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Abstract. We present a closed-loop neurorobotic system to investigate haptic
discrimination of Braille characters in a reading task. We first encode tactile
stimuli into spiking activity of peripheral primary afferents, mimicking human
mechanoreceptors. We then simulate a network of second-order neurones receiv-
ing the primary signals prior to their transmission to a probabilistic classifier. The
latter estimates the likelihood distribution of all characters and uses it to both
determine which letter is being read and modulate the reading velocity.

We show that an early discrimination of the entire Braille alphabet is possible
at both first and second stages of the somatosensory ascending pathway. Fur-
thermore, 89% of the characters are correctly recognised in a constant-velocity
reading task, while a closed-loop modulation of the speed allows for faster scan-
ning and movement kinematics similar to the ones observed in humans —though
with a lower classification rate.

Keywords: Dynamic haptic discrimination, Braille reading, Spiking neural net-
works.

1 Introduction

Braille reading involves haptic texture perception as well as cognitive processing and
motor control operations. At the peripheral afferent level, the forces exerted by Braille
character dots on the fingertip induce visco-elastic deformations of the skin which stim-
ulate the mechanoreceptors innervating the epidermis. The information conveyed by
first afferent neural signals is transmitted to the spinal cord as well as to the cuneate
nucleus (CN) of the brainstem. The CN projects to several areas of the central nervous
system, including the cerebellum and the thalamus, which in turn transfer the informa-
tion to the primary somatosensory cortex. Processing along this pathway allows haptic
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information to be interpreted and leads to adaptive motor responses affecting the read-
ing finger’s movement kinematics. In fact, a Braille readers’ fingertip undergoes several
accelerations during character scanning. These changes in velocity are common to all
subjects and appear to originate mainly from motor control mechanisms. Nonetheless,
cognitive (i.e. linguistic) processes are shown to also affect velocity modulation, and
the role of lexical, sub-lexical and semantic processing is currently being investigated
(L1, 21

Here, we propose a neurorobotic framework to study active sensing during fine
haptic discrimination of Braille characters. We simulate skin indentation protocols in
which Braille-like tactile stimuli are dynamically scanned by an artificial touch sen-
sor. Deformation signals act as inputs to a network of leaky-integrate-and-fire neurones
(LIF), which perform an analogue-to-spike conversion and mimick the role of cuta-
neous mechanoreceptors. In particular, we model the activity of Slow Adapting type I
(SA-I) primary afferents, in terms of both spiking discharge and receptive fields (see
[3l], for a recent review). LIF neurones project onto a second order network modelling
CN responses through a population of Spike Response Model (SRM) [4] units. Down-
stream from the CN, a naive Bayesian classifier computes the probability distribution of
all Braille characters online. The likelihood distributions are ultimately used to discrim-
inate the letter currently scanned and devise an adapted velocity trajectory optimising
the scanning/discrimination time.

2 Material and Methods

Figure [Ilshows the complete robotic setup. We use a set of 26 different probes, repro-
ducing a scaled version (1:1.67) of all Braille characters, to stimulate an artificial touch
sensor in order to simulate the human fingertip deformations exerted by Braille dots.
The touch sensor is rubbed over the Braille alphabet and its analogue responses are
encoded and decoded by the simulated first- and second-order afferents (mechanore-
ceptors and cuneate neurones respectively). CN output activity is finally interpreted by
a probabilistic classifier to perform character discrimination and adaptive speed control.

2.1 The Artificial Touch Sensor

An artificial skin prototypeﬂ [6], [7] was initially used to collect and characterise a first
dataset of analogue responses to Braille character indentations. This artificial fingertip
consists of 24 capacitive square sensors disposed according to a rectangular grid layout.
Each sensor has a dimension of approximately 3 mm and the inter-centre distance is 4
mm, for a total sensitive surface of approximately 18 x 23 mm (Fig.[[B). The array is
covered by a 2.5 mm thick neoprene layer aiming at modulating the pressure exerted
on the sensors. The response strength of each sensor is proportional to the indentation
level and ranges from 0 to 189 femtoFarads (fF). The acquisition frequency of each
capacitive pad is 20 Hz.

! Developed at the Italian Institute of Technology (IIT), Genoa, Italy.
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Fig. 1. Overview of the entire encoding/decoding pathway and robotic setup. (A) From left to
right. We employ Braille characters as tactile stimuli to indent a capacitive artificial touch sensor.
A network of Leaky-Integrate-and-Fire (LIF) neurones [3]] converts analogue signals from the
sensor into spiking activity, mimicking fingertip mechanoreceptors. LIF neurones project onto a
network of Spike-Response-Model units [4] implementing second order cuneate nucleus (CN)
cells. The outgoing activity is decoded by a Naive Bayesian Classifier whose output allows a
speed controller to devise an optimal velocity for the fingertip movement. (B) Top: Examples
of scaled Braille characters used as stimuli. Bottom: schematic representation of the encoding
process, from artificial sensor signals to CN neurones output activity. (C) Top: LIF neurones
modelling mechanoreceptor activity fulfil a topological mapping of fingertip regions. Bottom: CN
cell receptive fields are built so as to collect the activity of either a single cell or different possible
combinations of two or three adjacent mechanoreceptors. (D) The artificial fingertip mounted on
a robotic hand/arm setup (Institute of Robotics and Mechatronics, German Aerospace Center ©).

We developed a simulator reproducing the responses of the artificial fingertip and
offering a greater flexibility in data generation and experimental protocols [[7]. We mod-
elled the touch sensor responses by means of Gaussian kernels of amplitude 55 fF and
standard deviation 1.6 mm. Additionally, we added a white noise to the amplitude and
standard deviation of the signals (2.5 fF and 0.1 mm respectively) and we modelled
possible position errors due to the experimental setup by adding a Gaussian noise to the
location of each stimulus (sd = 0.1 mm).

2.2 Primary Afferent Coding: Analogue-to-Spike Transduction

We implement a network of 12 leaky integrate-and-fire (LIF) neurones [8]], [3] to con-
vert analogue touch sensor outputs into spike train patterns (Fig. [IC). We map the
capacitance values provided by the touch sensors into current intensities /(¢) driving
the LIF neurones by applying a multiplicative gain factor of —390 pA/fF (determined
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by comparing output LIF spike trains against recorded mechanoreceptor responses [9]]).
The dynamics of the membrane potential V(¢) of each LIF neurone is:

- — g (V) View) ~10) m
where C = 0.5 nF denotes the membrane capacitance, g = 25 nS the passive conduc-
tance, Vieak = —70 mV the resting membrane potential, and /(¢) the total synaptic input
of a neurone. The membrane time constant is then 7 = C/g = 20 ms. Whenever the
membrane potential V (¢) reaches the threshold Vi, = —50 mV the neurone emits an
action potential. Then, its membrane potential is reset to Vieser = —100 mV and the dy-

namics of V() is frozen during a refractory period At,.f = 2 ms. We also use a “thresh-
old fatigue” [5] to model the phenomenon of “habituation”. It consists in increasing the
threshold Vi, by a value Ay, each time the neurone discharges, making it harder for
the neurone to spike again (i.e. preventing it from responding in a highly tonic manner
even in the presence of strong inputs). In the absence of spikes, the threshold decreases
exponentially back to its resting value Viegrhr:

thhr(t) _ Vthr(t) - VrestThr

= 2
dt Tthr ( )

with T,y = 100 ms, Viesetne = —50 mV and Ay, = 50 mV.

2.3 Second-Order Processing in the Cuneate Network

We model individual cuneate cell responses by means of 49 SRM neurones [4]] (see [[LO],
for a previous use of the model) implemented through a simulation environment [[11]]
optimised to reduce execution time. We include a noise model (i.e. escape noise) that
follows a stochastic process, thereby providing a linear probabilistic neuronal model.

An input spike arrival at time ¢ induces a membrane potential depolarisation under
the form of an EPSP (excitatory postsynaptic potential) AV () described by:

AV (1) o Veexp(—t/7) 3)
where the parameter T = 2 ms determines the decay time constant of the EPSP. If several
spikes excite the neurone within a short time window, the EPSPs add up linearly:

V(t) = Vit Y wi AV (1 1)) (4)
iJ
where i denotes presynaptic neurones, j indexes the spikes emitted by a presynaptic

neurone i at times ff, and V; = —70 mV is the resting potential. The term w; indicates
the synaptic weight of the projection from the presynaptic unit i, defined as:

wi=W- w?’l 5
with factor W determining the upper bound of the synaptic efficacy, and w?’l being

constrained within the range [0, 1]. We use W = 0.04 in our simulations. At each time
step, a function g(¢) is defined as:

g(t) =rolog (1 +exp (VO)V; VO)) (6)
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where the constants rp = 11 Hz, Vy = —65 mV, Vy = 0.1 mV are the instantaneous firing
rate, the probabilistic threshold potential, and a gain factor, respectively. A function A(r)
determines the refractoriness property of the neurone:

(t —1— Tups)?

A(t) = H(t — T — Taps) @)

where T,,s = 3 ms and 7, = 9 ms denote the absolute and relative refractory periods,
respectively, 7 the time of the last spike emitted, and 57 the Heaviside function. Finally,
the functions g(¢) and A(¢) allow the probability of firing p(z) to be computed:

p(r) = 1=exp( —g(NA()) ®)

We implement the synaptic connections between mechanoreceptors and cuneate nu-
cleus neurones so as to generate the receptive fields shown in Fig.[TIC. Each CN neurone
receives non-plastic inputs from either one or a group of two/three adjacent mechanore-
ceptors depending on the stimulus (see Fig. [Tl for details). The dimension and shape of
the receptive fields and the synaptic weight distribution of the mechanoreceptor-to-CN
projections allow topographical information to be maintained at the level of the second
order output space. Also, thanks to the adopted connectivity layout, CN neurones col-
lecting signals from large receptive fields mirror both single primary neurone activation
and multiple co-activations, thus enriching the population’s spiking dynamics.

2.4 Assessing Neurotransmission Reliability: Metrical Information Analysis

In order to decode neural activities and quantify fine touch discrimination, we apply the
recently defined metrical mutual information I* (R; S) [12]. Unlike Shannon’s definition
of mutual information [[13],[[14]], this measure takes into account the metrical proper-
ties of the spike train space [[15],[16],[17] and has been proven to be suitable to decode
the responses of human mechanoreceptors obtained via microneurography recordings
[10],[12]]. The definition of I*(R;S) relies on a similarity function based on the distances
between spike train responses elicited by the entire set of stimuli. The Victor and Pur-
pura Distance was used in the definition of the metrical information [[15]. This specific
spike metric makes it possible to modulate the importance given to temporal (and rate)
coding in the mapping of the spike train space through a cost parameter.

The perfect discrimination condition corresponds to maximum I*(R; S) and zero con-
ditional entropy H*(R|S) [[12]. It occurs when the size of the largest cluster of responses
(to the same stimulus) becomes smaller than the smallest distance between all clusters
of responses [12]].

2.5 Online Classification of Braille Characters: Naive Bayesian Classifier

To discriminate Braille characters during the reading task, we trained a Naive Bayesian
Classifier (NBC) via multinomial distributions. This learning algorithm belongs to the
family of probabilistic classifiers relying on Bayes’ rule to compute the posterior prob-
ability of the sample classes. Despite its simplicity, the NBC has proven to be fast and
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efficient even when the feature independence hypothesis underlying its application is
not fulfilled [18],[19].

Braille characters (i.e. dataset classes) are defined from the spike train activity en-
coded after the touch sensor signals. With the aim of performing a fast classification,
we built the training dataset in two steps. We first swiped the fingertip over the com-
plete set of 26 Braille characters and collected the cuneate neurones’ responses. We then
binned the 49 CN cells spiking activity with temporal windows of increasing length (see
Fig.[BlA). The bin size increment was fixed at 10 ms. Each temporal bin is characterised
by the spatiotemporal organisation of the firing activity it encloses and is labelled with
the corresponding character. The properties of the spiking activity present in each bin
(e.g. spike times, spiking neurones), contribute to building a model associating specific
Braille characters to the different patterns of activity. In the online task, a character de-
tection occurs whenever the probability distribution’s peak exceeds the 90% threshold.

2.6 From Classification to Reading Velocity Control: Kurtosis-Based
Assessment of the Likelihood Distribution

Given the procedure adopted to build the activity dataset and the small time bin chosen
as temporal increment, characters’ probability distributions can be measured frequently
while reading. We use such information to compute the excess Kurtosis index which
indicates the extent to which a probability distribution is peaked around its values.

At each simulation time step, the Kurtosis index gradient is used to adapt the reading
velocity. A positive value indicates that the distribution is narrowing. Such a conver-
gence reflects a decrease in the uncertainty on the character being scanned and triggers
a velocity increase proportional to the gradient value. Differently, a distribution’s widen-
ing induces a deceleration. We investigate whether this velocity modulation decreases
the classification time as compared to a constant velocity movement.

3 Results

3.1 Characterisation of Mechanoreceptor Responses

In a previous study, we compared simulated and human mechanoreceptors responses
to fingertip skin indentations through Braille-character probes [20]. Modelled primary
afferents exhibit receptive fields qualitatively similar to those of human Slow Adap-
tive I (SA-I) mechanoreceptors, in terms of shape, dimensions and signal-to-noise ratio
(see Fig. PIA). SA-I primary afferents show a topological mapping (i.e. their activity
correlates with the area of stimulation), demonstrating their role in encoding spatial
discontinuities [3]]. Fast Adaptive I (FA-I) mechanoreceptors have similar spatial prop-
erties but, thus far, no clear experimental evidence has shown whether SA-I or FA-I
afferents primarily carry the information needed for Braille character recognition [21]].

The first spike jitter distributions of simulated and human SA-I mechanoreceptors,
are statistically equivalent in terms of median and shape (Mann-Whitney U test, P >
0.11; Kolmogorov-Smirnov test, P > 0.076), despite a time lag in the simulated re-
sponses of about 2 ms (see Fig. 2B). Thus, modelled mechanoreceptors present the
same variability in spike latencies as SA-I afferents, but on a larger time scale.
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3.2 Information Content of First and Second Order Tactile Afferent Responses

We investigate neurotransmission reliability at both the first and second order neurones
level by decoding mechanoreceptor and CN cell responses to the entire Braille alphabet
during scanning. More specifically, we focus on the evolution of the information con-
tent over time with the aim of quantifying how rapidly a perfect discrimination of all
characters can be achieved after the stimulus onset.

Figure 2IC (Top) illustrates the evolution of the metrical information and conditional
entropy as spikes flow in while scanning the entire Braille stimuli set at a constant
velocity of 30 mm/s. The cost in the Victor and Purpura Distance was chosen so to
allow the earliest possible perfect discrimination.

At the mechanoreceptor level, first spikes occur at around 100 ms, and 250 ms later
the condition for an errorless stimulus reconstruction is satisfied. In comparison, a small
delay is observed at the CN output level, and almost perfect discrimination is possible
just as soon. As expected, the metrical information curve exhibits a plateau starting at
around 200 ms and lasting approximately 75 ms. This corresponds to the stimulation
phase during which the fingertip is already in contact with the first column of Braille
dots while the second does not stimulate any sensor yet. The information value at the
plateau is about half of the total amount of information transmitted.
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Fig. 2. Characterisation of mechanoreceptor properties and theoretical information analysis of
first and second order afferent responses to Braille stimuli. (A) Spatial event plots of human SA-
I mechanoreceptor responses to scanned Braille characters ‘e’, ‘n’ and ‘r’ and their simulated
counterparts (recorded sections adapted from [21]). (B) Distribution of standard deviations (SD)
of first-spike latencies for both SA-I (left) and simulated (right) mechanoreceptor responses. (C)
Top: Time course of metrical information (full line) and conditional entropy (dashed line) at the
output of LIF (left) and CN (right) neurones, as the fingertip scans the Braille characters at 30
mm/s. The 26 Braille characters serve as stimuli, with 20 repetitions per stimulus used. First
spikes occur at around 100 ms, and the perfect discrimination condition is reached about 250 ms
later. Bottom: Information variability, measured as mean standard error, over time.
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3.3 Classification of Braille Characters in a Reading Task

We collect a dataset of character samples and fit a probabilistic classifier to estimate the
posterior probability of Braille characters while reading. When the NBC fitting param-
eters are used for offline classification, a near perfect discrimination is possible as soon
as enough spikes are processed by the classifier. In fact, as a result of the binning pro-
cedure adopted, data samples built by gathering the spiking activity in small temporal
windows (cf. Sect. do not carry enough information to allow a correct discrimina-
tion; on the contrary, considering longer periods leads to a decrease in the uncertainty
(see Fig. BB). A clear example of the evolution of probability distributions over time
is given in Fig. BIC. At the beginning of the scanning movement, the spiking activity of
CN neurones responding to letter ‘r’ (Fig.[BIC, left panel) does not allow to distinguish
between ‘r’ and the other Braille characters with a similar dot disposition (i.e. ‘I’, ‘p’,
‘q’, ‘v’ - see Fig.[IIC, left panel inset). But, as time evolves, probability distributions
start to peak indicating that the uncertainty decreases till a correct classification is pos-
sible (maximal probability reached for letter ‘r’). A similar example is shown for letter
‘e’ (see Fig.[IC, right panel).

In online simulations, when the classifier is tested with a constant scanning veloc-
ity of 30 mm/s, 89% of the scanned characters are correctly discriminated (10% false
positive, 1% no classification). Differently, if a speed modulation is adopted, the NBC’s
performance decreases to 78% of correct classifications (18% of false positives, 4%
no classification). However, the discrimination of most letters is sensibly the same in
both cases. The observed loss in overall performance is mostly due to couples of letters
(e.g.’a’ and ’c’) whose recognition rate fall considerably (down to approximately 45%)
given to the similarity between character dot patterns.

3.4 Online Reading Velocity Modulation

The methodology we adopted for building the spiking-activity based dataset, lends it-
self to a frequent computation of Braille character probability distributions. We asked
whether the probabilities evolution over time could be seen as a possible mechanism un-
derlying the changes in reading speed of blind readers that can be attributed to lexical
and sub-lexical processes. Thus, we computed the Kurtosis index gradient on probabil-
ity distributions at each time step (cf. Sect. [2.6)) and, upon multiplication by a constant
factor, used it to modulate the reading speed (see Fig. [EA).

Following the velocity modulation approach, global reading performances improve.
At the end of the scanning of a single character, the average velocity adopted through
modulation is higher than the finger’s initial velocity (i.e. when it first encounters the
character) which would have been maintained in the absence of dynamic changes to
the reading speed (i.e. constant velocity scanning). For a base velocity of 30 mm/s,
the speed modulation allowed the average scanning velocity to increase to 35.4 mm/s.
Moreover, we observed an average number of 8.6 accelerations per character (see Fig.
EB). This result is coherent with what was observed in human Braille reading experi-
ments where the influence of lexical (i.e. words) and sub-lexical (i.e. characters) content
on fingertip velocity intermittencies are investigated [2].
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Fig. 3. Binning procedure and Naive Bayesian classifier output likelihood distributions. (A) CN
spiking activity is binned following time windows of increasing size (n x At). (B) Confusion
matrix of training samples (100 samples per character), indicating classification probabilities as
determined by the Bayesian classifier. For each character, samples of increasing duration are con-
sidered (matrix rows). Small bins capture little activity and the classifier is not able to distinguish
between different patterns (light blue values). Differently, larger bins collect enough informa-
tion to allow character discrimination (red values). (C) Expanded sections of panel B for letters
‘t’ (left) and ‘e’ (right). Initially, characters with similar dot patterns (reported in the insets) are
equally probable. As time increases, more activity is collected and the probability distribution
peaks on a single value (indicating the character being read).

4 Discussion

Dynamic haptic discrimination in humans involves several processes at different levels
of abstraction (e.g. encoding/decoding of afferent signals, sensorimotor control, deci-
sion making). At the periphery of the somatosensory pathway, primary afferents pre-
cisely encode tactile signals and reliably convey them to downstream structures [9]. At
the same time, tactile information is used by cognitive and motor processes to interpret
the stimulus and adapt limbic movements to optimise texture exploration.

In Braille reading, the perceptual, cognitive and motor aspects reciprocally and dy-
namically interact. Notably, it has been demonstrated that blind subjects continuously
change reading velocity while surfing a dotted character line, regardless of the semantic
of the patterns they encounter and often unconsciously [1]]. Nonetheless, besides motor
related velocity intermittencies, word frequency and sub-lexical content contribute to
the pervasive changes of the reading speed [2]].
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Fig.4. CN activity modulation and dynamic adaptation of the reading speed. (A) Top (left to
right): Sensor activation as the stimulus is scanned. Center: The activity of CN neurones is shown
as a function of the stimulus position relative to the fingertip. Bottom: Modulation of the reading
speed along the Braille line. The fingertip initially moves at a constant velocity. As the character
enters the sensor area, the scanning speed starts being modulated on the basis of the computed
character probability distributions. Soon after the stimulus has been entirely covered by the finger,
a sudden increase in velocity is observed, indicating a peak in the probability distribution. After
the classification is performed, the velocity is reset to a constant value (i.e. 30 mm/s). (B) Scatter
plot: Number of accelerations and decelerations observed during individual character scanning,
for a representative set of samples. Each dot corresponds to a mean value computed over 3 trials
of a single character. Depending on the complexity of the pattern being read, a variable number
of velocity changes is required. Top and Bottom right: Number of accelerations and decelerations
probability distributions.

In this study, we propose a neuro-inspired closed-loop system to investigate haptic
discrimination during Braille reading. We integrate tactile information coding at the
neuronal level with a probabilistic framework for dynamic stimulus classification and
adaptive motor control. We convert the analogue signals from an artificial fingertip into
spiking activity and we apply an information theoretical analysis to the first and second
afferent output stages. We finally interpret online the output of the second order Cuneate
Nucleus neurones through a Naive Bayesian Classifier and use the character probability
distribution to determine an efficient reading velocity.

Our results show that signals at the earliest stages of the haptic ascending pathway
are conveyed as to allow a complete and fast discrimination by downstream decoders.
We demonstrate that a probabilistic approach allows to efficiently recognise all Braille
characters in an online reading task and we show that a dynamic adaptation of the
finger velocity allows a faster recognition. Finally, we observe a number of accelerations
which is coherent with human experiments outcomes and we argue that a probabilistic
signal interpretation can account for the velocity intermittencies not induced by motor
control operations.

We are currently investigating how the interferences created by different scanning
velocities on the activity of CN neurones influence the classification process. We are
also integrating a cerebellar model in the closed-loop system to explore in further de-
tail motor and cognitive contributions to velocity corrections. We finally propose to
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investigate whether the speed modulation can help improve discrimination performance
in the case of noisy fingertip movements.
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