experimental setup and computer simulations

Parameters of the simulation environments and general
experimental procedure were similar to those reported in
Wall et al. (2004). In particular, two simulated environments
wereusedthroughout thesimulations, asquareenvironment
60×60 cm and a rectangular environment 120×60 cm. In
somesimulationsa landmarkwasadded to theenvironment.
The landmarkwas always put in theNorth–East corner of the
environment (coordinates of the center of the landmarkwere
(55,55)cm in the square environment and (115,55)cm in the
rectangular environment relative to the [0,0] origin at the
Table 1

Size of input populations Npc, Nsc 400
Size of output populations Ntax, Nloc 8
Q-learning parameters γ, λ 0.9
Reward for reaching the goal R 10.0
Learning rate η 0.01
Softmax parameter β (selection network/
strategy networks)

1.0/5.0

Place field width σ, (mm) 50

Model parameters. Exact population sizes Npc, Nsc, Ntax and Nloc are
not essential and can be increased without qualitatively changing
the results. Learning parameters γ, λ, η and β were chosen by hand
to maximize learning speed in Simulation 1. Place field width σwas
chosen to approximate real place field width (with the size of the
total field 6σ≈30 cm, (O'Keefe and Burgess, 1996).
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South–West corner). Orientation of the landmarkwas always
135∘ relative to zerodirectiondefined to lie along the southern
wall of the environment and its length spanned the right-
angled corner (see Fig. 1C). A circular goal zones of radius
rgoal=3 cm were located in the four corners of the environ-
ments (at the distance of 7 cm from the corresponding
corner).

In simulations 1 and 2, the simulated rat (represented by
a circle of radius rrat=5 cm) was put at one of eight starting
positions in pseudo-random order at the start of each
training trial. Similarly to starting positions used in the
experiment ofWall et al. (2004), the eight positionswere the
middles of the four walls (with the orientation towards the
center of the environment), or the center of the environ-
ment (with the orientation towards the middles of the four
walls). In simulation 3, the simulated animal stayed at the
center of the square environment for thewhole experiment,
with initial orientations at the start of a trial chosen
randomly from 0, π /4, …, 7π/4.

During a learning trial, the movements of the simulated
animals were controlled by different strategies as described
above. Thus, on each time step (i) a strategy which will guide
behavior was chosen (see Selection Between Strategies); (ii) if
the taxon strategy was chosen, the simulated animal turned
by the angle ξtaxi , corresponding to the action attax (see Taxon
Strategy); if the locale strategy was chosen, the simulated
animal turned in the allocentric direction ξloci that corre-
sponded to action atloc (see Locale strategy). In simulations 1
and 2, once the movement direction was chosen, the
simulated animal performed a forward movement by 2 cm
which corresponded to a rat moving with constant speed of
16 cm per second with time steps of 0.125 s. Steps (i) and (ii)
were performed until one of the four cornerswas reached, or
after 1000 time steps (corresponding to ≈2minmaximal trial
time). Reaching a corner was detected when the distance
between the rat position and the center of the goal zone was
less than rgoal+rrat. RewardR=10wasgivenuponthereaching
the North–East corner, while R=0 for all other outcomes. In
simulation 3, the positive reward was given when the
simulated rat turned towards the landmark, while zero
reward was given otherwise (i.e. a trial consisted of one
time step). Average over 50 simulated animals is shown in all
plots.
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