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Abstract

In this thesis we investigate aging processes in the visual system from a computational mod-
elling perspective. We give a review about neural aging phenomena, basic aging changes
and possible mechanisms that can connect causes and effects. The hypotheses we formulate
from this review are: the input noise hypothesis, the plasticity hypothesis, the white matter
hypothesis and the inhibition hypothesis. Since the input noise hypothesis has the possibility
to explain a number of aging phenomena from a very simple premise, we focus mainly on this
theory. Since the size and organization of receptive fields is important for perception and is
changing in high age, we developed a theory about the interaction of noise and receptive field
structure. We then propose spike-time dependent plasticity (STDP) as a possible mechanism
that could change receptive field size in response to input noise.

In two separate chapters we investigate the approaches to model neural data and psy-
chophysical data respectively. In this process we examine a contrast gain control mechanism
and a simplified cortical model respectively.

Finally, we present convis, a Python toolbox for creating convolutional vision models,
which was developed during the studies for this thesis. convis can implement the most
important models used currently to model responses of retinal ganglion cells and cells in the
lower visual cortices (V1 and V2).

Résumé français

Dans cette thèse, nous étudions les processus de vieillissement dans le système visuel à partir
d’une perspective de modélisation computationnelle. Nous passons en revue les phénomènes
de vieillissement neuronal, les changements fondamentaux du vieillissement et les mécan-
ismes possibles qui peuvent relier les causes et les effets. Les hypothèses que nous formu-
lons à partir de cette revue sont : l’hypothèse de bruit d’entrée, l’hypothèse de plasticité,
l’hypothèse de matière blanche et l’hypothèse d’inhibition. Puisque l’hypothèse de bruit
d’entrée a la possibilité d’expliquer un certain nombre de phénomènes de vieillissement à
partir d’une prémisse très simple, nous nous concentrons principalement sur cette théorie.
Puisque la taille et l’organisation des champs récepteurs est importante pour la perception
et change à un âge élevé, nous avons développé une théorie sur l’interaction entre le bruit
et la structure des champs récepteurs. Nous proposons ensuite la STDP comme mécanisme
possible qui pourrait changer la taille du champ récepteur en réponse au bruit d’entrée.

Dans deux chapitres distincts, nous examinons les approches pour modéliser les données
neurales et les données psychophysiques respectivement. Dans ce processus, nous exam-
inons respectivement un mécanisme de contrôle du gain de contraste et un modèle cortical
simplifié.

Enfin, nous présentons convis, une boîte à outils Python pour la création de modèles
de vision convolutionnelle, qui a été développée lors de cette thèse. convis peut mettre en
œuvre les modèles les plus importants utilisés actuellement pour modéliser les réponses des
cellules ganglionnaires rétiniennes et des cellules des corticales inférieures (V1 et V2).
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0.1 Introduction

In nordic mythology, the goddess Idunn is the keeper of a wooden box, filled with magical
apples. Whenever the gods feel that they grow old, they eat one of her apples and become
young again1. The wish to not grow old is an ancient one. A more menacing thought from
the greek pantheon concerns the three Moirai, who cut the string of life, giving each mortal
their destiny and time to live at birth. And even when a mortal is granted immortality, the
gods might forget to also give them eternal youth. This thesis is not about mythology, even
if this introduction might make it seem this way. It is instead part of the scientific endeavour
to “find Idunns apples”, to study the aging process in the hope of - if not quite providing
complete rejuvenation - at least improving the quality of life in old age.

The increase in life expectancy due to advances in medicine is leading to a larger percent-
age of the population that reaches high age and faces the problems that come with it.

In this thesis we investigate the neural components of the aging visual system. We use
computational modelling to evaluate fundamental hypotheses and to relate theory, neural
recordings and psychophysics. From the perspective of aging research, computational mod-
els can help to reduce the large variety of aging mechanisms to a small number of causes.
For computational neuroscience, the phenomenon of aging gives us the opportunity to test
current models of the nervous system.

In this thesis we focus on a small number of hypotheses in the wide field of aging phe-
nomena. We propose that aging effects in neural responses and perception could be mainly
caused by (1) changes in input statistics (due to e.g. sensory receptors being more variable),
(2) changes in plasticity mechanisms, (3) changes in white matter or (4) changes in cortical
inhibition. These hypotheses allow us to slowly advance our understanding of aging phe-
nomena by comparing computational models with observed data from electrophysiology and
psychophysics.

In relation to the first aging hypothesis, we examine the change in receptive fields that
occur in age. We show that, while increased receptive fields reduce the amount of input
noise, increased input noise can induce larger receptive fields through a mechanism as sim-
ple as classical spike-time dependent plasticity (STDP). We model the effect of input noise
on contrast gain control and variability of neural spike trains and from this can derive an
explanation of why the magnocellular and parvocellular pathways are affected to different
degrees by aging. In another project, we model the effect of cortical organization on percep-
tual contrast thresholds. Even if this project is so far not conclusive, the methodology gives us
the opportunity to draw conclusions on response properties of large populations of neurons
in the sensory cortices without the need for invasive electrophysiology.

As a methodological advance, we present convis, a Python modelling toolbox that can
compute a wide array of vision models and provides automated differentiation for all models
automatically. Even though this tool is not particularly related to aging, it is included in this
thesis, since we used it in some of the modelling work and it also comprised a significant
proportion of my work as a PhD student.

The toolbox is an answer to the problem that previous modelling tools we used were not
capable of using arbitrary, spatio-temporally inseparable filters. Since we assumed that the
aging visual system might suffer changes that change the shape of receptive fields away from
idealized, compact Gaussian functions to less compact, patchy receptive fields, we wanted to

1free after the Prose Edda
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create a tool that mimics the functions of previous models, but can optionally perform spatio-
temporal convolutions with arbitrary receptive field shapes. Since we are using a back-end
that was designed mainly with deep- and convolutional-neural-networks in mind (PyTorch),
we can provide efficient 3d-convolutions that can be performed on a GPU. We also get the
added benefit of automated differentiation from using this framework, which makes it pos-
sible to use gradient descent methods on models that previously had to be fitted using very
computing intense methods such as parameter grid-search or Monte-Carlo simulations.

Old age isn’t so bad when you consider
the alternative.

Maurice Chevalier

0.2 Contributions

The thesis is divided into five chapters and distinct projects are highlighted in each chapter,
most of which tackle a specific hypothesis or problem. Two of these projects were done in
collaboration with master students. I want to use this opportunity to give them credit for their
work, which for the sake of completeness I summarize at the appropriate point in the thesis
without the intention to appropriate it. I also want to stress that supervising the students was
the most rewarding work I have done during my PhD.

Section 3.5.2 presents the work of Emilie Mayer who joined the team for a 6 month
internship in 2016. After completing her Master studies at the Ecole de Mines ParisTech, she
enrolled in a medical school and is now on the path of becoming a great practitioner. During
the internship she modified the VirtualRetina software and performed a set of simulations
and analysis investigating the different reactions to noisy input of M- and P-pathway cells.

In section 4.7.1 the results of Atle Eskeland Rimehaug’s internship project are presented.
Atle has a Bachelors degree in Cognitive Psychology, then changed studies to Physics and
wanted to complete an internship in our group in spring 2018 to gain experience since he
wanted to apply for PhD positions in neuroscience. Starting from a model I created some
time earlier and modified for this project, he had the task of running the stimulation with a
range of parameter pairs, analyse the results and relate his findings to our hypotheses and
available literature.

My personal contributions start with a review of aging mechanisms, which I wrote up and
presented to the lab after my first 6 months in the team. I since extended the review, which
now comprises chapter 1, to be more centred on aging mechanisms that relate to neural
mechanisms resulting in a set of neural aging hypotheses, which set the framework for most
of the following considerations. We aim to publish this chapter in a modified version as a
review paper.

Chapter 2 builds on the hypothesis that receptive fields adapt to compensate for input
noise and discusses theoretical considerations and evidence that could be collected to con-
firm or refute this hypothesis. While I do not claim to having the initial idea, all extensions
presented in this chapter are my own. I simulated a small neural network to prove that STDP
can be a possible mechanism for this adaptation. The connection between STDP, input vari-
ability and receptive field size has not been studied extensively so far, so we aim at submitting
a paper about this novel proof of concept and the theoretical considerations soon.



Section 0.3 | Chapter 0: Introduction 8

In chapter 3, I concentrate on methods that relate directly to neural signals. I present a
number of established methods and present a novel spike pseudo-distance that avoids corre-
lating with the information content due to firing rate differences. In section 3.4.2 I discuss
my analysis of multi-electrode array (MEA) recorded retinal ganglion cell (RGC) data. The
data was collected by Vidhya Krishnamoorty and colleagues in the Lab of Tim Gollisch in
Göttingen. The goal of my analysis was to estimate how many successful recordings are
necessary to confirm hypothesized changes in RGC receptive fields with age. Specifically I
want to thank Vidhyasankar Krishnamoorthy, Fernando Rozenblit, Norma Kühn, Mohammad
Hossein Khani, Helene-Marianne Schreyer, Jian Liu, Michael Weick and of course Tim Gol-
lisch for welcoming me in their laboratory and discussing the state-of-the-art methods and
problems of large scale retinal recordings which I outline in section 3.4.2.1. The results of
the analysis suggest that a direct measurement of RGC receptive field change in age requires
either a large amount of experiments or novel methods as the stochasticity of the recording
process and random sampling of cells make it hard to find significant differences even if we
assume a relatively large change of 10% in receptive fields size.

The differential aging in M and P pathways then directly leads to project 3.5.2 that Emilie
executed during her internship which became her Master Thesis, so the simulations and
analysis presented in that section were performed by her under my supervision. Project 3.5.3
then contains my follow up analysis that was again my own work. We show that gain control
could indeed be the defining difference that makes the magnocellular pathway more resistant
to noise and thus aging effects.

Chapter 4 is in contrast to the previous chapter more concerned with what we can learn
from psychophysics and how we can use the perceptual thresholds of neuromorphic models
to test theories about contrast thresholds at different spatial frequencies and noise levels. I
created a very simple cortical model to test the effects of receptive field size, number of cells
and lateral inhibition. Atles project was to run a version of the model with varying receptive
field sizes and cell numbers. In addition to presenting his findings in section 4.7.1, I also
extend the analysis to the effect of lateral inhibition and present it in section 4.7.2. With the
combined results we aim to create a simple computational model of the aging visual system,
which is verified not by electrophysiological data, but simple, psychophysical measurements.

The last chapter presents convis, the Python toolbox for convolutional vision models I
built during my PhD. This work has been published as Huth, Masquelier, and Arleo 2018.
The toolbox contains my reimplementations of vision models from the retina (Wohrer 2008,
Mcintosh et al. 2016 and Real et al. 2017), primary visual cortex and even secondary visual
cortex (Rowekamp and Sharpee 2017). In addition to the initial release presented in the
paper, I also discuss fitting procedures and spiking mechanisms in more detail.

0.3 List of Conference Attendances and Oral Presentations

Date Conference Attendance, Posters and Oral Presentations Location

2015 Joining the Team as Assistant Researcher

April 2-3 European Institute For Theoretical Neuroscience (EITN)
SP9 Workshop

EITN, Paris
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Date Conference Attendance, Posters and Oral Presentations Location

June 17 1er Symposium des Neurosciences Computationelles a
l’UPMC

UPMC, Paris

June 22 Visiting the Group of Tim Gollisch in Göttingen
Oral Presentation: “Characterizing Noise that Causes Deteriorating Vision

During Aging”

EITN, Paris

Oct. 1-3 European Retina Meeting Brighton, UK

Dec. 14-15 Sensory Encoding by Neural Systems Workshop ENS, Paris

2016 Official Start of the PhD: 16th of January 2016

Jan. 19-20 EITN Modelling the visual system Meeting EITN, Paris

Jan. 28-29 Neuroscience Workshop Saclay (NEWS)
Poster Presentation: “Modeling the Visual System with Respect to Aging”

Campus
Paris-Saclay

Feb. 4 -
March 11

Spring School: Interdisciplinary College
Poster Presentation: “Modeling the Visual System with Respect to Aging”

Günne/Lake
Möhne,
Germany

May 9 Seminar of the Department of Visual Information
Processing

Oral Presentation: “Modelling aging in the early visual system”

IdV, Paris

May 20-21 pyData Berlin

Sept. 7 Emilie Mayer’s Master Thesis Defense Ecole de
Mines, Paris

Sept. 20-25 Bernstein Conference of Computational Neuroscience
Poster Presentation: “Using Equivalent Internal Noise as a Constraint on

Vision Models”

Berlin

2017 2nd Year

March 22-24 École des Neurosciences Paris - ENP Days Collège des
St. Bernadins,
Paris

April 26 Full-day TensorFlow training by Google Paris

May 31 2eme Symposium des Neurosciences Computationnelles à
l’UPMC

Poster Presentation: “The convis framework - Simulation of the Visual
System with Automatic Differentiation using theano”

UPMC, Paris

June 12-13 PyParis Paris-
Courbevoie

July 15-20 CNS 2017
Poster Presentation: “The convis framework - Simulation of the Visual

System with Automatic Differentiation using theano”

Antwerp,
Belgium

July 31 -
Aug. 4

G-node Summerschool Neural Data Analysis Munich,
Germany



Section 0.3 | Chapter 0: Introduction 10

Date Conference Attendance, Posters and Oral Presentations Location

Aug. 25-27 VSAC 2017
Poster Presentation: “The convis framework - Simulation of the Visual

System with Automatic Differentiation using theano”

FU Berlin

Sept. 12-17 Bernstein Conference 2017
Poster Presentation: “The convis framework - Simulation of the Visual

System with Automatic Differentiation using theano” (v2)

University
Göttingen

Sept. 25 Essilor Internal Poster Presentations
Poster Presentation: “The convis framework - Simulation of the Visual

System with Automatic Differentiation using theano” (v2)

IdV, Paris

Oct. 5-7 European Retina Meeting 2017
Poster Presentation: “Effects of Noise on Contrast Gain Control”

Poster Presentation: “The convis framework - Simulation of the
Visual System with Automatic Differentiation using theano” (v2)

Paris

Dec. 18 Essilor Research & Science Interaction
Poster Presentation: “The convis framework - Simulation of the Visual

System with Automatic Differentiation using theano” (v2)

Essilor Créteil

2018 3rd Year

Feb. 5-6 EITN workshop on Cortical Codes EITN, Paris

Feb. 27 Cognitive Computation Symposium: Thinking Beyond
Deep Learning

City
University,
London

March 13 Visiting the Instituto de Microelectrónica de Sevilla
Oral Presentation: “What has deep learning ever done for us?”

IMSE, Seville

April 12 IdV Methods Day 2018
Poster Presentation: “What has Deep Learning ever done for us? -

Simulating the Visual System with convis” (v1)

IdV, Paris

May 15 NeuroComp @ Paris 2018
Poster Presentation: “What has Deep Learning ever done for us? -

Simulating the Visual System with convis” (v2)

UPMC, Paris

June 26 Visit to Centre de Recherche Cerveau et Cognition
Oral Presentation: “What has deep learning ever done for us?”

CerCo,
Toulouse

July 7-11 Forum of the European Neuroscience Society (FENS 2018)
Poster Presentation: “What has Deep Learning ever done for us? -

Simulating the Visual System with convis” (v3)

City Cube,
Berlin

UPMC: Université Pierre et Marie Curie, now Sorbonne Université, Paris
IdV: Institut de la vision, Paris
EITN: European Institute For Theoretical Neuroscience, Paris
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Chapter 1

Aging Effects on Neural Mechanisms

And it came to pass, that Isaac was old,
and his eyes were dim.

Genesis, Chapter 27, Verse 1

1.1 Introduction

Aging is a complicated, multifaceted process. The workings of the nervous system are com-
plex at its best and perplexing in the many aspects in which it is still opaque to our scientific
investigations. We think that the combination of these two areas of study, aging research and
neuroscience, can help us to understand which neural mechanisms are vital to perception
and cognition and conversely which aging processes can be influenced and which work in
fact to compensate for other, detrimental changes. As a more narrow field of investigation
we chose the visual system, as it provides a range of investigative tools and also has a strong
impact on well being. In this chapter, I will summarize important aging processes that affect
the visual system and develop hypotheses how neural mechanisms and aging mechanisms
could interact in section 1.9.

Neurons are not only subject to the general aging mechanisms as all other cells (be it
programmed or accumulated damage), but also to very specific break downs unique to neu-
ral function and specific effects of general processes (e.g. Calcium buffering). The sensory
modalities, in specific the visual system, have to deal with specific problems in addition to
that. The brain is plastic and adapts to its environment and usage. In the aging process this
is relevant at two fronts: 1) neural adaptation can compensate or aggravate aging processes
and 2) if the adaptation itself is subject to changes induced by aging, the brain might be
unable to adapt to changing circumstances - whether induced by aging or not.

1.2 How Old is Old?

To investigate aging scientifically, it is necessary for some methods of analysis to separate
subjects into age groups, so that the observations made about each group can be observed.
While the definition of aging itself is open to various interpretations (Sacher 1982), at least
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the definition of age is established and can be used as a proxy. But since aging is a stochastic
process, it is hard to separate participants in a study into young and old groups based solely
on a single age threshold. There are large inter-individual differences in the aging process
that can mask significant aging effects. Many studies in humans, but also other animals,
separate their young and old groups by a broad margin, e.g. for human studies a young group
of participants between 19 and 25 years old and an old group of 65 years and older. This
is convenient for recruitment, as the young age group corresponds to the age of university
students which can be easily recruited for experiments as well as for a clean separation of the
two populations: The probability that a fast aging 25 year old will show stronger aging effects
than a slow aging 65 year old are a lot smaller than when comparing e.g. 35 and 55 year olds.
But this method excludes a large portion of population where the dynamics and variability
of aging is the most heterogeneous but where individual differences might give insight into
mechanisms for successful aging. Table 1.1 gives an overview of commonly used age group
ranges (with a more detailed table found in Appendix 7.1). It is notable that the longest
human life span reported (122 years) is twice the lower bound of the old age group (60
years in some studies). The group of oldest old for humans is defined as subjects older than
either 80 or 85 years (depending on the study) and also has been studied extensively (e.g. in
Gussekloo et al. 2005; Andersen-Ranberg et al. 2005; Arai et al. 2015). Correlation studies
and longitudinal studies use a more fine grained analysis where they plot their data over the
age of the participants, which also allows to investigate the speed of aging at different ages
and the spread of the population. But these studies require a larger amount of participants
and data than studies that rely on group comparison.

Table 1.1: Age limits of different species summarized from a range of scientific studies. A ta-
ble listing the studies considered and the corresponding age ranges can be found in Appendix
7.1

Animal Young Age
“Early
Aging” Old age

Expected
Lifespan

Max. Reported
Lifespan

Human 20-60
years

60 or more
years

72 yearsa

aWHO
2016.

122 yearsa

aWhitney 1997.

Monkeys
- Rhesus Monkey 5-15.2

years
21-22
years

17.5-32
years

40 years

Mouse 4.3 years
- C57BL/6 10 months 25 months 27 months 3.3 years
- wild deriveda

aMiller et al. 2002.

34 months 4.0 years

Rat
- Norway Rat 7-8 m. 27-35 m. 46 months
Aplysia
caifornica

< 240
days

>240 days
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1.3 Which Changes in Age Do We Want to Explain?

To set the scope of the topics discussed in this review we will start with the resulting ef-
fects that are observed, but not fully explained, which we will try to connect to the low
level changes discussed in Sections 1.5, 1.6, 1.7 and 1.8. The explananda we discuss focus
mainly on visual psychophysics, but also include observations about executive functions and
neurological changes.

1.3.1 Visual Perception

In terms of visual perception, the most notable change is a decrease in contrast sensitivity
(CS) and acuity in general. One might think that these changes can be readily explained
by optical factors and we review the optical changes in the eye and their immediate conse-
quences in Section 1.7.1, but even if these changes are accounted for, there are still differ-
ences between young and old subjects (Owsley 2011).

Changes in Flicker Fusion show that the speed of visual processing is decreased. Brozek
and Keys 1945 and Mewborn et al. 2015 found that age adjusted critical Flicker Fusion was
predictive of a shifting attention task. Bennett, Sekuler, and Sekuler 2007 found a decrease
in motion direction sensitivity for short stimuli.

According to Spear et al. 1994, the magnocellular and parvocellular pathways show dif-
ferent aging effects psychophysically. We discuss this in more detail in section 3.2.2.1.

1.3.2 Psychophysical Inhibition, Attention and Executive Functions

One concern is a decline in visual attention while driving a car, which can lead to an increased
chance of accidents (Kline et al. 1992). Older subjects show a deterioration in the Useful Field
of View (Sekuler, Bennett, and Mamelak 2000), which the authors conceptualized as subjects
being less able to extract information from a cluttered scene.

Executive functions like the capacity for attentional inhibition are also altered in age and
give rise to its very own aging theory (Dempster 1992): The resistance to interference is a
major factor in aging (“Interference Theory”). This theory supposes changes in the frontal
cortex, which enables suppression of stimuli that are not relevant for the task which also gave
it another name: “Frontal Aging Hypothesis”.

In a auditory-visual distraction task Andrés, Parmentier, and Escera 2006 found that old
subjects were less able to filter out irrelevant auditory information. Kramer, Humphrey, et al.
1994 and Faubert and Bellefeuille 2002 found no differences between the distractability of
young and old subjects.

As neuroscientists, we usually have a different definition of inhibition, namely inhibitory
synaptic connections. Later we will present electrophysiological studies showing that neural
inhibition is decreased in age as well. But already with psychophysical methods, the effect of
neural inhibition can be seen. In visual motion processing the center-surround antagonism
is reduced (Betts et al. 2005), which means that lateral inhibition in the visual cortex must
be reduced. This mechanism, although it is a very low-level neurological effect, it has con-
sequences that can be observed psychophysically. It is easier to judge the motion direction
of a small, high contrast stimulus than an increasingly larger one. This is because the high-
contrast stimulus activates the lateral surround inhibition that usually enhances contrast for
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small stimuli. A similar effect is psychophysical crowding (e.g. Manassi, Sayim, and Herzog
2012), where perceptions of one stimulus can be prevented by adding other visual stimuli in
its vicinity. This suppression seemed diminished for old subjects in the task of Betts et al. 2005
and also Karas and McKendrick 2009, as it took them significantly less time to give an answer
than young subjects. Schefrin, Bieher, and Werner 1997 found that the area of complete
spatial summation enlarges with age, also hinting at reduced inhibition. Finally, Syka 2010
used a rat model to investigate auditory senescence. Since the auditory hair cells themselves
were intact, they explained the increased thresholds with reduced GABA inhibition.

1.3.3 Neurological

Using EEG to measure visual evoked potentials (VEPs) shows strong age effects as well in
amplitude as well as latency Tobimatsu et al. 1993. A similar result was found by Yao et al.
2015 in cats and Schmolesky et al. 2000; Leventhal et al. 2003; Yu 2005 in macaque monkeys,
when they recorded directly from neurons in the visual cortices and found that visual signals
arrive with a delay. Xi et al. 1999 found conductance speeds of pyramidal axons themselves
to be slower.

In the middle temporal visual area (V5 or MT) of aged macaque, direction selectivity is
reduced (Liang et al. 2010), as well as stimulus selectivity in V1 (Schmolesky et al. 2000).
The surround suppression of cells in the primary visual cortex of old macaque monkeys was
found to be reduced as well and is probably related to selectivity (Fu et al. 2010). Similarly,
Zhou et al. 2011 found decreased intracortical inhibition that resulted in decreased contrast
sensitivity in the neurons of aged cats visual cortex. In human primary motor cortex, inhibi-
tion is also reduced, as found with a EMG/TMS paired-pulse paradigm by Peinemann et al.
2001.

In terms of cortical organization, the visual system is restructuring itself drastically (Brewer
and Barton 2011): In humans, the overall area of the visual cortices shrinks and the size of
population receptive fields (pRFs) increases. We further discuss the changes to population
RFs in section 2.3.1.

1.4 General Aging Theories

According to Lipsky and King 2015 there are more than 300 aging theories. In addition, the
definition of aging is itself open to various interpretations (Weinert and Timiras 2003). In
greek mythology, the cruel irony has already been noted, that delaying death is not the same
as stopping aging:

The greek goddess Eos fell in love with Tithonus of Troy and asked Zeus for the gift of
immortality for her lover, which he grudgingly granted. But since Eos did not ask for eternal
youth, Tithonus grew older and weaker, but he could not die. In the end he shrunk, such that
only his voice remained.1

Still, a number of aging studies define aging as the progressive changes that are linked to
increased risk of disease and ultimately death e.g. Harman 1981 or Liochev 2015. The main
goal of these studies is extending human life span, which is why they measure lifespan in
animal models as the defining characteristic of delayed aging. But the alternative definition

1free after the Homeric Hymn to Aphrodite
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of aging, the one we are more interested in, is about the quality of life in old age. When
longevity rises, the scientific community still expects the onset of age-related neural diseases
to remain fixed (World Health Organization 2015), leading to an increased morbidity, not a
decrease. The aging factors that are correlated with longevity can very well be different than
the ones associated with neural aging. There might still be common causes and processes that
behave similarly, which is why it can be helpful to also take a survey of (longevity-) aging
science as these studies gathered a lot of data about what happens in old age in a number of
species.

Aging theories can be sorted into two groups: those that believe that the primary changes
in due to age are programmed and those that believe that the changes are accumulative
damage or errors. Later, we will also talk about changes that are possible secondary changes,
i.e. responses to aging changes, which can be compensatory or exacerbatory.

1.4.1 Programmed Aging

Theories of programmed aging assume that part of our DNA evolved specifically to govern the
behaviour of protein expression in old age. While some programmed changes definitely exist,
such as menopause as a programmed change in the neuroendocrine system (or puberty as
an earlier example of programmed, age dependent hormone expression). The change in the
neuroendocrine system of both men and women in high age could thus be an age-dependent,
programmed process. Hormone replacement therapy is indeed used as anti-aging strategies
by physicians (Boccardi and Herbig 2012). Twin studies estimate that about 20-30% of the
variability in lifespan variability can be explained by genetics (Cournil and Kirkwood 2001;
Barzilai et al. 2012) and genes are being investigated that are associated with aging or even
cause premature aging (progeria or progeroid syndromes). An example for a progeric gene
in a model organism is the klotho mutant mouse Vanhooren and Libert 2013, which exhibits
reduced life span, decreased activity, infertility, osteoporosis, arteriosclerosis and atrophy of
the skin similar to aged mice, all from the alteration of a single gene.

Another interpretation of programmed aging is “antagonistic pleiotropy”: the idea that
some genes that are beneficial in young age might pose a disadvantage at a later stage in
life (Williams 1957). As an example, muscle effectiveness might be evolutionarily enhanced
by oxidative processes, that increase the amount of free radicals beyond sustainable and
repairable levels. Increased levels of testosterone increase the risk of atherosclerosis in the
long run, but might give short term benefits. A question these theories raise is whether aging
is subject to evolutionary forces or not and there are theories on both sides of the debate.

1.4.2 Damage Theories vs. Usage Theories

In the 1920s, Pearl 1924 stated that the amount of heavy labour done after the age of 45 is
proportional to a decrease in life span. Even if we ignored that prior to 1920, heavy labour
was in all likelihood also related to exposure to industrial chemicals, dusts, etc., the fact
remains that e.g. arthritis is exacerbated by increased stress on the joints and similar changes
can be correlated to more activity. The accumulation of damages from usage, accidents,
diseases, etc. then would lead to a decreased functioning, loss of cells and aging phenotypes.
One of the byproducts of this damage - lipofuscin2 - correlates with oxidative enzymes and

2lipofuscin: from latin "fuscus": dark; and greek "lipos": fat
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activity, which shows according to Friede 1962 that activity leads to wear, which is reflected in
the amount of oxidative metabolism. However, living organisms possess repair mechanisms
for many of the damages that stochastically occur over the course of a life time. Wang,
Michelitsch, et al. 2009 updated the wear-and-tear theory to a theory of misrepair: since
repair mechanisms also work stochastically, their action might introduce the actual aging
effects.

Swaab 1991 contrasts “wear and tear” with “use it or lose it”, stating that while in non-
neural cells, increased activity usually is associated with an increased rate of aging, neurons
require regular activation. The author even speculated that the activation of neurons could
stimulate protective mechanisms such as DNA repair.

As we will discuss later in section 1.8.4, this is especially true for the synaptic connections
between neurons. On a behavioural level Salthouse 2006 states that while many studies have
found a positive relation between training, expertise or mental activity and cognitive func-
tioning, very few studies found an interactive effect of age and mental activity on cognitive
function. So, while mental exercise will definitely provide positive effects (in old and young)
that will also counter aging processes, a lack of exercise is so far not proven to be a cause of
age related cognitive decline.

1.5 Cell Specific Aging Mechanisms

I will start this review of aging mechanisms with cellular mechanisms that apply to all or most
cells in mammals. In the following sections I will then talk more specifically about neurons
and supporting brain cells and finally neurons of the visual system specifically.

The general cell aging mechanisms I will discuss are specifically the shortening of telom-
eres (1.5.1), changes in the life cycle of cells and the cells’ reaction to ROS induced stress
(1.5.2) and changes in calcium dynamics (1.5.2.1). While each of these phenomenons are
undoubtedly linked to aging and are heavily investigated, currently, there are no clear mech-
anistic consequences that we can causally link to behaviour or well being other than by a
generic assumption that cells are disturbed in their function. A link that I will later discuss
with neural function is the change in calcium dynamics (see section 1.8.3) that could influ-
ence neural plasticity.

1.5.1 Telomeres

In many organisms we can find physical correlates to the aging process on a cellular level
that might enable us to objectify at least some components of the aging process so that they
can be compared to the actual age as well as to the fitness of the individual. One such marker
stems from the way our cells replicate. During mitosis, the DNA in a cell is copied, however at
each replication, the ends of each DNA strand gets slightly shorter. To preserve the integrity
of the information stored in the DNA, each strand starts and ends with replications of the
pattern TTAGGG, that are called the telomeres (from the greek for “end part”) that also tell
the replicating machinery to stop copying. While this portion of the DNA might serve many
purposes, it is relevant for us that at each shortening of the DNA, for many replications only
parts of the telomeres are lost, which has no negative impact on the DNA itself. But as soon
as the telomeres are removed completely, the cell fails to copy the DNA. This creates a natural
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count-down, starting with 11.000 base pairs at birth declining to less than 4.000 base at 75
years or older (Arai et al. 2015).

The idea of this clock ticking down inevitably and creating a hard limit on lifespan is pretty
scary and parallels the greek myth of the three fates spinning the thread that represents life
and cutting it to its allotted length. A number of research projects work on investigating the
dynamics of telomeres and work on therapies that can reverse the shortening of telomeres.
Telomerase, a protein that preservese telomere length during copying can be an important
ingredient in this endavour. But it might be questionable if decreased telomere shortening is
desirable as it might be a protective mechanism. Boccardi and Herbig 2012 pose the theory
that this hard limit on cell replications is a protection against cancerous cells - similar to a
computer program, that prevents infinite looping by including a iteration counter. The data
from (Arai et al. 2015) shows a strong decline in telomere length, but not a complete loss
of telomeres even in very advanced age. It is plausible that cells that divide often will lose
their telomeres earlier which might mean that certain cell populations might fail a lot earlier
than the decline mentioned above which was measured in DNA extracted from whole blood
prepartions.

Since mouse telomeres are very long (40-60kb) and they exhibit telomerase, the replica-
tion limit or mouse fibroblasts - although it looks similar human fibroblast aging - is believed
to not depend on telomere shortening, but governed by an external process such as oxidative
stress (Itahana, Campisi, and Dimri 2004). Nevertheless, when telomerase was deleted in a
gene modified mouse model, after a few generations a disappearance of telomeres could be
observed which lead to early aging phenotypes and skin-cancer resistance (for sources see
Itahana, Campisi, and Dimri 2004).

It should be mentioned, that Arai et al. 2015 found no correlation between length of
telomeres and performance in cognitive tests. They even found a paradoxical increase in
telomere length when comparing 100 year old participants with participants aged 110 and
older - which could be e.g. explained by survivor bias.

The impact of telomere loss on cells might be very similar to cell loss due to any other
kind of cause, with the added complication that also no new cells can be created. In section
1.5.3 we assess whether there is evidence for reduced cell genesis in aging.

My cautious conclusion on the current state of research about telomeres in high age is that
neither human longevity nor cognitive performance are primarily limited by the shortening
of telomeres.

1.5.2 Oxidative Stress and Changes in the Cell Life Cycle

Since it was shown that in rodents telomeres were not the limiting factor on life span as they
have much longer telomeres than humans and express telomere extending proteins, alter-
native explanations were sought to explain why rodents show signs of senescence as well
and their fibroblast cells also have a finite number of replication cycles in laboratory con-
ditions (Itahana, Campisi, and Dimri 2004). Instead of showing decreased telomeres, the
fibroblast cells of mice that stopped replicating showed signs of increased oxidative stress
and oxidative DNA damage. However, the cells were kept at air oxygen levels, which is many
times higher than the physiological conditions these cells normally encounter. Mouse fibrob-
last cells that were then cultured in lower oxygene concentrations did not show senescence.
Through cancer detecting proteins, one of which being the retinoblastom protein Rb, oxida-
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tive stress causes an arrest of cell division or apoptosis to prevent potential cancerous cells
from spreading. The senescence in mouse fibroblast cells looks so similar to human fibrob-
last cell senescence, since both activate Rb, leading to similar consequences. That processes
in the metabolism could be responsible for aging has been formulated more than a century
ago (Rubner 1908), out of observations that the speed of aging is related to the speed of
metabolism. Since then, it has been shown in multiple species that restricted caloric intake
has a positive influence on longevity Ristow and Zarse 2010. The caloric restriction paradigms
consist of providing a diet that contains a certain percentage of calories compared to the ad
libidum consumption that would be typical for the animal. E.g. a mouse would recieve 70%
of the food it would normally eat in a day, or would receive less calorie dense food.

Oxidative stress occurs when aerobic metabolism creates large quantities of reactive oxy-
gen species (ROS), such as 𝑂2·−, 𝐻2𝑂2 or ·𝑂𝐻. These highly reactive molecules can attack
lipids, proteins and DNA. In this process lipofuscin is created as a byproduct. It was found to
correlate so strongly with age that it has been called the age pigment Harman 1981.

Cells use energy and their demand of energy has to be regulated strictly. A sensor for en-
ergy consumption in eukaryotic cells is AMP-activated protein kinase (AMPK). This sensor is
intricately linked into the cell cycle and even neural functions, such as membrane excitability
(Hardie, Ross, and Hawley 2012) and plasticity (Potter et al. 2010).

Early theories about the effect of free radicals assumed that more metabolic activity will
lead to more free radicals, especially in the mitochondira (Harman 1981), leading to dam-
age and thus aging. This was first confirmed by experiments linking caloric restriction to
longevity, but it is (now) in stark opposition to these experiments, as it was shown that
caloric restriction increases oxidative stress rather than relieves it (Ristow and Zarse 2010).
In fact the whole story around anti-oxidants was turned on its head. While previously it
was thought that oxidative stress in cells has only detrimental effects and anti-oxidants can
relieve that stress and counter all negative effects, it seems to be the case that the defence
mechanisms of cells use oxidative stress as a promoter for many maintenance processes, in-
cluding binding ROS, but also initiating DNA repair, which antioxidants by themselves don’t.
In this shift Mittler 2017 published a paper titled “ROS are good” describing that ROS are
even necessary for cell proliferation and differentiation. Caloric restriction survived this shift
since it is a fairly reliable effect in rodent models, only the mechanism was inverted from
caloric restriction preventing metabolism and thus reducing ROS, to caloric restriction shift-
ing between different forms of metabolism, leading to more ROS, which promotes e.g. cell
repair.

As bottom line we want to conclude that there certainly is something interesting going
on that in the end will also have strong effects on neurons (which have a notoriously high
energy demand), but so far these intracellular mechanisms were not shown to interfere with
neural function in a predictable way. They might possibly be a causal mechanism for studies
that showed a link between physical exercise and neuro-genesis (for a review see Kramer,
Bherer, et al. 2004), as the proliferation could be mediated by oxidative stress.

1.5.2.1 Change in Cell Calcium Dynamics

In aging, two mechanisms for 𝐶𝑎2+ clearance are disturbed: buffering and removal. 𝐶𝑎2+

buffering binds 𝐶𝑎2+ intra-cellularly, such that it can be made available if needed, but is
otherwise inactivated for any chemical processes. In aging the amount of 𝐶𝑎2+ that can be
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buffered is greatly reduced (Duckles, Tsai, and Buchholz 1996; Villa et al. 1994). If 𝐶𝑎2+

can not be bound internally and disturbs cellular function, it must be removed from the cell,
e.g. by 𝐶𝑎2+ channels in the membrane which form an integral part of the activity dynamics
of many neurons. That this mechanism is also disturbed can be observed in neurons having a
prolonged recovery time after they experienced an influx of 𝐶𝑎2+. This can be measured as a
strong after hyper polarization (AHP), which in old animals was found to be greatly increased
(Toescu and Verkhratsky 2000).

We will examine in section 1.8.3 the effect changes in Calcium Dynamics have on plastic-
ity.

1.5.3 Evidence of Cell Loss and Genesis

It has long been believed that we lose neurons in aging (Shefer 1973) and that neuro-genesis
ceases in adult organisms. While e.g. in Alzheimers and other neuro-degenerative diseases
there is a significant loss of neurons (Coleman and Flood 1987), it is now fairly certain, that
in healthy aging there is no significant cell loss - with a few specialized exceptions. Rather,
previous reports of loss were affected by methodological problems (Peters, Morrison, et al.
1998), such as a differential change in the volume of the collected tissue. With advances of
methodology and an increasing number of studies, this myth could be disproven. At most
a localized loss of up to 10% in sub-populations of neurons would be possible according to
Peters, Morrison, et al. 1998, however if these sub-populations serve an important function,
even this could play an important role.

One group of cells that was shown to be diminished are sensory receptors such as photore-
ceptors (see section 1.7.1.2), hair cells in the auditory system (Engle, Tinling, and Recanzone
2013) and mechanoreceptors (Stevens 1992). These cells do have an important function
since they connect our nervous system with the outside world. But since they have to be
exposed to photochemical and mechanic activity, they are also under increased risk of mal-
functioning and cell death.

The idea that the nervous system is fixed after development and no new neurons are gen-
erated in adult organisms has also been held for a long time. But starting with Altman 1962,
evidence was found that new neurons are born constantly in the striatum and dentate gyrus
of the hippocampus (Eriksson et al. 1998), countering potential neural loss. Kannangara
et al. 2011 found that in laboratory mice exercise can even enhance neurogenesis and also
reduce stress hormones. Since the methods for labeling and tracking progenitor cells is very
invasive, the data on human neurogenesis is less certain than e.g. in rodents. Sorrells et al.
2018 even found no neuro-genesis comparable to other studied organisms in humans at all,
but it must be noted that they base their observation on post-mortem histological analysis
and not on carbon dating as e.g. Ernst and Frisén 2015 or on labeling and tracking actual
neuron migration of newly generated neurons such as Altman 1962. But even if we trust
their data, it can hardly be thought of as an effect of old age, as they found neuro-genesis to
cease already at 13 years of age.

Overall, general neural cell loss can be said to be characteristic only of neuro-degenerative
disease, not general aging. We would expect neuro-genesis to still operate in adult organisms,
despite counter evidence, however this is not crucial to any of our arguments since neuronal
cell count seems stable and cells that do exhibit losses due to age, such as photoreceptors, do
not have pathways for neural progenitors to migrate to them, and are only developed during
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a specific critical period during development.

1.6 Neuro Specific Aging

Neurons carry and produce the activity patterns that allow us to perceive and act, which
makes them very important cells, but due to their complex intracellular activity and ability to
rewire subject to detrimental aging effects.

Aging effects on neurons have been observed in specific regions and in specific mecha-
nisms.

Myelin sheaths of long-range white matter axons begin to decay in age (Schmidt et al.
2011). Specialized glial cells, s.c. Oligodenrocytes, form isolating layers which wrap many
times around the axons crossing larger distances in the central nervous system. This isolation
creates a larger membrane resistance which allows neural signals to be transmitted faster
and at a lower energetic cost. In age, and even more so in diseases such as Alzheimer, these
sheaths loosen and pockets of extracellular medium (“balloons”) can be found between the
different layers (Peters, Sethares, and Killiany 2001). The disruption of the isolating function
of the myelin sheaths results in slower conductance velocities. Ultimately this process leads
to a loss of myelinated nerve fibres (Marner et al. 2003).

Neural inhibition was found to be altered in age as well. Peinemann et al. 2001 reported
a decrease in the excitability of intracortical inhibitory networks in human motorcortex using
TMS. Cheng and Lin 2013 also found a decrease in cortical inhibition mostly in the primary
somatosensory cortex, but not in the secondary somatosensory cortex, revealing that there
might be area specific differences. Luebke, Chang, et al. 2004 found an increase in inhibitory
currents in patch clamped prefrontal cortex cells of rhesus monkeys.

The effect of intracellular 𝐶𝑎2+ dynamics on neurons causes primarily changes in plastic-
ity, as we will discuss in section 1.8.3.

1.7 Vision Specific

Being exposed to light is dangerous for any cell, since light induces chemical reactions by
adding energy. Skin cells developed to be resistant to light exposure, but the components of
our eye and the receptors and neurons in our retina have to be exposed to light to give us
information about the world.

In addition the retinal diseases that cause drastic changes, some pathologies are so com-
mon, that they can be counted as normal aging processes: presbyopia and cataracts being
very common issues which we today know how to treat. Even though the exact number is
contested, it was unanimously found that the number of photoreceptors diminish in age and
that the retina is remodelling in so far poorly understood ways.



Section 1.7.1 | Chapter 1: Aging Effects on Neural Mechanisms 21

1.7.1 Normal Aging of the Eye

1.7.1.1 Presbyopia and Cataracts

Coming from the greek roots of 𝜋𝜌𝜖𝜎𝛽𝜐𝜍 (old) and 𝜔𝜓 (eye/sight), the term presbyopia has
been used by scholars for more than two millenia 3 to describe age related loss of sharp vision.
Today presbyopia is a precisely defined condition characterized by difficulty to focus on close
objects caused by the decrease of the lenses ability to accommodate to the distance of objects
due to the natural hardening of the lens. It can be corrected with refractive glasses, often
bifocal lenses, or with accommodative, intra-ocular implants.

The effects of presbyopia do not per se affect acuity, but only the ability to change the
plane of focus to near and far locations, so high acuity vision is still possible and common
at the appropriate distance. This is important to us since a general decrease in acuity would
also have neural consequences (as discussed in Chapter 2).

A stronger influence the changes in the lens have on visual function are cataracts. Due to
accumulation of proteins and pigments, the optical qualities of the lens changes, leading to
yellowing and ultimately clouding of the lens. The link between cataracts and age is not as
close as presbyopia, as smoking, diabetes and sunlight exposure increase the risk of cataracts.
Even before cataracts can be diagnosed, retinal illumination and light scatter differ between
young and old due to the changes in the lens of the eye.

Weale 1987 answer their own suggestive title of “Senescent vision: is it all the fault of the
lens?” in the negative. In the following sections we will therefore look at other changes in
the aging eye.

1.7.1.2 Loss of Photoreceptors

Rod loss in humans slows over life time, starting with ∼ 1000 per 𝑚𝑚2 per year under 40,
slowing to 300 per 𝑚𝑚2 per year at the age of 80 (Gao and Hollyfield 1992) with the total
numbers dropping by ∼ 40% from 140.000 to 80.000 per 𝑚𝑚2. The loss of cones is almost
constant at ∼ 16 cones per 𝑚𝑚2 per year. Over the life time the observed mean of total cones
per 𝑚𝑚2 drops from over 5000 to about 4000, giving a loss of 20% over the whole lifetime.
Gao and Hollyfield 1992 argue that for any notable reduction in visual performance at least
20% of cells need to be lost between measurements.

While neurogenesis of photoreceptors has been observed in zebrafish adult retinas (Cameron
2000), it is unclear whether a similar process can happen in mammals and specifically in hu-
mans. In any case the observed loss can be expected to have some influence on perception,
but not a drastic one as e.g. is the case in retinal pathologies (see section 1.7.2). The loss of
rods, even though it is quite significant over the lifespan, might be even hard to notice percep-
tually in the periphery where rods are most frequent and ganglion cells sum over thousands
of photoreceptors. The reduction of cones in the central retina could have a stronger effect
since they are important for acuity and color vision. However, the changes to the lens of the
eye also impact acuity and color vision. Whether these effects mask or exacerbate each other
is also not clear.

3100 A.C. in "Symposiacs" by Lucius Mestrius Plutarchus or 400 BC in the writings of Aristotle
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1.7.1.3 Loss of Retinal Ganglion Cells

The loss of retinal ganglion cells (RGC) in general follows the loss of cone photoreceptors
(Gao and Hollyfield 1992). In the fovea 16% of cells are lost between age 20 and 60. More
peripherally around 50%, however these cells follow the logarithmic loss of rods with the
largest decrease below age 40 and only a slow decline afterwards.

Melanopsin RGCs Some retinal ganglion cells are themselves reactive to light through their
expression of melanopsin (Sanes and Masland 2015). In many animals these cells are in-
volved in the circadian rhythm. In old age melanopsin RGCs are more affected by cell loss
than other ganglion cell populations. Also the circadian rhythm is more and more disturbed
and it has been theorized that the loss of melanopsin RGCs is connected to the change in
circadian rhythm (Lazzerini Ospri, Prusky, and Hattar 2017). Samuel et al. 2011 found
melanopsin cells in their mouse retina preparations, but did not comment on the frequency.

1.7.1.4 Increase of Photoreceptor Noise

A definite change in the retina that is part of the normal aging process is the accumulation of
debris in the photoreceptor layer of the retina (Leger et al. 2011). As mentioned before, being
exposed to light is pretty dangerous for a cell, so photoreceptors are constantly regenerating
themselves and shed discs that were destroyed by photochemical processes. The accumula-
tion of cellular debris in the retinal pigment epithelium (RPE) can also slow the transfer of
nutrients from blood-vessels through Bruch’s membrane into the RPE (Jackson, Owsley, and
Curcio 2002), changing the responsiveness of photoreceptors (for a schematic of the retina
including Bruch’s membrane see Figure 3.2.1, Bruch’s membrane is labelled BM).

1.7.1.5 Retinal Remodelling

In addition to the increased functional variability at the level of photoreceptors, the natural
loss of ganglion cells (Gao and Hollyfield 1992) and the onset of retinal diseases which we
will discuss in the next section, the circuitry of the retina undergoes a systematic change in
disease-free aging that is quite puzzling.

Across multiple species it has been found that horizontal and bipolar cells develop cellular
processes that grow outside of the outer plexiform layer, growing into the ONL (see Figures
1.7.3 for mouse and Figures 1.7.1 and 1.7.2 for human). Eliasieh, Liets, and Chalupa 2007
counted this process as evidence for preserved plasticity. The dendritic tree of ganglion cells
was in contrast found to decrease slightly. In combination with the increase in retina area in
mice, Samuel et al. 2011 predicted a decrease in the receptive field coverage of the retina.
However, it is unclear whether the more extensive bipolar receptive field and the reduced
ganglion cell receptive field would cancel each other out.

Regus-Leidig 2018 investigated synaptic markers in aged mice and confirmed that the
synapses created by the ectopic processes are indeed functional.

It would be very odd if the extensive restructuring of the retina would be without func-
tional consequences. Samuel et al. 2011 did some rudimentary assessment of ganglion cell
functions and concluded that the function in old ganglion cells (if they respond) is preserved.
The expected change of 5% reduced receptive field (RF) size could not be verified since the
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Figure 1.7.1: Retinal Sprouting: visual assessment. A in a young retina, the labeled hori-
zontal cells are constrained to their layer vs B in an retina preparation from an old subject
the dendrites of the horizontal and bipolar cells are increasing in length but leave their des-
ignated layer. From Eliasieh, Liets, and Chalupa 2007

Figure 1.7.2: Retinal Sprouting: quantitative assessment. While long fibres do occur in
young subjects, they are strictly found in the periphery. In old subjects fibre length and
density increases throughout the retina. From Eliasieh, Liets, and Chalupa 2007

variability between ganglion cells was orders of magnitude larger than the expected differ-
ence. In section 3.4.2 we did some calculations on whether large scale multi-electrode array
(MEA) recordings could give conclusive answers about functional changes in old retinas.

1.7.2 Retinal Diseases

In addition to normal aging related loss, the diseases of AMD, Stargardt disease and RP are
characterized by up to total loss of specific groups of photoreceptors.

1.7.2.1 Age-Related Macular Degeneration (AMD) and Stargardt Disease

Age-related macular degeneration (AMD) is a family of age related diseases that all lead to
the progressive loss of central vision (Bonnel, Mohand-Said, and Sahel 2003). The disorder
is accompanied with abnormalities in the retinal pigment epithelium (RPE) and the accumu-
lation of soft drusen in the macular area. Two main types of AMD are dry AMD, which shows
degeneration of RPE and the neural layers of the retina, and the rarer wet (neovascular or
exudative) AMD which also shows growth of blood vessels which can lead to a loss of almost
50% of ganglion cells (Medeiros and Curcio 2001).
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Figure 1.7.3: Decrease of retinal cell coverage in aged mice: The combination of slightly
shrinking receptive fields (due to RGC dendritic trees shrinking) and an increase in retinal
area, the receptive fields of old mice RGCs cover less of the visual field. From Samuel et al.
2011

Stargardt disease affects like AMD central vision but is not related to old age and instead a
heritable disease related to the phototransduction cascade. The effects of Stargardt and AMD
are comparable in that they attack photoreceptors in the central retina while the periphery
stays mostly intact, but both have a high interpersonal variability.

1.7.2.2 Retinitis Pigmentosa (RP)

Retinitis Pigmentosa (RP) can be thought as the complementary disorder to AMD and Star-
gardt disease, as it is also characterized through a region specific vision loss, but primarily
in the periphery, not the center of the retina. contrast sensitivity (CS) in RP can vary from
unimpeded to a three-fold decline in contrast sensitivity (Jason McAnany et al. 2013).

Ferreira et al. 2017 found that patients with RP had significant visual cortex remapping
that correlated with the decrease in visual field. Cortical representations were expanded or
shifted to cortical regions that had reduced retinal input, consistent with other studies about
plasticity (see Section 1.8.1).

1.8 Adaptation and Plasticity

Neural connections are plastic and adapt to their usage. In the aging process this is relevant
at two fronts: (1) neural adaptation can compensate or aggravate other aging processes
(section 1.8.1) and (2) if the adaptation itself is subject to changes induced by aging, the
brain might be unable to adapt to changing circumstances - whether induced by aging or not
(section 1.8.2).
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The brain developed to allow adaptive behaviour in changing environments. Even though
mammals live in diverse environments with very different goals, the structure of their brains
is remarkably similar. Even cortical regions in one individual that handle different tasks are
for the most part comprised of similar neurons organized in similar structures.

The difference between compensation and maladaptation can be slim. In most cases it
is plausible that processes that compensate some function that was impacted by aging do
this at the cost of other functions. We will argue that the increase in receptive field sizes
throughout the visual system is a compensatory mechanism, even though it does impact
spatial resolution.

1.8.1 Plasticity “When All Is Well”

There are a number of experiments that illustrate the effect of input dependent plasticity
very nicely. Most of these experiments were done in rodents, most commonly rats and mice,
since they grow up (and also age) rapidly and have well studied sensorimotor areas, such as
e.g. the barrel cortex in which the strictly organized cortical representations of single whiskers
can be distinguished optically by staining for cytochrome c oxidase (Hardingham et al. 2003).
When whiskers are cut, the barrel cortex reorganizes over time by shrinking the area that is
responsible for the cut whisker and using the neurons in that area instead for processing the
sensory stimuli of the neighbouring whiskers. Deprivation experiments like these have been
used to investigate plasticity over the life span of the animals.

1.8.2 Changes in Plasticity in Aging

Berardi, Pizzorusso, and Maffei 2000 found that monocular deprivation leads to cortical re-
organization in the visual cortex in young rats, but not in adult rats, being in agreement
with the long standing, but now heavily refuted idea that plasticity is turned off in the adult
organism.

1.8.2.1 Relating Human and Rodent Studies

In humans we observe similar effects in blind Braille readers or musicians (Pantev et al. 1998;
Elbert et al. 1997; Sterr et al. 1998; Pascual-Leone and Torres 1993) where sensorimotor rep-
resentations are enlarged, using a larger area of the surface to represent sensory information.
More so, the relation between competence and cortical representation is roughly propor-
tional (Elbert et al. 1997; Pascual-Leone and Torres 1993). And we can also observe that the
visual cortex of blind people can be used for completely different functions such as sound
discrimination (Kujala et al. 1995) or verbal processing (Amedi 2004; Röder et al. 2002).
Even though we should not replicate the deprivation experiments performed with rats in
humans, there were non-invasive measurements of the size of cortical representations when
patients had to have an ankle immobilized (Liepert, Tegenthoff, and Malin 1995; Dinse et al.
2003). These similarities let us hope that the studies on plasticity done in animal models can
be transferred to knowledge about the human neurosystem, since many of the more com-
plicated experimental paradigms (which most aging studies are) can not be replicated with
human subjects. Even in non-human primates, aging studies take many times longer than in
rodents as the example of a longitudinal study from the 90s shows (Liepert, Tegenthoff, and
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Malin 1995), who will publish the effect of their intervention on longevity in the year 2020.
In the light of these complications, we will continue in summarizing literature on rodents,
but want to make clear that we can expect differences between rodent and primate aging and
can only hope that some of the specific processes discussed are transferable.

1.8.2.2 Evidence Against Loss of Plasticity

One of the challengers of the idea of plasticity turning off in old age, (Scali et al. 2012),
showed plasticity could be restored when senescent rats (> 20 months old) were exposed
to “enriched environments” in contrast to the scientific standard which are isolated, square
cages. These enriched environments featured a running wheel, multiple floors, multiple food
dispensers, weekly changed novel shape objects and social interaction in groups of 6 animals.
Any single one of these factors can play a role in the recovery of plasticity, as e.g. physical
exercise, mental exercise and social interaction are all recommended for a healthy aging
process (Fratiglioni, Paillard-Borg, and Winblad 2004). The deficits in plasticity in old age of
laboratory animals could possibly not be related to age at all, but to the amount of time spent
in laboratory conditions.

1.8.3 Calcium and Neural Aging

A theory put forward in Ashok and Foster 2007 relates the change in Calcium dynamics
to plasticity. Normally, the intracellular Calcium levels depend on spiking activity and can
induce LTD as well as LTP (Graupner and Brunel 2012). For very low levels (no activity at
all) there is no change. Low frequency stimulation induces low levels of intracellular Calcium
and weakens synaptic connections while high frequency stimulation increases intracellular
Calcium concentration and strengthens the synapses. In old age a number of intracellular
messengers change their expression, extruding and buffering less Calcium, such that the
intracellular concentration of Calcium is generally increased, and specifically so during low
frequency stimulation. However, the increased concentration of Calcium also changes the
membrane potential resulting in a measurably increased after hyper polarization (AHP) as
reported by multiple studies (Toescu and Verkhratsky 2000; Ashok and Foster 2007; Kumar
and Foster 2005; Bodhinathan, Kumar, and Foster 2010; Oh, Oliveira, and Disterhoft 2010).
The AHP makes it harder to elicit further spikes and thus prevents the activity to reach a
regime that would potentate the strength of the synapses.

1.8.4 Usage Dependent Plasticity

Dinse 2006 reported that the sensory as well as the motor-representations of rats’ hind legs -
but not front legs - change dramatically with age. The specific changes are very interesting,
as is the probable cause for the change. While in young rats, the sensory receptive fields
are very small and allow a precise mapping between points on the foot and locations on the
cortex, in old rats, the cortical representation maps to larger, more diffuse receptive fields
encompassing multiple toes instead of just a specific part of a single toe. The overall cortical
area mapping the complete paw shrinks. In the motor-cortex the changes were similar. The
authors compared the electrophysiology of mechanoreceptors in front and hind paws and
found that while there was an increase in response latency, they both showed similar changes,
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even though the representation of front paws was indistinguishable from young rats. An
explanation for the differences can be the change in paw usage: while old rats tend to lift
their feet less and instead drag them along, they still use their front paws for feeding and
cleaning. Hence they experience many distinct touch sensations on their front paws and only
diffuse touch on their hind paws. This can be compared to an experiment done by Allard
et al. 1991 in which they sewed two fingers of an owl monkey together and observed a fusing
of representation - not because of neural connections between the fingers, but soley due to
the input statistics of the two fingers coinciding. If the cortex notices a similarity in its inputs,
it will organize the representations accordingly. In the case of the old rats in (Dinse 2006),
the toes of the paw are not used individually, so their representation fuses, receptive fields
get larger and the overall representation needs less cortical space.

If instead of giving correlated sensory information, the signal-to-noise ratio of the envi-
ronmental stimuli is reduced, the cortex takes longer or even fail to develop a topographic
organization (Chang and Merzenich 2003). When they reared rats in an environment sub-
jected to continuous auditory noise, they found that the critical developmental period of the
auditory cortex was delayed and an unusually large area of the cortex as sensitive to very
high auditory frequencies. It is unclear what effects a non-mature, unstructured sensory
cortex with shifting representations has on perception or higher cognitive functions.

1.8.5 Changes in Behaviour and Sensory Information

While it has been shown that physical, mental and social activity is beneficial for cognitive
function and might even have protective effects against dementia (Fratiglioni, Paillard-Borg,
and Winblad 2004), staying active in any of these three areas becomes harder with age
(Salthouse 2006). Stine-Morrow 2007 even goes as far as to ask whether our pattern of
choices to engage in intellectual challenges contribute more to cognitive vitality than the
(biological) senescence process.

1.8.6 Reduction of Columnar Structure

Cruz et al. 2004 found that the micro-structure in monkey prefrontal cortex declines in age
and similar results were found by Chance et al. 2006. The specific kind of structure Cruz et al.
2004 investigated was the spatial correlation of cells which normally shows a clear columnar
organization: laterally cells are either very close or spaced in equal distances, horizontally
cells are more likely to be directly above each other creating a very characteristic spatial
crosscorrelogram, which they parameterized and found a significant decrease in columnar
strength. Possible causes could be dendritic and axonal atrophy that causes minimal local
displacement of a few micrometers, which can lead to the observed changes. In terms of
consequences it is not clear how the displacement of cortical cells could impact cognition. The
authors conjectured that the loss of specificity of features that are coded by the microcolumn,
such as e.g. orientation (see Luebke, Barbas, and Peters 2010), could be linked to the integrity
of microcolumnar structure. Since they did their analysis in layer III, they also link their
findings to cotrico-cortical connectivity.
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1.9 Our Theories About Aging in the Visual System

In addition to the established aging theories we want to highlight the following hypothe-
ses which to us seem like good starting points for a scientific program to investigate aging
mechanisms. Our goal is to gain insight into the aging phenomenon by neuro-computational
modelling, so our hypotheses focus on the mechanisms with which neurons communicate and
process information. We chose the hypotheses that aging effects are mainly caused (1.9.1)
by input statistics of sensory stimuli, (1.9.2) by changes in plasticity mechanisms, (1.9.3)
by de-myelination of white matter tracts and (1.9.4) by changes in cortical inhibition. We
formulate the hypotheses here in the strong form of being “the main cause”, which in all like-
lihood will not be true as aging is certainly a mix of different processes which might interact.
But a strong, simple hypothesis can encourage scientists to consider novel view points: if
you currently believe that de-myelination is the main aging mechanism, considering that a
change in input statistics could be enough to create the aging effects observed can be more
helpful to develop new ideas than to add the changing input statistics hypothesis to your
current favourite theory and to try to juggle all the complexity that comes with it.

1.9.1 Mainly Due to Input Statistics

We discussed a number of reasons why we think it’s plausible that sensory input in old age
differs from sensory input in young subjects. In both the visual and the auditory system the
receptors lose sensitivity and become less reliable (Bonnel, Mohand-Said, and Sahel 2003;
Wayne and Johnsrude 2015). Cataracts and yellowing of the lens reduce retinal illumination
which further increases randomness while the ability of the eye to adapt both to the distance
of attended objects and the light level decreases.

The effect of increased variability at the sensory input can propagate through the sensory
system if there are no noise suppressing mechanisms. We investigate two possible noise
reduction mechanisms in chapter 3: gain control and (spatial) summation.

All of these changes do not only have a negative effect on the general quality of the sensory
information (reducing acuity or decreasing the signal-to-noise-ratio (SNR)), they also cause
the sensory cortices to adapt to the new statistics. As discussed, Chang and Merzenich 2003
found that at least the primary auditory cortex is not very good at developing under the
presence of noisy input. So we might suspect that if the visual input would become more
noisy and change input statistics enough to cause cortical reorganization (as found e.g. by
Brewer and Barton 2011, discussed in section 2.3.1), that this re-organization might not even
produce a stable representation.

Consequences: One effect of noisy sensory input is certainly broader tuning curves, which
were observed (see Section 1.3.3), reduced cortical representations (Brewer and Barton
2011), increased cortical latency. In chapter 2 we also investigate the connection between
input noise and receptive field size. As larger receptive fields filter noise, it is possible that the
increase in receptive field size observed, e.g. in Schefrin, Bieher, and Werner 1997, is a com-
pensatory mechanism. We also give a possible plasticity mechanism that could implement
this function.
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1.9.2 Mainly Due to Changed Plasticity

Since the aging effects happening at the level of the cell cycle and Calcium buffering ability
of the cells are already hard to ignore, it is also very plausible that plasticity mechanisms
themselves change. Ignoring all other effects of aging, the change in plasticity can depend on
the specific type of neuron and how its plasticity mechanisms relate to intracellular Calcium
levels.

As discussed in section 1.8.3, Ashok and Foster 2007 put forward a nice theory on how
changes in Calcium dynamics change both the threshold for synapse modification and the
excitability of the neuron. For young animals the dynamics cause LTD and LTP to be in
perfect balance, while for old animals plasticity shifts to favour LTD over LTP.

Consequences: A change in plasticity, specifically a bias towards depression will first of all
be noticable in a loss of synapses and dendrites. It is possible that a loss of synapses will
lead to less activity in downstream neurons, however it is equally likely that other synapses
compensate for the input by increasing their efficacy. A loss of dendritic spines has actually
been observed and even if other synapses compensate for the loss in input, this will inevitably
lead to a simplification of neural network structure which might be the cause of many age-
related changes in cognitive functions (Dickstein et al. 2007).

1.9.3 Mainly Due to White Matter Tracts

In old age, there is a significant amount of demyelination (Davis et al. 2009). Demyelination
causes white matter tracts to loose speed, specificity and can even lead to the complete loss
of single connections (Peters 2002; Atilla et al. 2006; Barrick et al. 2010). The loss of long-
range connections has an effect on the amount of information that can be passed from one
brain region to another. E.g. if already the optic nerve loses 2/3 of its nerve fibres as reported
in Sandell and Peters 2001, acuity and contrast sensitivity suffers drastically, causing cortical
representations to shrink and becoming broader. If we add to this that the remaining fibres
might become increasingly unreliable in transmission and latency, we get similar effects as
discussed in our input hypothesis 1.9.1, but with variability added at each transmission stage.
Also there is some similarity to our plasticity hypothesis 1.9.2, but the loss of myelin function
is limited to long-range white matter tracts and the only change possible is a gradual loss of
connectivity.

Consequences: Demyelination causes a general increase in noisy activity and increased
cortical delays as was found by Yao et al. 2015. Price et al. 2017 found sensory evoked
responses in the visual system to be delayed by changes in the white matter structure. A
decrease in neural activity as could be expected from less input is as far as we know not
observed.

1.9.4 Mainly Due to Inhibition

Neural inhibition decreases during aging (Pleger et al. 2016; Cheng and Lin 2013; Peinemann
et al. 2001).
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A change in lateral inhibition has effects on the shape of receptive fields as we will discuss
in section 2.5. Inhibition can also function as a anti-noise mechanism, sharpening tuning
curves or implementing a soft winner-take-all function as we do in 4.7.2. The loss of sur-
round suppression, characterized e.g. by Fu et al. 2010, is one example where inhibition is
measurably reduced. The decrease of contrast sensitivity of visual cortical cells in old cats is
also related to a reduction of intracortical inhibition according to Zhou et al. 2011.

Pleger et al. 2016 managed to restore tactile acuity through perceptual learning, but their
neural field model explaining their fMRI data suggests that old subjects have weaker lateral
inhibition and perceptual learning - instead of reversing this effect - further weakens intra-
cortical inhibition and thus restores acuity.

Consequences: With a decrease in inhibition, spontaneous activity of neurons will certainly
increase. This has been found across the neural system (e.g. Wang, Yao, et al. 2014). Conse-
quences of increased spontaneous activity is a lowered signal-to-noise-ratio (SNR).

Since inhibition plays an important role in shaping RFs, the shape and specificity of re-
ceptive fields can be expected to be changed if inhibition is reduced.

Neural inhibition is also possibly related to executive functions and attentional inhibition.
We outlined some deficits in attentional inhibition in section 1.3.2. The capacity for task
shifting and attentional inhibition was found by Zhang et al. 2015 to be correlated to sponta-
neous eye blinks, which are both mediated by the central dopamine system, which involves
inhibitory synapses between the striatum and the globus pallidus.

1.10 Summary: Aging Effects on Neural Mechanisms

In this chapter we aimed at characterizing aging effects that can be explained with computa-
tional theories. We presented these theories as changes mainly due to (1) input, (2) plasticity,
(3) white matter and (4) inhibition. We chose to not pursue the theory that there is just a
general increase in noise within each neuron, since this hypothesis is much too broad and the
observed increased variability in neurons can be explained with any of our four candidate
theories. Similarly, we do not assume that wide-spread neural cell loss is a natural process in
healthy aging, although we do explore the change in the number of cells in Chapter 4 as a
possible factor in our model.

At least some of the neurological and psychophysical findings we discussed can be ex-
plained with each of these hypotheses and we believe it is worth considering the full con-
sequences of each hypothesis in isolation, even though in reality none of our theories in
isolation will be able to fully explain all aging phenomena.

In the following chapters we will test mainly consequences of the input hypothesis, since
it has not been explored much before and our modelling approach enables us to propagate
the effect of increased input noise through a model system and analyse what consequences
this single change can have.

The plasticity hypothesis has a lot of merit for computational modelling. In section 2.6.1.3
we sketch out how an aging plasticity model could be investigated. Since we found input
noise to affect the weight distribution of an artificial neural network with spike-time de-
pendent plasticity (STDP), we would be interested in future projects to combine these two
approaches.
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Since the hypothesis that white matter changes (sec 1.9.3) can give rise to some aging
phenomena can locally look like either the input noise hypothesis (if we assume the viewpoint
of the cells in the cortex that receive the white matter connections), or a change in plasticity,
we believe that investigating the two more basic hypothesis first makes it easier to argue
about this more specialized, but certainly important factor in aging.

Inhibition is an important tool for neural networks. It can sharpen tuning curves, evaluate
conflicting percepts and convert signals into sparser signals via lateral inhibition. The balance
between between excitation and inhibition is crucial for a neural networks functioning. If
inhibition changes even only a little with old age, many properties of cortical computation
will change. In section 3.5.1 we examine the function of gain control (which builds on
inhibition) as an anti-noise mechanism. We also investigated the role of inhibition as a signal-
enhancing, soft winner-take-all mechanism in section 4.7.2. But there are many ways how
this hypothesis can be used to generate predictions that we have not touched upon. The
cortico-thalamic interaction itself being a well modelled dynamical system that has interest
for any modality as well as pre-frontal functions since it provides an almost universal feedback
mechanism which also links into attention.

Even with these very limited and simplified hypotheses, a large number of computational
approaches are possible to test our knowledge of the nervous system and to generate new
predictions to be tested in further experiments. The following chapters of this thesis are
barely a start on this journey.
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Chapter 2

Receptive Fields and Noise

An inspirational quote about receptive
fields is hard to find.

Anonymous

2.1 Introduction

In Chapter 1 we formulated the hypothesis that increased noise at the level of sensory re-
ceptors is enough to produce wide spread changes in the visual system. Next to the general
decrease in signal-to-noise-ratio (SNR) throughout the perceptual systems, we also claim that
an increase in receptive field sizes can be a compensatory mechanism against input noise and
further that it can be a consequence of increased input noise.

In this chapter we pose a theoretical framework for receptive fields (RFs) and review
the evidence of RFs enlarging with age and other possible changes to RFs. We then present
our findings that the simple and well established established plasticity mechanism spike-time
dependent plasticity (STDP) can be the mechanism that adapts the size of RFs according to
input noise.

2.2 Trade-offs in Receptive Fields

The characterization of RFs has been a useful tool for neuroscience since the concept was used
by early electrophysiologists like Sherrington 1906. In the visual system the size of RFs differs
between cells of different functions, which correspond to the multitude of demands we have
towards vision: we might have to discriminate minute details, or judge whether a large object
is moving towards or away from us. The most prominent example of divergent receptive field,
the magnocellular and parvocellular pathways in the lateral geniculate nucleus (LGN), divide
the task of having a high spatial resolution and a high temporal resolution between them. The
shape of RFs is always a trade-off, namely in (1) volume, (2) main direction (e.g. temporal
or spatial) and (3) complexity.
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Figure 2.2.1: A broad and a narrow Receptive Field: plot A shows the profile of two gaus-
sian receptive fields, generated with different standard deviations. The weights are constraint
between 0 and a gmax value and the sum of the weights is roughly equal between the two
receptive fields. B shows that the narrow receptive field has a very sparse weight histogram,
with many weights being either 0 or 1. C shows that the broader receptive field has more
intermediate values, since less weights are truncated, and less weights close to 0 or 1.

2.2.1 Volume

A small Receptive Field (RF), that only integrates very few sensory impulses, is subject to a
very strong stochasticity and thus also to noise. A very large Receptive Field (RF) (given that
it is a perfectly scaled version of the smaller one) will average over a larger portion of sensory
information and thus be more noise robust, but it will tell us less about the fine structure of
the stimulus, since it will also average over the fine details of the external world. Since for
the visual system this is true not only for the spatial dimensions, but also time, we would
like to coin the term of the volume of receptive fields, rather than the size. Taking only the
spatial scale of a linear Receptive Field (RF) into account, there would already be an optimal
amount of information for a Receptive Field (RF) to capture to get a reliable, but informative
signal from the environment. This optimum would depend on the typical scale of external
signals.

We can define the volume of a Receptive Field (RF) similar to a volume in space, delimiting
the spatio-temporal points in the stimulus that can create a perturbation in the response when
the response is modelled with a feed-forward LN model. If the stimulus is spatially organized,
we can estimate the area that has an effect on the firing rate with different time lags. If there
is no spatial structure but we have e.g. in a simulation of a neural network access to the input
weight matrix of a neuron, we can count the number of non-zero synaptic weights. Figure
2.2.1 shows a simple schematic of two receptive fields and their weight distribution. The
narrower Receptive Field (RF) has a higher number of weights close to zero than the broader
Receptive Field (RF).
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2.2.2 Temporal vs. Spatial

The distinction between spatial and temporal extent of a Receptive Field (RF) is exemplary
of the second trade-off. Scaling in either direction would increase the volume, but it is also
possible to keep the volume constant by compensating e.g. a shorter integration time with a
larger spatial extent as the magnocellular pathway is doing. Or if we require a high spatial
resolution, we can achieve that with the same volume by integrating over a longer time pe-
riod. To cover both, high spatial and temporal resolution, with only one shape of Receptive
Field (RF) would be much less efficient, since even a compromise between spatial and tem-
poral extent would drastically reduce the volume of the Receptive Field (RF). Having these
two different visual channels therefore makes a lot of sense, not to mention that integration
over space and time can be very different neural processes. 1

2.2.3 Selectivity

The third trade-off is selectivity. Irrespective of the overall envelope of the Receptive Field
(RF), a similar stimulus might elicit different responses e.g. only due to the orientation of
the stimulus or some other similar fine scale structure. Neurons can be more or less selective
to stimuli inside their Receptive Field (RF), with the least selective being simple spatial in-
tegration where a single point stimulus anywhere in the Receptive Field (RF) will excite the
neuron. A more selective Receptive Field (RF) could be a center-surround Receptive Field
(RF) or a gabor patch which is only selective to a certain orientation of the stimulus. The
tuning curve of the neuron with respect to the selective feature can vary from a very steep
function around the preferred value, or just show a small relative increase. In Section 1.3.3
we discussed electro-physiological studies that showed e.g. a broadening of tuning curves in
age.

Multiple integration stages can narrow or widen selectivity, so that selectivity does not
increase monotonously in the visual hierarchy. Riesenhuber and Poggio 1999 e.g. modelled
IT cells, which show a trade-off between invariance to position and scale-changes and object
selectivity - either being very scale and position selective or very object selective. A similar
observation was made by Zoccolan et al. 2007.

2.2.4 Volume of Receptive Fields Constrained to Form Two Pathways

In the visual system two pathways can be singled out anatomically in the lateral geniculate
nucleus (LGN) and by their spatio-temporal selectivity. The two inner layers of the LGN
contain large cells, which respond to very large, but fast moving stimuli. Due to their size
they are called magnocellular or M cells. Layers 3 to 6 contain much smaller, parvocellular or
P cells, which also have smaller receptive fields, meaning that they can discern more spatial
details. However they need a longer temporal integration period. In terms of behavioural
relevance, the two pathways seem to correspond well with two very distinct visual skills:
reacting to close, fast movement, primarily in the periphery of our visual field, and discerning
small details such as writing or objects that are far away. But wouldn’t it be advantageous
to have a visual pathway that could combine the advantage of both? A pathway that would
respond to fast changing stimuli with high visual acuity. We believe this is undesirable not

1In the simplest case time can be multiplexed into dendritic space
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Figure 2.2.2: Volume of a RF approximated as a cone The two marked points label very
different receptive fields: one is spatially very small, but has a long temporal integration time
while the other one has only a short temporal extent but a larger spatial area. In terms of
volume the two receptive fields are equivalent if we approximate them with a cone.
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Figure 2.2.3: Volume of a RF approximated as a cone In addition to the two points from
Figure 2.2.2, four arrows show forces acting on each point. The green arrows act along
the gradient of volume and represent the desire to be as precise as possible (towards small
receptive fields) and to be noise resistant (towards large receptive fields). The two orange
arrows decorrelate the two pathways to minimize redundancy. Finally the blue arrows and
black dashed lines postulate a sensible limit for receptive field sizes in a specific direction
(e.g. too long of an integration time to be useful)
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because e.g. high acuity vision is usually done in a more stationary environment (saccades are
important for high acuity vision as well), but because of the volume of the visual stimulus that
needs to be sampled to get an idea of what is happening. If we think of discrete events that
are sparsely sampled to estimate whether a certain visual pattern is present and these events
are fired with equal probability anywhere in the visual field, we can gather more events if we
are collecting them over a larger area than if we only examine a small area. To be certain of
what is happening in the small area, we need to wait longer to accumulate enough events.

Figure 2.2.3 shows two receptive fields that are identical except for their spatial and tem-
poral scaling. They produce characteristics very similar to the responses in the magnocellular
and parvocellular pathways respectively2, one being very motion sensitive, the other allowing
for high acuity. It also shows two green arrows per Receptive Field (RF) that signify the forces
keeping the balance between a large volume to counter noise and a smaller volume to be as
precise as possible. We present an example for a mechanism that can exhibit this behaviour
in response to noise in Section 2.6.1. The green arrows act perpendicular to the gradient of
the volume.

If sensory noise increases in old age, which we discussed in Section 1.9.1, we can assume
this would require the visual system to adapt and change the volume of receptive fields by
either increasing Receptive Field (RF) size, or increasing the temporal integration period
either all along the pathway or at least at higher levels where visual information is integrated
into percepts. In the following sections we discuss evidence for these two processes and a
possible neural mechanism.

But to make a more testable hypothesis we can make some additional assumptions: Since
we do have these two distinct pathways with distinct functions in our visual system, it seems
plausible that they would want to diverge further, such that we can have one pathway that is
as motion sensitive as possible and one that has a high acuity. However, there are biological
limits to the size of receptive fields and length of temporal integration. In the considera-
tion of Figure 2.2.3 we assume that while the two pathways are driven to diverge (orange
arrows), they are fixed in their position by the upper limit of Receptive Field (RF) size for
magnocellular cells and for temporal integration for parvocellular cells. We don’t necessarily
assume a hard biological limit, but rather a limit of usefulness if the receptive fields are too
large or integrate for too long.

From this very simplified picture, we can make two predictions what happens if sensory
noise increases in age and thus the volume of the receptive fields is increasing: (1) the
magnocellular pathway is close to the limit on Receptive Field (RF) size, which will cause it
to lose temporal precision and increase its temporal integration while (2) the parvocellular
pathway will mainly increase Receptive Field (RF) size.

2.3 Evidence for Increased Receptive Fields in Age

Visual receptive fields can change dynamically due to changes in input statistics, e.g. retinal
lesions which cause RFs to increase (Pettet and Gilbert 1992). Similar effects of use dependent
plasticity is reviewed in section 1.8.4. But is there also evidence of Receptive Field (RF) size
increase in age? Zhou et al. 2011 found a shift of sf sensitivity to lower spatial frequencies

2ignoring for now contrast gain control in the *magnocellular* pathway. We will discuss contrast gain control
of the *magnocellular* pathway in Section 3.5.1
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and an increase in Receptive Field (RF) size by a factor of 2 in old cats. There are also findings
about the surround suppression of V1 neurons decreasing (Fu et al. 2010), which was most
apparent in the selectivity of V1 cells.

In humans, evidence of increased receptive fields comes mostly from analysis of population
receptive fields. The temporal response can be assessed with EEG by measuring the (VEP).

2.3.1 Population Receptive Fields

A number of studies have investigated the change in receptive fields in advanced age. One
method to assess receptive fields non-invasively is to analyse the responses of fMRI or EEG
when showing patterned stimuli to map visual to cortical locations. This method is of course
very coarse and does not allow to find an actual receptive field of a single cell, it is said to
instead measure population receptive fields (pRFs): the cumulative area of all receptive fields
of the neurons in a specific voxel. Brewer and Barton 2011 investigated these population RFs
using patterned stimuli and fMRI on human subjects to investigate the cortical representation
of visual information in different visual areas. They found a general increase in pRF size in
V1, V2, V3 and hV4, and an even more pronounced increase in the central 3 degrees of the
visual field, which normally exhibit very small receptive fields for high acuity vision. They
found the overall cortical area of each functionally measured visual cortex to be reduced,
which strengthens the hypothesis that the cortex response to some change in input with
considerable reorganization.

When interpreting population RFs, it is important to keep in mind that the population
Receptive Field (RF) of a voxel can change size in two ways: the single receptive fields of
individual neurons can change in size or the spacing-relation between the visual locations
and their representation in the cortex can change (see Figure 2.3.1). One can expect those
two quantities to vary together, but the increase of population RFs sizes is no direct evidence
for the enlargement of the individual RFs. The spacing-relations between the RFs can vary as
a simple consequence of general enlargement if the cortex tries to keep the overlap between
receptive fields constant. But it is also possible that individual RFs stay constant, but either
there are fewer RFs or the representation in the cortex is less “redundant”, resulting in a
smaller area of the cortex that represents the visual space. A possible reason for decreased
redundant positions of receptive fields could be that cells are less selective to features such
as ocularity, spatial frequency or orientation (as found in macaque (Leventhal et al. 2003)),
resulting in redundant responses which reorganize into a smaller cortical representation.

An alternative explanation for the change in population RFs is that the coverage of the vi-
sual field with receptive fields could be reduced, yet each Receptive Field (RF) stays constant
in size. Figure 2.3.1 compares the two interpretations of the results visually.

2.3.2 Change in Temporal Dynamics

The temporal aspect of receptive fields can be hard to capture in an experiment. Even though
the methods to estimate the temporal aspect of receptive fields differ from the ones used to
estimate them spatially, there is some evidence of changes in temporal integration. E.g. flicker
fusion and response latency can be taken as proxies for the temporal extent of single cell
receptive fields, both of which were found to be increased (Brozek and Keys 1945; Emmerson-
Hanover et al. 1994). Wang et al. 2005 found the visual system in general more sluggish, with
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Figure 2.3.1: Population Receptive Fields The possible relations between visual space
(green) and cortical space (blue) when population receptive fields are reported to change
in size. Upper row: the same cortical area represents a larger visual area due to the increase
in size and coverage of the individual receptive fields. Lower row: without change in the
receptive fields, the cortex represents the same visual information in a smaller cortical area.

an increase in latencies throughout the visual system and an increasing spread of latencies
with each subsequent hierarchical layer. They measured the response of many neurons to
a visual stimulus and concluded that in old monkeys, some signals arrive in V1 roughly at
the same time as for young monkeys, however a large portion of V1 responses are delayed
by ≈ 20𝑚𝑠. For V2, all responses were delayed significantly and it can be expected that
throughout the visual system, the delay would further accumulate.

2.4 Evidence for Broadened Tuning Curves

So far we examined evidence for a change in receptive field size and temporal dimension.
But there is also a change in complexity, as tuning curves of neural responses change due to
age. Liang et al. 2010 foung the direction selectivity of middle temporal visual area (V5 or
MT) cells in rhesus monkeys to decrease. The center-surround antagonism, which gives rise
to the relative difficulty to perceive large, high contrast moving stimuli (as opposed to small
ones), is reduced in old subjects Betts et al. 2005, showing a simplification of the response.

2.5 Inhibition Shaping Receptive Fields

It is tempting to equate the excitatory regions of the Receptive Field (RF) to the dendritic
field of a neuron that integrates different points of the stimulus. But the actual shape of the
Receptive Field (RF) is also mediated by e.g. the contrast of the stimulus that can change the
size of the Receptive Field (RF) (Wielaard and Sajda 2005) or the spatio-temporal frequency
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content of the stimulus (Galli et al. 1988), or they can depend on the activity of other cortical
columns around them, leading to crowding effects in higher visual areas. Receptive fields
are therefore dynamic and not static and a large part of their dynamics come from inhibitory
inputs, which can be feed-forward or lateral, feature-specific or unspecific.

2.6 Noise Shaping Receptive Fields

2.6.1 Project 1: Noise Adaptive Receptive Fields Can Emerge From STDP

→ see also List of Projects

Even though it is clear that the size of RFs can reduce input noise by averaging over more
input samples, it remains to be shown that there could be actual mechanisms that change
the Receptive Field (RF) size in response to the input. In this simulation we want to show
that a simple formulation of STDP can already produce similar changes, so the existence of
plasticity behaving similarly in biological synapses is plausible.

2.6.1.1 Methods

We simulated a small network of integrate and fire neurons in brian2 (Goodman and Brette
2009) with classical all-to-all STDP (Song, Miller, and Abbott 2000). 100 input neurons
projected to 10 output neurons. On each pre-synaptic spike, the conductance of the output
neurons will be adjusted according to the synaptic weight and the synaptic spike will be re-
duced according to the time since each previous post-synaptic spikes. On every post-synaptic
spike the weight is increased depending on the time since each previous pre-synaptic spikes
and all other output neurons are inhibited to decorrelate the weight convergence (Masquelier,
Guyonneau, and Thorpe 2009). The change in synapse weight depending on the temporal
difference between pre- and post-synaptic spikes can be seen in Figure 2.6.1. Weights are
bounded between 0 and a value 𝑔𝑚𝑎𝑥. We introduced a slight bias for depression over facili-
tation.

The input was a continuous repeat of a frozen spike pattern on half of the inputs and
random Poisson spike trains on the other half. To make the input pattern more salient for
human observers, we used not only random activity for the frozen pattern, but added a
cascade of spikes starting at input neuron 0 to 20, firing 1ms later than the previous neuron.
When replaying the pattern, each spike was jittered according to a noise level parameter.
Similar to Masquelier 2017, we expected the weights to converge to match the recurring
spikes of the pattern. Since the first output neurons response also creates inhibition on all
output neurons, each output neuron will become selective to a specific portion of the temporal
input pattern.

The parameters of the simulation were:

Table 2.1: parameters of the simulation

Parameter value Description

𝑡𝑎𝑢𝑚 10ms Time constant of the LIF model
𝑡𝑎𝑢𝑝𝑟𝑒 40ms Time constant of pre-synaptic STDP memory
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Parameter value Description

𝑡𝑎𝑢𝑝𝑜𝑠𝑡 40ms Time constant of post-synaptic STDP memory
𝐸𝑒 0mV Excitatory current equilibirum
𝑣𝑡 -54mV Spiking Threshold
𝑣𝑟 -60mV Reset membrane time constant
𝐸𝑙 -74mV Leak current equilibirum
𝑡𝑎𝑢𝑒 5ms Time constant of excitatory current
𝑔𝑚𝑎𝑥 .08 Synapse scale
𝑑𝐴𝑝𝑟𝑒 .01 Synaptic decrease (relative to 𝑔𝑚𝑎𝑥)
𝑑𝐴𝑝𝑜𝑠𝑡 .0105 Synaptic increase (relative to 𝑔𝑚𝑎𝑥)
𝐼𝑖𝑛ℎ .05 mV Lateral Inhibition

We varied the jitter of the input from < 1𝑚𝑠 up to 100𝑚𝑠 and recorded the statistics of
the spiking output and weight distribution.

2.6.1.2 Results

We observed similar behaviour as Masquelier, Guyonneau, and Thorpe 2009: each output
neuron responded selectively to a time point within the pattern for all noise levels.

Our input stimuli did not have any spatial structure, so we took the number of non-zero
weights to stand in for the “size” of the Receptive Field (RF). What we observe is that with
increasing noise level, less weights are driven to the extremes 0 and 𝑔𝑚𝑎𝑥. Instead there are
more weights contributing for each output neuron spike. In Figure 2.6.2 we show the number
of weights < 0.01, which does fall with increasing noise level from about 7% to 2%. When
examining the weight evolution over time, the low-noise simulations converge faster to fixed
weights while the more noisy simulations either take longer to converge.

Because of lateral inhibition, the firing rate stays constant (usually within 1Hz for all
simulations of the same parameters, e.g. between 30 and 31Hz for the results in Figure 2.6.3)
for all noise levels as each output neuron spikes once per pattern repetition. An exception
were parameters that lead the synaptic weights to shrink below a critical value. Without
inhibition, the parameters for the neuron threshold and the maximal synaptic weight 𝑔𝑚𝑎𝑥

have to be adjusted to precise values to keep the simulation in a biologically plausible range.

2.6.1.3 Discussion

The results show that a simple synaptic mechanism can cause a neuron that receives noisy
input to maintain synapses to more input sources, while each synapse becomes weaker. In
a structure that receives spatially correlated input, we can assume that these synapses will
tend to come from correlated input sources. This will lead to broader receptive fields under
increased input noise.

The simulation was very simplistic and did create a large number of excitatory synapses,
but we show in Appendix 7.2 that for other synaptic parameters, e.g. favouring facilitation
over depression similar results will be observed. We did not include spatial patterns in the
activity (e.g. movement). Each neuron was wired independently to the input. This makes the
simulation applicable to a wider range of phenomena besides vision (e.g. touch or auditory
stimuli). While in this simulation the time constants of all neurons was similar and so no
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Figure 2.6.1: The STDP rule. If the difference between the spikes is negative (the pre-
synaptic spike arrived before the post-synaptic spike), the connection is strengthened. If the
post-synaptic spike precedes the pre-synaptic spike, it can be assumed that the pre-synaptic
neuron did not contribute to the cell firing and the connection is weakened. If the spikes
arrive shortly after each other, the change is large while a longer pause between the spikes
will only lead to a small change.

Figure 2.6.2: Resulting weights. With increasing noise level the number of small weights
drops. A more detailed plot is visible in Figure 2.6.3.
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Figure 2.6.3: Spike Patterns and Resulting Weights: The raster plot in A shows the same
repeating spike pattern being distorted by different levels of jitter noise. The pattern is clearly
visible for up to 1.2ms jitter, then the repetitions of the pattern look more and more dissimilar.
B shows resulting weight profiles for the selected simulations. with some areas shaded (see
C) C shows the sum of weights of the 7 lowest bins (blue), 28 intermediate bins (orange)
and the top bin (red) over noise levels (the bins were chosen for the lines to have comparable
scale while still showing the trend). It is apparent that the lower bins and highest bins drop
while the intermediate bins gain more weights. The square markers correspond to the weight
distributions in B.

change in the temporal sensitivity of the neurons can be expected, we assume that in a
biologically plausible situation, the input to a neuron already provides temporally diverse
representations of a stimulus since the same signal can arrive at different times through
different neural connections. With this interpretation, the spread of synaptic weights is also
a spread in time for the Receptive Field (RF).

An area that is interesting to investigate in future projects is the effect of changed plasticity
dynamics on the shown effect. In section 1.8.3 we summarize the theory that increased
intracellular 𝐶𝑎2+ can shift neural plasticity into a regime of LTD. With a detailed model that
relates 𝐶𝑎2+ to plasticity, such as e.g. Graupner and Brunel 2012, it would be interesting
to see whether this shift even increases the effect, or if it counters it as LTD removes active
synapses. We have found for our simulation in the Appendix in Figure 7.2.2, which mimics a
longer intracellular 𝐶𝑎2+ signal, that this single change increases the effect, however it also
corresponds to a general increase in LTP over LTD. To replicate the exact changes predicted
by Ashok and Foster 2007, we need to use a more detailed STDP model in which 𝐶𝑎2+ has
the two divergent functions of plasticity signal and hyper-polarization.

2.7 Summary: Receptive Fields and Noise

In this chapter we discussed the theoretical background to a possible aging theory. Under the
sole assumption of increased input noise, what changes do we expect to occur in the receptive
fields of the sensory system? We introduced the idea that the volume of a Receptive Field
(RF) is a trade-off between spatial and temporal precision and noise robustness. Looking at
the parvocellular and magnocellular pathway in the visual system, we concluded that their
response to increased input noise will result in differential changes: parvocellular cells lose
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acuity and magnocellular cells lose temporal precision. Next, we related the measurement of
population RFs, which are found to increase specifically in the central visual field by Brewer
and Barton 2011, to receptive field size. We also discussed the notion that inhibition plays a
large role in shaping receptive fields, which is the basis of another, alternative aging theory.
Factually, the two mechanisms (receptive field changes due to noise and due to changes in
inhibition) are likely to interact and facilitate each other.

Finally we showed that a dynamic increase of receptive field sizes as a response to noise
can be achieved with a mechanism as simple as STDP.
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Chapter 3

Investigating Aging by Modelling Neural
Activity

Everything we do, every thought we’ve
ever had, is produced by the human
brain. But exactly how it operates
remains one of the biggest unsolved
mysteries, and it seems the more we
probe its secrets, the more surprises we
find.

Neil deGrasse Tyson

"The seat of sensations is in the brain.
This contains the governing faculty. All
the senses are connected in some way
with the brain; consequently they are
incapable of action if the brain is
disturbed. The power of the brain to
synthesize sensations makes it also the
seat of thought: The storing up of
perceptions gives memory and belief
and when these are stabilized you get
knowledge."

Alcmaeon of Croton (5th century BC)
from Gross, Charles G. (1987), "Early

History of Neuroscience"

3.1 Introduction

As we discussed in Chapter 1, aging has a range of effects on the nervous system that are still
not well understood. The changes that were found still have to be explained in a coherent



Section 3.2 | Chapter 3: Investigating Aging by Modelling Neural Activity 47

theory of neural aging. The approach to test possible explanations which we have chosen is
computational modelling, in which we build models according to the current understanding
of neural processes, e.g. in the visual system, and draw conclusions from their behaviour in
simulated experiments. In this way, we can try to reduce the wealth of observations made
about the aging process to a few, simple mechanisms. The differential aging effects on the
magnocellular and parvocellular pathway in the visual system gives us an opportunity to test
one of our aging theories on the fairly established model of lateral geniculate nucleus (LGN)
responses. We simplify the differences between the two pathways to a few parameters, such
that we can pin-point the exact mechanisms involved.

This chapter will introduce the idea to investigate the visual system by comparing neural
activity. When we want to determine how well the visual system can tell stimuli apart, we
can look at the differences in firing rate, the signal to noise ratio, spike distances, decoding
and mutual information. We applied these methods to synthetic data generated by a model
of retinal ganglion cells or LGN cells.

In a collaboration with the group of Tim Gollisch in Göttingen, we also looked at mouse
retinal ganglion cell (RGC) activity to estimate the feasibility of performing exploratory ex-
periments to determine the size of receptive fields of RGCs. We intended to run a quick run
of experiments to establish if already at the retinal level aging effects change the properties
of visual information, since the retina is fairly easily accessible in contrast to e.g. the LGN. To
judge the number of experiments we would have to perform, we used the spread of receptive
field sizes and recording quality to estimate the probability of finding a true positive result,
assuming a change in receptive field size of 10%. The results suggest that a large number of
experiments or the use of more complicated recording technology is necessary to find even
this generous change.

3.2 A Short Introduction to the Neural Visual System

3.2.1 The Retina

The retina is the first neural stage of the visual system. The output of the retina is the optic
nerve, which is comprised of the axons of retinal ganglion cells (RGCs) (G and Ax in Figure
3.2.1). There are around 50 different types of RGC classes in each species (Masland 2001;
Sanes and Masland 2015), characterizable by their response properties, genetic markers and
connectivity to other cell types. While for some RGC types, we have some idea of the circuitry
they are involved in, others remain completely obscure. In the following, we will describe a
very rough sketch of the connectivity in the retina.

The retina contains rod and cone photorecpetors (R and C in Figure 3.2.1) which respond
to light with a change in their membrane potential. Rod photoreceptors respond to a wide
range of wavelengths and are found predominantly in the periphery. Cone photoreceptor
are larger than rods, less light sensitive, found mostly in the central areas of the retina and
can be colour sensitive. The types of cones expressed in a species determine which colours
can be distinguished. Humans and some other animals possess a fovea which exclusively
contains densely packed cones for high-acuity colour vision. The activity of photoreceptors is
mediated by horizontal cells (H in Figure 3.2.1), which laterally connect photoreceptors and
inhibits them depending on the activity of others.
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Figure 3.2.1: Schematic Structure of the Retina. The cells mentioned in section 3.2.1 are:
Rod (R) and Cone (C) photoreceptors, Horizontal cells (H), Biploar cells (Bi), Amacrine cells
(A) and Ganglion Cells (G). The top of the image is oriented towards the outside of the eye,
ending with the RPE and Bruch’s membrane (BM). The light enters the retina through the
ganglion cells at the bottom. The layers labelled are: retinal pigment epithelium (RPE), outer
plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL) and the Ganglion
cell layer (GCL). Modified from: https://commons.wikimedia.org/wiki/File:Retina_layers.
svg

https://commons.wikimedia.org/wiki/File:Retina_layers.svg
https://commons.wikimedia.org/wiki/File:Retina_layers.svg
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Bipolar cell dendrites also connect to the photoreceptors. How many photoreceptors con-
nect to one bipolar cell depends on the type of the bipolar cell as well as the eccentricity
and can range from as few a single photoreceptor in the fovea to multiple thousands in the
periphery. While photoreceptors and horizontal cells only appear as one of two structural
types each, bipolar cell types are diverse. As with horizontal cells for photoreceptors, there
is also a lateral inhibition mechanism for bipolar cells. Amacrine cells (A in Figure 3.2.1) -
just as bipolar cells - have diverse morphology and mediate the output of bipolar cells with a
range of different methods. Some amacrine cells connect directly onto bipolar cells (similar
to horizontal cells), others form triadic synapses with a bipolar and a ganglion cell and only
act on that specific connection. One possible effect of these inhibitory mechanisms is gain
control acting on the contrast of the signal, as the luminance was already normalized locally.
Bipolar cells connect very specifically to ganglion cells of matching (sub-)types. The depth at
which they connect within the retina gives a spectrum of phasic and transient responses, as
well as two polarities of bipolar cells.

In contrast to other neurons in the retina, ganglion cells transmit their activity as discrete
spikes in membrane potential that can efficiently travel along the axon at a rapid speed.

3.2.2 The LGN

Most ganglion cells terminate in the lateral geniculate nucleus (LGN), where they connect
onto relay neurons which project into the primary visual cortex. In the LGN there is another
gain control mechanism, inhibiting activity laterally. Not every spike from an RGC is trans-
mitted, reducing noise and overall firing rate of the projections into the visual cortex. The
RGCs that do not project to the LGN, project directly to the superior colliculus (SC) to give
tight feedback on eye movements and reflex behaviour.

3.2.2.1 The Magnocellular and Parvocellular Pathway

The visual system can be divided into two parallel pathways, which already diverge in the
retina and ultimately reach very different parts of the brain. Since their different character-
istics are most prominently found in the LGN, where they are separated into distinct layers,
they are named for the appearance of the cells in the LGN:

The magnocellular pathway is named for the relatively large cell bodies found in the first
two layers of the LGN compared to layer 3-6. The term M cell is used for both the LGN cells
in the magnocellular layers and retinal parasol ganglion cells, which provide the input for the
LGN cells. M cells respond rapidly to strong contrasts in the low spatial frequencies.

The parvocellular pathway recieves their input from midget cells. They offer a much
better spatial resolution as well as color sensitivity than the magnocellular pathway, but they
are slower.

Spear et al. 1994 found that magnocellular neurons have a higher signal-to-noise ratios
than parvocellular neurons in aged rhesus monkeys.

3.2.3 The Primary Visual Cortex and Higher Visual Cortices

In the visual cortices, columns of neurons orthogonal to the cortical surface are processing
a specific feature at a specific location. For the primary visual cortex (called V1 in humans),
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these features correspond to Gabor patches of varying orientation and spatial frequency.
While simple cells only respond to a bright stimulus in the excitatory portions of their re-
ceptive field, while the suppressive regions should receive as little light as possible, complex
cells respond to multiple patterns, most commonly a Gabor patch and its inverse. From
the primary cortex, visual information is further forwarded onto other areas, forming more
complex features which become more location invariant.

3.3 Methods for Comparing Neural Activity

3.3.1 Firing Rates

One of the simplest ways to compare spiking activity either between cells or between different
stimulus conditions is to count the number of action potentials recorded. Normalized over
time the firing rate can be used to classify the cell by its activity relative to the stimulus. In the
retina there are for example cells that respond to bright-to-dark transitions (OFF cells) and
others that respond to dark-to-bright transitions (ON cells). The cells that differ in response
type also differ in their neural circuitry and genetic markers (Masland 2001).

3.3.2 Signal to Noise Ratio

Neurons usually respond to some aspect of a stimulus specifically. But they can also exhibit
spontaneous activity. So the firing rate alone is less informative than the firing rate relative
to the spontaneous (baseline) activity of the neuron.

3.3.3 Spike Train Distances

Spikes are events on a time line with theoretically infinite precision and so if we want to
compare two spike trains we have a range of different options in weighing the importance
of temporal accuracy, removal or addition of spike events. The firing-rate difference (FRD)
can be thought of as the most coarse timescale in which we can compare two spike trains:
no matter when the spikes occur, their number is what distinguishes one response from an-
other. But in many cases the temporal structure of the response will be just as or even more
important than the overall firing rate.

3.3.3.1 Binned Euclidean Distance and Word Coding

If we break up each spike train into smaller, equal sized bins of a specific length (e.g. 10𝑚𝑠
or even 100𝑚𝑠), we can also take into account the temporal structure by counting the spikes
that fall in each bin, or to create a binary time series: if at least one spike fell inside the bin.
These discretized vectors can then be compared by either using euclidean distance resulting
in exact matches have a distance of 0, coding the same binary word, while all others have
some distance > 0 (see e.g. Strong et al. 1998). The bin width is an important parameter for
this approach as for smaller time-bins the distance of similar, but non-identical spike trains
will grow, while for very large time-bins the metric will tend to the firing rate distance - or in
the case of binary words will only code if at least one spike was fired.
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3.3.3.2 Victor Purpura Distance

The Victor-Purpura Distance (VPD) (Victor and Purpura 1996) is defined as the minimal cost
of transforming one spike train into another using three rules: adding a spike has a cost of
1, removing a spike has a cost of 1 and moving a spike by a certain amount has a cost of
𝑞 (e.g. per second). Without the third rule, this metric would give the same result as the
firing rate difference. But if the cost of moving a spike is smaller than the cost of removing
the old spike and adding a new spike, we get a notion of similarity that rewards spike trains
with similar temporal structure. The reciprocal of the parameter 𝑞 determines the temporal
granularity of the metric, ranging from a pure firing rate comparison to a constraint of a spike
having to be within 50ms, 10ms or even 1ms of a corresponding spike in the other spike train
to be counted as the same. This allows to find the temporal granularity of neural codes by
maximizing the information that the metric preserves about a given stimulus characteristic.
Victor and Purpura 1996 found that the distance maximizes information about contrast in
V1/V2 between 1/𝑞 = 10− 30𝑚𝑠 and about texture at around 1/𝑞 = 100𝑚𝑠.

Computationally, this metric is easy to compute for sparse spike trains (even on very long
time scales), but harder to compute the more spikes are present in either spike train, since a
large number of spike pair combinations has to be checked to find the minimal distance.

3.3.3.3 Van Rossum Distance

The VanRossum Distance (VRD) (Rossum 2001) is very comparabe to the Victor-Purpura dis-
tance, as it also has a single parameter for its temporal granularity. But instead of relying
on the possibly very calculation intense mapping of close spikes onto each other, VanRossum
Distance convolves both input spike trains with causal exponential kernels and then taking
the Euclidean distance. For insertion or deletion of spikes in two otherwise identical spike
trains, VanRossum Distance gives a fixed penalty of 1/2, while the distance increases de-
pendent on the timescale parameter when a spike is moved, so it behaves very similar to
the Victor-Purpura Distance (the authors relate VanRossum Distance2 ≈ Victor-Purpura Dis-
tance). VanRossum Distance with an intermediate temporal parameter depends linearly on
noise as can be seen in Figure 3.3.3 (see also Rossum 2001) and can thus be used to quantify
the noise in a system.

In terms of computational complexity, the VanRossum Distance depends on the length of
the input spike trains. If the spike train is long and very sparse, Victor-Purpura Distance can
actually be computed faster than VanRossum Distance, even though the time complexity of
Victor-Purpura Distance is higher since it depends on the number of spikes, not time bins.
While this is not very relevant when comparing single spike trains, it can add to the already
squared complexity of creating distance matrices (see Section 3.3.4).

3.3.3.4 Other Spike Train Distances

While in the current project we mostly use Victor-Purpura Distance or VanRossum Distance,
there are other spike train distances we used during the project. We used the multivariate
version of the SPIKE and ISI distances, as well as two metrics that are so far unpublished. The
mean-min-distance was used previously in my Bachelor Thesis to quantify synchrony (Huth
2011), the firing-rate-independent distance was devised to be orthogonal to firing rate, since
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most spike train distances correlate with firing rate distance or the mean firing rate of both
spike trains (meaning that lower firing rates always lead to lower distances).

SPIKE/ISI The ISI distance is defined instantaneously for every time point 𝑡 as the dis-
tances between the last spikes before 𝑡 in one spike train and the first spike after 𝑡 of the other
spike train. The distance measure is then the sum of all the instantaneous values.

𝑡
(𝑛)
P (𝑡) = max(𝑡

(𝑛)
𝑖 |𝑡(𝑛)𝑖 ≤ 𝑡) (3.1)

𝑡
(𝑛)
F (𝑡) = min(𝑡

(𝑛)
𝑖 |𝑡(𝑛)𝑖 > 𝑡) (3.2)

𝑥
(𝑛)
ISI (𝑡) = 𝑡

(𝑛)
F (𝑡)− 𝑡

(𝑛)
P (𝑡) (3.3)

Mean-Min-Distance is a pseudo distance defined as the mean of the minimal distances
of all spikes in one spike train to the nearest spike in the other spike train. If the spike trains
have different number of spikes, the result will be asymmetric, ie. the “distance” 𝐴 → 𝐵 is
different from 𝐵 → 𝐴. It can be used as an actual distance by computing both directions and
taking the mean.

𝑚𝑚𝑑(𝑠𝑎, 𝑠𝑏) = 𝑚𝑒𝑎𝑛𝑠𝑖∈𝑠𝑎 (𝑚𝑖𝑛(𝑎𝑏𝑠(𝑠𝑖 − 𝑠𝑏))) (3.4)

Firing-Rate Independent Dissimilarity Metric was created to add another dimension
to the ability of comparing spike trains. Since most spike distance metrics are correlated
either with the difference or the mean of the number of spikes in each spike train (see Figure
3.3.1 for an example), they will be partially redundant to the firing rate distance metric. This
is a problem when comparing the temporal patterns in two spike trains of very different firing
rates. If we already know that the firing rate is different between the two spike trains, but
want to ignore that, most spike train distances will still change due to the number of spikes
alone.

The novel metric is bounded between 0 and 1 by a sigmoid function, with 1 meaning
the spike trains are very dissimilar. Two empty spike trains have a dissimilarity of 0.5 by
definition. With each added spike, the dissimilarity rises, but with each pair of spikes that
occur close to each other the dissimilarity drops. The closeness of spikes is determined with
a temporal exponential filter 𝑓 that is applied to each spike train, similar to VanRossum
Distance.

𝑓𝑖𝑠(𝑠𝑎, 𝑠𝑏) = 𝑠𝑖𝑔
(︁
𝛼 ·
∑︁

(𝑓𝜏 (𝑠𝑎) · 𝑓𝜏 (𝑠𝑏))− ‖𝑓𝜏 (𝑠𝑎)− 𝑓𝜏 (𝑠𝑏)‖
)︁

(3.5)

The metric has two parameters: 𝛼 defines the sharpness the sigmoid and a time constant
𝜏 defines the length of the temporal filter.

Figure 3.3.2 shows a comparison of different spike train distances comparing either a tem-
plate spike train to a version of itself that has some spikes added or removed, or a completely
unrelated spike train with a similar number of spikes. The line of the unrelated spike train is
strongly dependent on absolute firing rate for Victor-Purpura Distance and VanRossum Dis-
tance. The SPIKE and ISI distance become asymptotically independent of firing rate, but do
have a high difference if one of the spike trains has very few spikes. The distance based on
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Figure 3.3.1: Mutual Information of Different Distance Metrics Compared. Most spike
train distances are correlated to firing rate. This data from multi-electrode array (MEA)
recordings shows as an example that the VanRossum distance has a linear relationship to the
firing rate difference. The firing rate independent dissimilarity (fi) has a much larger spread
when correlated to the firing rate difference (D).

Schreiber similarity comes closest to independence, but has a slight negative correlation. The
Mean-Min-Distance is inadequate for this task. The firing-rate independent distance ignores
the absolute firing rate completely of the unrelated spike train. For the modified template
spike train it shows a region of similarity and for a jittered version a slightly smaller region.
The sensitivity parameter 𝛼 was shown at three different values.

3.3.4 Distance Matrix and Within/Between Distances

Taking the distances of all spike trains produced during an experiment to all others will create
a symmetric, square matrix. The diagonal will have the minimal distance and should be
ignored for the further analysis. If we sort the matrix by different stimuli that were presented
(e.g. directional swipes of a bright bar), we can make out clusters of similar spike trains if
and only if the neuron was sensitive to the differences between the stimuli. For two different
stimuli (e.g. On and Off transitions), we can split the matrix into four quadrants: On trails to
On trails, two On to Off trials Quadrants and Off-to-Off trials. These quadrants fall into two
categories: within-distances and between-distances.

In figure 3.4.2 we can see that in an actual experiment the sensitivity of a neuron can
vary. If the cell or its nutrient supply gets damaged during the experiment, it might cease to
respond to the stimulus completely. But it is also possible that either because of spike sorting
issues or a change in neural circuitry, the neurons recorded responsive properties change
towards a different stimulus selectivity.

A measure that can capture how well the responses allow us to decode the stimulus is the
ratio of between vs. within distances, ie. in this case the ratio of the sum of two diagonal
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Figure 3.3.2: Spike Train Metrics in Relation to Firing Rates. For each plot, a template
spike train is compared to spike trains with some spikes added or removed. The green line
shows the distance if we manipulate the template spike train directly, adding new random
spikes or removing spikes. It touches (0,0) in each plot since at that point the template
is compared to itself. The orange line shows the same process for a jittered version of the
template. The blue line does not have any temporal structure in common with the template
and only varies in the number of spikes.
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quadrant pairs of the matrix. The within distances can be interpreted as the background
noise of the neural code: responses that are “supposed” to be identical, but due to stochastic
processes (or other codes in the same spike train) have a distance > 0. The between-distance
is what can actually be used for decoding. If the between distance is larger than the within
distance, the spike trains can be clustered by the distances and new spike trains recorded
from unknown stimuli can be compared to the clusters to make a prediction about which
stimulus was shown.

Al
l

frd VP 0.01 VP 0.1 VR 1.0 VR 0.1 mean_min fi 0.001 fi 0.01 fi 0.1

Figure 3.3.3: Spike Distances under Noise. In each iteration, spikes are jittered, added
and deleted to create a slightly modified spike train. Each matrix compares the progressively
changing spike trains to each other.

3.3.5 Information Theory

To quantify how much information a set of spike trains 𝑅 transmits about a set of stimuli
𝑆, we can compute the mutual information 𝐼(𝑅;𝑆) with the help of a spike train distance
metric that allows us to set a threshold of which spike trains are taken to be the same symbol
(Brasselet, Johansson, and Arleo 2011). As we have discussed in the previous sections, we
have choices when we calculate if two spike trains are (approximately) identical. While
the choice of algorithm is important, the choice of the temporal granularity (which most
spike train distance metrics have) is even more important. In addition to our choice of spike
distance, we have to set a threshold of when two responses are taken as identical signals.
A possible choice would be to use binary word coding with a bin size of e.g. 20𝑚𝑠 and a
threshold of 0, such that only perfect matches are counted. As in the previous section, we
compute the distance matrix of all combinations of responses and then apply the threshold.

We defined for a thresholded spike train distance 𝜑(𝑟1, 𝑟2) ∈ 0, 1, a set of stimuli 𝑠 ∈ 𝑆 and
responses 𝑟 ∈ 𝑅:
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𝐼(𝑅;𝑆) = 𝐻(𝑅)−𝐻(𝑅|𝑆) (3.6)

𝐻(𝑅) = −
∑︁
𝑟∈𝑅

𝑝(𝑟) log2 𝑝(𝑟) (3.7)

⇒ 𝐻*(𝑅) = −
∑︁
𝑟∈𝑅

𝑝(𝑟) log2

(︃∑︁
𝑟′∈𝑅

𝑝(𝑟′)𝜑(𝑟, 𝑟′)

)︃
(3.8)

𝐻(𝑅|𝑆) =
∑︁
𝑠∈𝑆

𝑝(𝑠)
∑︁
𝑟∈𝑅

𝑝(𝑟|𝑠)𝑙𝑜𝑔2𝑝(𝑟|𝑠) (3.9)

⇒ 𝐻*(𝑅|𝑆) = −
∑︁
𝑠∈𝑆

∑︁
𝑟∈𝑅

𝑝(𝑟, 𝑠)𝑙𝑜𝑔2

(︃∑︁
𝑟′∈𝑅

𝑝(𝑟′|𝑠)𝜑(𝑟, 𝑟′)

)︃
(3.10)

𝐼*(𝑅;𝑆) = 𝐻*(𝑅)−𝐻*(𝑅|𝑆) (3.11)

⇒ 𝐼*(𝑅;𝑆) =
∑︁
𝑠∈𝑆

∑︁
𝑟∈𝑅

𝑝(𝑟, 𝑠)𝑙𝑜𝑔2

(︂∑︀
𝑟′∈𝑅 𝑝(𝑟

′|𝑠)𝜑(𝑟, 𝑟′)∑︀
𝑟′∈𝑅 𝑝(𝑟

′)𝜑(𝑟, 𝑟′)

)︂
(3.12)

The Equation 3.12 can be used to quantify how much information about the stimulus is
contained in a neurons response. Since the measure depends on the cut-off threshold that is
used by 𝜑 to convert the distance/similarity into binary similarity, 𝐼*(𝑅;𝑆) is maximized by
varying the cut-off.

3.4 Effect of Aging on Retinal Ganglion Cells

The retina as the first neural structure in the visual system already exhibits strong restructur-
ing during aging (see Section 1.7.1.5). How these changes influence the coding properties of
the retina is not well understood. We believe that characterizing the changes requires special-
ized experimental protocols since the characterization that were done so far only establish
that some functionality is qualitatively still existent. In this section we will argue for why we
think that there are changes, why they are hard to estimate experimentally and what kind of
experiment could characterize them.

In addition to the morphological changes, the electrophysiology of the retina changes as
well. The electroretinogram (ERG) is e.g. measured to change in age in amplitude as well as
recovery rate (Tillman, Panorgias, and Werner 2016). Both a- as well as b-wave are reduced
which Kolesnikov et al. 2010 take as a sign for desensitization due to increased dark noise
(spontaneous activity of photoreceptors), which they confirmed in single cell recordings. We
ask the question how this increase in noise at the photoreceptor-level affects the rest of the
visual system.

3.4.1 Retinal Remodelling Must Have Functional Consequences

It is very unlikely that the change in dendritic structure in age has no effect on the response
properties of RGCs. The loss of photoreceptors might be related to the change in bipolar
dendritic fields. Figure 3.4.1 shows how a healthy receptive field (3.4.1 A) might enlarge
its dendritic tree to keep the number of inputs constant in a damaged photoreceptor mosaic
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(3.4.1 B) or it might grow without changes in the photoreceptors, simply covering a larger
area (3.4.1 C). On the other hand, the dendritic tree of RGCs shrinks, which would then again
decrease the number of photoreceptors that feed one RGC. If we assumed that the increase in
bipolar and horizontal cell receptive fields is compensated for the decrease in RGC dendritic
tree, there would still be changes (1) in the fovea where one bipolar cell connects to one RGC
and (2) in the non-linear properties of the ganglion cell as it receives input from fewer, but
larger sub-fields.

Normal
Mosaic

Damaged
Mosaic

Altered
Plasticity

(compensatory)

A B C

Figure 3.4.1: Photoreceptor Mosaics. Enlarged bipolar and horizontal receptive fields could
be the result of compensation to damage (B) or altered plasticity (C). While there is damage
in aged retinas, Samuel, Voinescu, et al. 2014 found evidence that remodelling is dependent
on a specific intracellular pathway

3.4.2 Project 2: Estimating The Possible Effect Of Aging On Retinal Gan-
glion Cells

→ see also List of Projects

To estimate the effort to find a small change in receptive field size, we analysed RGC data
collected by the lab of Tim Gollisch in Göttingen to estimate the variability and reliability of
recordings. We would be interested to find differences in receptive field (RF) size or Receptive
Field (RF) structure, reliability of the response and temporal precision.

3.4.2.1 Retinal Activity Recording Using MEA

In the following, we describe a typical recording procedure for mice retina. The work of
recording and processing the data was done by the team of Tim Gollisch in Göttingen. At
this point I want to thank again Vidhyasankar Krishnamoorthy, Fernando Rozenblit, Norma
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Kühn, Mohammad Hossein Khani, Helene-Marianne Schreyer, Jian Liu, Michael Weick and of
course Tim Gollisch.

Activity of RGCs was recorded from mice retinas using a multi-electrode array (MEA). A
number of different stimuli were shown to the patch of retina and the recorded activity was
later spike sorted, resulting in a set of spike trains.

The environment of the experimental rooms is as dimly lit as possible and all monitors
are covered with red foil, since mouse retinas are not sensitive to red light. After the mouse
is dark adapted for half an hour it is killed and the eyes removed. Each eyeball is cut in half
and the lens is removed, leaving only the back part of the eyes, containing the sclera and
connective tissue, the retina and the vitreous. They are then left in a nutrient medium for
some time, such that they are easier to separate. After the retina is cleared from the vitreous
on one side and the RPE on the other, it is placed in a small plastic container mounted on a
glass plate with the electrode printed on it. On top of the retina, there is a membrane that
keeps the retina in place while allowing nutrients to pass through. During the experiment,
a nutrient solution is sucked through the experimental preparation to supply the retina with
glucose and oxygen.

The recording setup itself is contained in a Faraday-cage to shield the recording from
external electro-magnetic interference. The stimulus is projected on the retina from an oLED
screen through a lens to focus it.

During the experiment, the retina is stimulated from the photoreceptor side, which nor-
mally is the outer part of the retina, fused with the RPE to supply the large amounts of
nutrients that are required by photoreceptors. While we normally see through our ganglion
cells (as they are small and transparent enough), it is impossible to record the electric activity
of ganglion cells through the photoreceptor and bipolar layer. This is why it is very important
that the RPE is removed from the retina, as it blocks the light stimulating the photoreceptors
in the experiment. Similarly, vitreous that is not properly removed from the ganglion cell
layer will isolate the electrical activity.

After the retina is normalized and shows only small amounts of spontaneous actvity, the
recording is started on the data acquisition computer and the stimuli presented. The record-
ing process takes several hours and depends on the health of the retina. A live preview of
the band-pass filtered activity indicates if the retina is still responding and the experiment
continues for as long as possible.

Spike sorting After a successful recording, the raw data of the MEA has to be processed,
such that each recorded action potential can be attributed to a RGC.

Recording channels are pooled according to their similarity and then within each channel
group, spikes are detected using a threshold of 4𝑠𝑑. The voltage trace around each spike gets
collected and fitted with a model, such that spike clusters are formed that have a high sepa-
rability and good characteristics (e.g. similar spike shape). This process is semi-automated,
so a person checks the goodness of the detected neurons and tweaks the parameters.

One important constraint of multi-electrode recordings is that if two spikes are simulta-
neous, only the stronger one will be counted. This means that meaningful cross-correlation
can not be computed for cells from the same electrode.

Classification of Cell Types Cell types in the retina can be distinguished in two ways:
according to their function (Baden et al. 2016) and their histochemical markers (Huberman
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et al. 2009). Usually, RGC and bipolar cells that carry a specific marker also have similar
functional characteristics, such as receptive field shape and transiency, and they also tile
the retina in regular patterns, keeping a constant distance. Only when cells are lost is the
distribution closer to a true random distribution (Esquiva et al. 2017).

Most RGCs have either an On- or an Off- transient response with some of them keeping a
sustained response afterwards. A special group of types are direction selective RGCs, which
respond stronger to moving stimuli in a specific direction. In the mouse there are three dif-
ferent populations of these cells, ON DSGCs which respond to one of three specific directions
(relative to the main axis of the retina), Off DSGCs that respond only to upward motion and
On-Off DSGCs, which respond to one of the four cardinal directions (Huberman et al. 2009).

The difficulty in characterizing these cell types and comparing them between different
retinal preparations is that currently it is still very hard to specifically label a single cell type
and then record from that population only. MEA recordings will always get a random sample
of cells which then have to be clustered by functional responses, making it possible that
atypical cells (which we would hope to find if we assume there is a difference between young
and old retinas) will not be clustered as the same cell types. And even comparing clusters
between two recordings is difficult since the functional properties of RGCs is already changing
with eccentricity, which can not always be controlled in the experiments due to differences in
age and the size of the eye balls between animals. The addition of stochastic sampling makes
this process even more complicated. Some small cells e.g. might be under-represented when
recording with an MEA.

A possible solution is two-photon microscopy, which can e.g. allow recording of optoge-
netically labelled cells, making targeting specific populations easier. It can also record the
activity of cells (e.g. through 𝐶𝑎2+ imaging) with potentially a higher coverage and also cap-
turing part of their morphology. With this technique becoming more accessible and precise
in the future, cell classifications and the inter-individual differences across the lifespan could
be a lot more certain in a few years.

3.4.2.2 Data Analysis

Receptive fields are traditionally estimated by white-noise checker patterns and a method
called spike triggered average (STA). STA estimates the receptive field by averaging over all
stimuli that elicited a response. This method works well for cells with a simple receptive
field, but fails e.g. for cortical complex cells that respond both to a pattern and its luminance
inverse equally. Another drawback of STA analysis is that it takes a lot of data to get a precise
estimate of the Receptive Field (RF), but in contrast to Receptive Field (RF) estimation that
is performed separate for each cell, the RFs of many cells can be estimated in parallel. To
measure the receptive sub-fields of e.g. bipolar cells in the case of RGCs, either spike triggered
covariance (STC) or non-negative matrix factorization (NMF) can be used (Liu et al. 2017).

Figure 3.4.2 shows the distance matrix of a typical recording of full-field ON-OFF stim-
uli. Most notable is that while there is a strong inter-stimulus distance, the within-stimulus
distance in the first panel is just as strong. This stems from the fact that the firing rate in
the OFF condition is very low and the spike pattern in the ON condition is slowly shifting,
creating a large distance between different ON-trials. After 60 trials, the dynamic changes
and the distance within the ON condition is now very low, but the distance between the first
60 trials and the remaining trials is very large. This non-stationarity during experiments can
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pose a large problem for Receptive Field (RF) estimations.
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Figure 3.4.2: Distance Matrix. The distance matrix shows the change in activity in the
different conditions. The upper left and lower right square show the distances within one
stimulus condition (A, On-On and D, Off-Off). The upper right and lower left show the
between distances (B, C). In the first half of the experiment, the On-On distances are quite
low and the On-Off distance is high. However, in the second half, the activity looks very
different, which we can see in the high distance comparing early On to late On. Late On
is a lot closer to the Off condition. This is a sure sign that the cells either changed some
characteristic that made it change cluster in the spike sorting phase, or it simply ceased to
respond.

The number of cells recorded in each experiment is subject to the experience and skill of
the experimenter, but also to a significant amount to chance. Figure 3.4.3 shows the spread
of the number of cells recorded, separated by a recording quality rating. Cells with quality 1
and 2 can be included in an analysis, for the others it is not certain that all spikes have been
recorded and were sorted to the appropriate neuron. In an optimistic estimation, on average
about 20 cells can be recorded in one experiment with quality 1, about 40 including qualities
1 and 2.

3.4.2.3 Temporal Sensitivity

To estimate the number of experiments that need to be performed to get significant results,
we needed to verify how many cells in a recording carry enough information to be useful for
functional analysis. We took the maximum of temporal selectivity (the mutual information
given a spike train distance of a certain temporal resolution, see Figure 3.4.4) and the change
in response over the experiment (as seen e.g. in Figure 3.4.2) as indicators for reliability.

In the data we found many cells that had very well defined firing characteristics. Especially
when restricting the analysis to the cells labelled as quality “1” during spike sorting (about
12% of the cells, about 40 per experiment), almost all cells had On-, Off- or even On-Off
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Figure 3.4.3: Cell Recording Quality. Over 10 experiments, a large portion of cells found by
the clustering algorithm were not actual cells. Only about 12 % had a good quality, 16 % had
an acceptable quality. On average about 40 cells would fall into classes “1” and “2”.

responses to full field pulse stimuli. If we restricted the analysis to one type that is functionally
characterizable, such as direction selective cells, we get another sub-group of these well-
captured cells.

To estimate roughly whether the recorded cells gave a reliable answer throughout the
experiment, we computed the mutual information between the spike trains and two stimuli
(an On- and an Off-Transition) using 𝑉 𝑃𝐷 of different time-scales and the approach used
in Brasselet, Johansson, and Arleo 2011 to estimate mutual information. In Figure 3.4.4 the
temporal distribution shows that cells do have a preferred temporal scale. For each cell, we
chose its most preferred temporal scale. For 10 recording sessions we computed the number
of cells with 𝐼* (see Equation 3.12) larger than 0.9 bit. Since we only distinguished two
stimuli, the maximum possible mutual information would be 1 bit. Since many cells show a
decay during the experiment, we additionally counted the cells that had a 𝐼* larger than 0.9
bit not only overall, but in that specific time period as well. We found that on average, 34
cells were found that had a 𝐼* (see Equation 3.6) larger than 0.9 bit and 30 that were stable
until late in the experiment. This matches the estimate from the quality labels applied during
spike sorting which would estimate around 40 cells in quality classes 1 and 2.

3.4.2.4 Estimation of Feasibility of Retinal Recordings

The goal of our analysis was to find out if a detection of the magnitude described in Eliasieh,
Liets, and Chalupa 2007 and Samuel, Zhang, et al. 2011 is possible with the tool of MEA
recordings and functional characterization. Both groups describe sprouting of bipolar and
horizontal cells and a degeneration of RGC dendrites. Together the changes could amount to
a change in about 10% of receptive field size, or no change in Receptive Field (RF) size, but
a change in the structure of excitatory vs. inhibitory sub-fields of the Receptive Field (RF).

Receptive fields can be captured to a precision of one pixel when using a white-noise STA
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Figure 3.4.4: Temporal Selectivity. The mutual information between spike train and stimu-
lus changes depending on the time scale we use to compare spike trains. In A it can be seen
that a portion of cells have a clear maximum of mutual information. Colours depend on the
time in the experiment (purple: early, yellow: late) B shows peaks in the temporal selectivity
(numbers show the bin edges). Most cells have a maximum between 16 and 59ms.

paradigm. Even though the scale might differ between experiments, let’s assume a pixel size
of 40𝜇𝑚 similar to Liu et al. 2017. RFs roughly have a spread between 0.1𝑚𝑚 and 0.5𝑚𝑚
diameter, depending on eccentricity this spread might shift up or down. This corresponds to
between ≈ 6 and 157 pixels that are part of the receptive field.

Going from these assumptions, without sorting cells further, if we assume that the strength
with which each pixel acts on the receptive field is given by a spatial Gaussian and the Recep-
tive Field (RF) is strictly linear. Then we can numerically simulate to measure a receptive field
with a specific size, converted into a Gaussian, such that the 2𝜎 radius matches the radius of
the Receptive Field (RF). We will then throw a biased coin for each pixel, corresponding to its
weight. On average we will get the number of pixels that cover the 2𝜎 radius of the receptive
field (e.g. 6 for a 0.1𝑚𝑚 diameter Receptive Field (RF)). For the simulation, we assume that
cells have sizes uniformly distributed between 0.1𝑚𝑚 and 0.5𝑚𝑚 (to mimic using all avail-
able cells) and a change in size by 10%. We simulate measuring 𝑁 cells (starting from 3 to
150), repeating the simulation 200 times to estimate the likelihood of success1. The result
is visible in Figure 3.4.5. Given that there is a difference of 10% receptive field size, around
65 cells (in young and old each, 130 cells total) need to be recorded to get a 50% chance of
finding a result with a 𝑝 < 0.05 or 150 (300 cells total) to get a 𝑝 < 0.01 with 50% chance or
an 80% chance of a result with 𝑝 < 0.05.

The number of cells that have to be recorded depends on the difference between the two
means relative to the standard deviation. So if we restrict the Receptive Field (RF) size to
a smaller range by e.g. only examining a single cell type, depending on the spread of the
Receptive Field (RF) sizes, we might get better results. We will get exactly the same results
if e.g. cells are uniformly distributed between [0.1, 0.2] vs. [0.11, 0.21] or between [0.4, 0.5] vs.

1We repeated the numerical simulation only to bootstrap the probabilities, we do not actually recommend
either recording cells iteratively until significance is reached (which would be "p-hacking" and has a high likeli-
hood of returning false-significant results), or repeating the data acquisition 200 times.
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Figure 3.4.5: Feasibility of MEA Experiments. In a numerical simulation we estimated the
receptive fields of up to 200 neurons in two populations each that differed in Receptive Field
(RF) size by 10%. Each simulation was repeated 200 times. A shows the size histogram of
all RFs measured. It is visible that the two distributions have a different mean. B shows the
result of subsequent t-tests using an increasing percentage of cells to show which number of
cells is necessary to get a significant result. The blue line shows the mean of the simulations
and the blue area the 1std confidence interval. C shows the percentage of simulations that
lead to a significant result. At around 75 cells the probability to get a p < 0.05 result is 50%,
at 150 cells the probability to get a p < 0.01 result is 50%.

[0.41, 0.51]. While for the first set of cells this would constitute a 10% change in Receptive
Field (RF) size, it’s only a 2.5% increase for the larger cells. For a shift from [0.3, 0.4] to
[0.33, 0.44], only 25 cells are required to almost guarantee a positive result.

The complications for this approach is that first of all a cell type has to be found that
has large, but very predictable Receptive Field (RF) sizes - without having hard data for it,
it seems that size variability scales with Receptive Field (RF) size. Then these cells have
to be well identifiable and occur with good frequency in recordings. If e.g. we find our
type in one out of 10 cells, then on average we might get 4 good cells (out of ≈ 40) in a
successful experiment. To get 25 cells we would need 7 experiments, which would give 280
overall recorded cells, making the restriction to one cell type not that much more useful. One
abundant, large cell type is the large Off-alpha cell.

In our considerations we also neglected changes in eccentricity, the suppressive surround
and potential increased difficulty to get data from old retinas.

3.4.2.5 Conclusion

Our estimates for the best case scenario predict that more than 10 successful experiments
(recording 300 cells) need to be performed and analysed for a decent chance of finding a
𝑝 < 0.05 result. Including training, we estimate this project would amount to at least one
and a half years of work, just recording and data analysis. Also the very optimistic, clear cut
change in receptive field size is not very likely since there are two opposing changes found
morphologically in the retina: horizontal and bipolar cell sprouting and a decrease in the
RGC dendritic tree. These changes are more likely to affect the surround modulation of cells
than the excitatory receptive field.

A big problem for receptive field estimation is the inhibitory surround and non-linearities.
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When estimating a receptive field with white noise stimuli, the stimulus space is sampled
randomly under the assumption that a linear receptive field can be obtained by averaging
over all stimuli that elicited a response (spike triggered average (STA)). The surround is
much larger than the center: Deny et al. 2017 found that the surround and non-linear effects
were able to influence the firing rate of cells over 900𝜇𝑚 away from the stimulus, while the
linear explainable effect reaches 300𝜇𝑚 at the same retinal eccentricity. Methods like non-
negative matrix factorization (NMF) (Liu et al. 2017) explicitly exclude inhibitory influences
and instead focus on the stimulus correlations that reveal excitatory subunits such as bipolar
cells. Estimating the shape and density of the surround inhibition experimentally is still a hard
problem. Closed-loop methods have been used to adjust the stimulus according to the online
recorded activity from MEAs (see e.g. Gollisch and Herz 2012 or Ferrari et al. 2017). To
measure the inhibitory surround, such a closed-loop paradigm could be used to first estimate
excitatory parts of the receptive field and then probe neighbouring regions while keeping the
center stimulated.

Due to the very high amount of effort involved in recording an adequate amount of RGCs
and the relatively slim chance of finding significant differences with current methods, we
concentrated our efforts on modelling. On the one hand, we want to investigate if the changes
we expect would make a large difference in the sensory process (see sections 3.5.1 and 4.6),
but we also suspect that more effective experimental paradigms that are tailored to find the
differences have a higher chance for success. On the other hand, we wanted to build a tool
that made it possible to design stimuli to specifically find size differences in receptive fields
or the inhibitory surround (see Chapter 5).

3.5 Effect of Noise on LGN cells

As we discussed in section 1.3.1, the magnocellular and parvocellular pathway are affected
differently in aging. Since the two pathways already differ in response properties at the level
of the LGN, we developed the idea that from these differences we can infer how low level
mechanisms change in age. We used Virtual Retina, a model that was developed for modelling
retinal ganglion cells and LGN cells, which is discussed in section 5.4.2 and analysed the
resulting spike trains.

Emilie Mayer, a master student at Ecole de Mines, participated in an internship in the
project and wrote her master thesis on the simulations and analysis she performed (see Sec-
tion 3.5.2 for more details).

3.5.1 Gain Control or Spatial Integration?

Spear et al. 1994 found in rhesus monkey LGN that while magnocellular neurons have signif-
icantly higher maximal response rates and signal-to-noise ratios than parvocellular neurons,
aging reduces the maximal firing rate in magnocellular slightly and increases it in parvocellu-
lar neurons. The signal-to-noise-ratio (SNR) drops in both. How does this translate to visual
perception?

Due to the different characteristics of magno- and parvocellular pathways, it is possible to
distinguish them in psychophysical experiments simply by choosing the appropriate stimuli.
A stimulus with a fast onset will activate the M pathway more than the P pathway. In contrast
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the P pathway can be more engaged with a large contrast change. Using saturation, stimuli
can be targeted at each of the pathways in isolation (Elliott and Werner 2010).

We know from Bonnel, Mohand-Said, and Sahel 2003; Elliott and Werner 2010 that,
although there are strong aging effects in both magnocellular and parvocellular pathways,
the parvocellular pathway is more affected with an increase of threshold of 0.2-0.3 log units,
while the magnocellular pathways threshold only increased half as much. This differential
change can be due to a number of differences between the two pathways, including the
aforementioned contrast-gain-control and spatial integration.

Under the assumption that noise at the sensory level increases with age, we examine a
model of local gain control and spatial summation that was proposed by Wohrer, Kornprobst,
and Vieville 2007 to model retinal ganglion cells and cells in the Lateral Geniculate Nucleus
(LGN). We ask two questions: (1) does stronger local gain control - as formulated in our
model - filter out incoming noise? And (2) does increased spatial summation filter out in-
coming noise? Further, we examine if the stochasticity in noise generation would overshadow
each effect, making it in irrelevant.

In the first part of the project (section 3.5.2) we find that gain control does not have a
strong effect on noisy input, while spatial summation filters out noise depending on the width
of spatial filtering. We further expand on these results in section 3.5.3.

We used the VirtualRetina simulator Wohrer and Kornprobst 2009 for the first set of sim-
ulations and the convis retina model for later simulations to generate biologically plausible
LGN spikes from synthetic luminance stimuli of four configurations which were a combina-
tion of gain control being enabled or disabled and the final spatial integration stage being
enabled or disabled.

Gain Control and Spatial Integration Model The gain control mechanism implemented in
VirtualRetina and convis follows the model devised by Shapley and Victor 1981. It depends
on contrast since the previous stage converted the luminance input into a contrast signal.

While a simple inhibition model would only affect the amplitude of the signal (see Figure
3.5.1), the model defined here also changes the phase of the signal (see Figure 3.5.2) in
accordance with electrophysiological observations.

The model is defined as follows:

𝑑𝑉𝐵𝑖𝑝

𝑑𝑡
(𝑥, 𝑦, 𝑡) = 𝐼(𝑥, 𝑦, 𝑡)− 𝑔𝐴(𝑥, 𝑦, 𝑡)𝑑𝑉𝐵𝑖𝑝(𝑥, 𝑦, 𝑡) (3.13)

𝑔𝐴(𝑥, 𝑦, 𝑡) = 𝐺 * 𝐸 *𝑄(𝑉 𝐵𝑖𝑝)(𝑥, 𝑦, 𝑡) (3.14)
𝑄(𝑉 𝐵𝑖𝑝) = 𝑔0𝐴 + 𝜆𝐴𝑉

2
𝐵𝑖𝑝 (3.15)

* denoting the convolution operator, 𝐺 and 𝐸 spatial Gaussian and temporal exponential filters respec-
tively

Then, the output is processed by a static non-linearity and an optional spatial integration
filter (another Gaussian).

𝐼𝐺𝑎𝑛𝑔(𝑥, 𝑦, 𝑡) = 𝐺 *𝑁(𝑒𝑇 * 𝑉𝐵𝑖𝑝) (3.16)
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𝑁(𝑉 ) =

{︃
𝑖0𝐺

1−𝜆(𝑉−𝑣0𝐺)/𝑖0𝐺
, if 𝑉 < 𝑣0𝐺

𝑖0𝐺 + 𝜆(𝑉 − 𝑣0𝐺), otherwise
(3.17)

10Hz 20Hz 30Hz 40Hz 50Hz 60Hz

Gain controlled value
Original Value

Figure 3.5.1: Response of the Gain Control. Stimuli with different frequency content are
affected by the contrast gain control in a different way. While the presentation of the “10
Hz” stimulus is almost indistinguishable from the output, the higher frequencies have a much
stronger amplitude attenuation. (frequencies of the signals are scaled arbitrarily)

3.5.2 Project 3: Investigating the Noise Hypothesis for Healthy Ageing:
the Effect of Noise on Retinal Processing - Master Thesis by Emilie
Mayer

→ see also List of Projects
In the following section I will try to summarize the work Emilie did for her Master thesis

in 2016 while she was an intern at the institute de la vision. The outline of her project was
to investigate the effects of noise on the gain control mechanisms of the LGN. For that we
prepared a general framework, but left her room to put her own direction on the project.
She started getting familiar with the Virtual Retina simulator Wohrer 2008 and modified
the software to add noise to different stages and also accept an additional input sequence
that can be fed into specific layers. For the final analysis we did not use the modifications,
but rather only varied the configuration of the retina model to simulate magnocellular and
parvocellular LGN cells. It might seem odd to use a retina model to simulate LGN cells, but
the responses can be modelled fairly similar. Even if LGN cells have a lower firing rate and
stronger gain control, their receptive fields are similar to RGC cells. Since we use a retina
model that includes contrast gain control which has also been used to model gain control in
the LGN (Wohrer and Kornprobst 2009), the results are transferable to LGN cells.
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10Hz 20Hz 30Hz 40Hz 50Hz 60Hz

Figure 3.5.2: Phase Advance of Gain Control. These plots show the in- vs. the output of the
contrast gain control mechanism at inputs of different frequencies. The 10 Hz trace at the far
left is close to the 1:1 diagonal, but the faster the stimulus becomes, the more the plot rotates
clockwise, indicating a temporal shift between in- and output. (frequencies of the signals are
scaled arbitrarily)

3.5.2.1 Methods

We calculated the response of a local gain control circuit and a spatial integration layer to
a noisy moving grating stimulus over different noise levels. The output of the model were
spikes, generated by noisy leaky integrate-and-fire neurons. We then analysed the effect that
noise had on the differences of responses by measuring the variability of the produced spike
trains.

Stimulus We presented five different stimuli to the model at three noise levels and two
filter conditions each.

1. Drifting gratings with static noise (A1 in Figures 3.5.3 and 3.5.4)

2. Drifting gratings with 10Hz refreshed noise (A2)

3. Drifting gratings with 40Hz refreshed noise (A3)

4. Larger drifting gratings with 10Hz refreshed noise (B)

5. Fast drifting gratings and 40Hz refreshed noise (C)

Each stimulus received either Gaussian noise or filtered noise that was truncated to only
contain spatial frequencies close to the stimulus.

Retina Configuration We compared three different configurations and manipulated addi-
tionally the strength of contrast gain control. Each parameter set and stimulus configuration
was fed to VirtualRetina (see Section 5.4.2) at each noise level ten times and the resulting
spike trains were analysed.

∙ P-Cell: the parvocellular configuration had no gain control (𝜆𝑎𝑚𝑝 = 0) and no spatial
integration.

∙ (Magnocellular) X-Cell: the X-cell had gain control (𝜆𝑎𝑚𝑝 = 200) and a steeper static
nonlinearity. It did not have spatial pooling.
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∙ (Magnocellular) Y-Cell: the Y-cell had gain control (𝜆𝑎𝑚𝑝 = 200), a steeper static non-
linearity and spatial pooling that blurs the rectified input to the ganglion cells by a
standard deviation of 0.1 cycles per degree (cpd). This leads to a more non-linear re-
sponse.

Table 3.1: Parameters that differ between the configuration files. Each configuration is used
once with enabled contrast gain control (CGC) and once without.

Parameter Parvo Parvo CGC Magno X Magno X CGC Magno Y Magno Y CGC

lambda_amp 0 200 0 200 0 200
bipolar-amplification_Hz 100 100 400 400 400 400
sigma-pool 0 0 0 0 0.1 0.1

Signal and Spike Train Comparison The output of each simulation was a set of 10 spike
trains for each combination of input noise, stimulus image and simulator configuration. To
assess the variability, the spike trains of each noise level were compared to a reference simu-
lation in which no noise was present.

3.5.2.2 Results

The results show a general increase in Victor-Purpura Distance in relation to noise, as ex-
pected. For the Parvo configuration, the increase was most pronounced, for Magno X the
incline is weaker and for Magno Y the relation between noise level and Victor-Purpura Dis-
tance is abolished for almost all stimuli configurations. When contrast gain control is enabled,
Victor-Purpura Distance drops in all simulations, but keeps the linear relationship with noise
level for Parvo and Magno X, while in Magno Y there is an increase in Victor-Purpura Dis-
tance from medium to high noise for Gaussian noise in four of the five conditions.

From the results it can be concluded that contrast gain control and the static non-linearity
did reduce variability, but not the variability induced by input noise, since the linear rela-
tionship between Victor-Purpura Distance and noise level still had the same slope. For the
configuration that additionally included spatial pooling, this relation was mostly flat, showing
no change in output variability with respect to input noise. Whether this means that spatial
pooling generally abolishes noise, or is just less sensitive to noise, such that the externally
induced variability is masked by internal variability, is inconclusive from these results.

3.5.3 Project 4: Effect of Gain Control and Spatial Integration (Part II)

→ see also List of Projects

Since the previous project left a number of questions unanswered, we made some addi-
tional simulations after the departure of Emilie.

One of our questions was whether the differences between no gain control, gain control
and gain control and spatial integration would hold for much higher or lower noise levels. Also
we found that the distance to the no-noise condition might not be the best way to quantify
the sensitivity to noise.
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Figure 3.5.3: Results Parvocellular Pathway. A1-C reference the stimulus used (see Section
3.5.2.1). The VP distance to the noise-free simulation rises with noise level. Enabling contrast
gain control (solid lines) reduces the distance. Green lines show results for broad-band noise,
red lines for band-pass filtered noise. Courtesy Emilie Mayers Master Thesis.

Figure 3.5.4: Results Y-Cell Magnocellular Pathway. A1-C reference the stimulus used (see
Section 3.5.2.1). The VP distance to the noise-free simulation rises with noise level, however
less than for parvocellular (see Figure 3.5.3). Enabling contrast gain control (solid lines)
increases the distance, but reduces the slope wrt. noise, such that for some stimuli (A2,A3)
the distance is independent of noise level. Green lines show results for broad-band noise, red
lines for band-pass filtered noise. Courtesy Emilie Mayers Master Thesis.
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We used Convis (Huth, Masquelier, and Arleo 2018, also Chapter 5) to model LGN-like
responses to visual stimuli, using a model similar to Wohrer, Kornprobst, and Vieville 2007,
but more easily integrated into our Python analysis code.

We measure three Victor-Purpura Distance for each noise level (see Figure 3.5.5):

∙ internal variability: the distance between the spike trains generated from the exact
same stimulus

∙ noise induced variability: the distance between two simulations with different instan-
tiations of external noise

∙ noise level induced variability: the distance to a simulation without noise

  

identical input

identical 
noise level

distance to self (=0)

internal variability

noise induced 
variability

noise-level induced
variability

Distance Trial i to Trial j

low noise high noisenoise level:

Figure 3.5.5: Different Forms of Variability in the Distance Matrix. The simulation at
each of the 𝑘 noise levels was repeated 𝑗 times (grey pixels in blue squares, here: 4) with
exactly the same input (including the same external input noise), then the same was done
for 𝑖 different instantiations of noise (blue squares in green squares, here: 3). The marked
areas of the distance matrix can then be summed to get a measure of internal variability and
noise induced variability at each noise level, as well as the noise-level induced variability
comparing each trial to the noise free condition (the first green and the dark orange boxes).

We did this since the distance within each noise level will usually be smaller than the
distance to the noise-free stimulus, but will say more about the actual effect of noise. In con-
trast to simple linear processing, the noisy stimuli do not generate output that is distributed
equally around the output of the noise-free simulation, such that the mean of many noisy
trials would equal the non-noisy trial. Rather the addition of noise changes the response
enough that we can even think of it as a completely new stimulus that is encoded.

We extended the noise range until we could distinguish two plateaus: a lower noise limit,
where external noise has no effect and an upper noise limit where the activity is maximally
random, such that an increase in external input noise has no influence on the distances.

In addition to changing the level of noise, we also change the input gain of the stimulus
(including noise).
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3.5.3.1 Results

Changing the contrast of the stimulus reveals for the gain-control free model a maximal
distance that is a combination of input contrast. This maximal distance seems to correlate
with the firing rate of the model having a value around 100 Hz. For larger input gain,
the firing rate increases, but the VP distance decreases since the firing is less temporally
coordinated (see Figure 3.5.6).

With Contrast Gain Control, firing rates are generally lower, removing this problem (see
Figure 3.5.7).

Figure 3.5.8 shows that firing rates reduce strongly if we use a spatial filter before the
spiking mechanism.
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Figure 3.5.6: Simulations without Contrast Gain Control. A and B show how Victor-
Purpura Distance changes over external noise level and contrast respectively. The thin lines
show distances to a noise-free simulation (noise-level-induced differences), the thick orange
and red line show the variability due to internal variability (orange) and internal and external
noise (noise-induced variability, red) C and D show the firing rates of each simulation.

If instead of Victor-Purpura Distance we use the firing-rate-independent dissimilarity, we
see that ignoring firing-rate, the increased firing rate due to high contrast for the non-gain
controlled model results in the lowest dissimilarity. This means that the increase in distance
seen by VP is mostly due to the firing rate and not variability in temporal structure. For
the gain controlled models, we see that the low firing rate at the low end of contrast and
noise_level makes the dissimilarity start at 0.5, but then the dissimilarity first increases and
then decreases, probably also due to high firing rates. The model with gain control and spatial
integration shows almost no difference between the variability that is coming from internal
noise sources and the added external variability: simulations that get exactly the same noise
instance are exactly as variable as the simulations that get fresh noise each time! This means
that while the variability changes with the noise level, the variability does not actually come
from the noise. Rather the noise changes contrast gain control properties, changing the firing
rate, but then the variability comes mainly from the spike generation.
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Figure 3.5.7: Simulations with Contrast Gain Control. A and B show how Victor-Purpura
Distance changes over external noise level and contrast respectively. The thin lines show
distances to a noise-free simulation (noise-level-induced differences), the thick orange and red
line show the variability due to internal variability (orange) and internal and external noise
(noise-induced variability, red) C and D show the firing rates of each simulation.
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Figure 3.5.8: Simulations with Contrast Gain Control and Spatial Integration. A and B
show how Victor-Purpura Distance changes over external noise level and contrast respectively.
The thin lines show distances to a noise-free simulation (noise-level-induced differences), the
thick orange and red line show the variability due to internal variability (orange) and internal
and external noise (noise-induced variability, red) C and D show the firing rates of each
simulation.
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Figure 3.5.9: Firing-Rate-Independent Dissimilarity. In contrast to the plots using Victor-
Purpura Distance, the distances from the non-gain-controlled model drop to very low dis-
similarity with increasing contrast (compare Fig. 3.5.6 B). With gain control (compare Fig.
3.5.7 A,B) variability rises and then falls over both noise level and contrast. Adding spatial
integration (compare Fig. 3.5.8 A,B) has a similar effect over noise level, but not stimulus
contrast.

3.6 Summary

Photoreceptor noise is increased in age due to optical factors, such as reduced retinal illumi-
nation, scatter and inhomogeneities of the ocular medium, or properties of the photorecep-
tors themselves. In this chapter we started to probe how this increase in input variability is
affected by gain control and spatial integration.

Comparing gain control and non-gain control in the first part of the project (Figures 3.5.3)
shows that the gain controlled model reduces Victor-Purpura Distance compared to non-
gain-controlled. The “Y-Magno” configuration, which additionally has a spatial integration
stage (Figure 3.5.4), changes this relation. For some stimuli (A1), the distance for the gain
controlled stimulus is even higher than for the non-gain controlled. Gain control in general
lowers the slope and the stimulus stays more stable, as the gain control constrains the firing
rate. It is possible that the flat profile of the “Y-Magno” configuration with gain control shows
that either the effect of noise strength was completely removed, or the effect of noise is only
visible at higher noise levels.

Exploring a larger noise range shows that the configuration with gain control and spatial
integration indeed does have a slope and two plateaus, not just a single plateau as found in
the previous simulation. Extremely low and extremely high firing rates result in low Victor-
Purpura Distance, which is why the model without contrast gain control has a lower Victor-
Purpura Distance for high input noise than intermediate input noise. The gain controlled
models have overall a lower firing rate and a slower increase of both firing rate and Victor-
Purpura Distance. A comparison of internal variability (orange and red curves in Figures
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3.5.6, 3.5.7 and 3.5.8) shows that for the no-gain control model the noise induced vari-
ability is about twice as strong as the internal variability alone, meaning that internal noise
and external noise (at a fixed noise level) has about the same strength. For the gain con-
trolled model, the two curves are much closer together, showing that the internal variability
is stronger than the external variability. The internal variability of the model with gain con-
trol and spatial integration was similar to the model without spatial integration, even though
the between-distances were about 20% higher. Using firing-rate independent dissimilarity,
the internal variability shows that with increasing contrast, for the no-gain control model
drops strongly in dissimilarity as the high firing rate produces very regular firing. A signif-
icant difference between internal- and noise-induced variability is only visible in the gain
controlled model. The gain controlled and spatial integration model, as well as the non-gain
controlled model show similar dissimilarity between simulations that only differ in internal
noise and those that also get “fresh” external noise. We found that the current definition
of the firing-rate independent dissimilarity has a few flaws, e.g. in contrast to VP and other
distances, getting a signal-to-noise ratio like quantity is not very informative since high and
low values are asymptotically bound by 0 and 1. For future projects, a different formulation
of a measure that is orthogonal to firing-rate distance should be investigated.

As a conclusion, both gain control and spatial integration affect the response of our model
to increasing input noise, however, the difference on trial-to-trial variability with and without
spatial-integration is very similar. This result gives evidence to the hypothesis that if noise
at the level of photoreceptors increases, the magnocellular pathway is more capable to deal
with increased noise levels than the parvocellular layer due to its stronger gain control. This
is in line with findings from Spear et al. 1994 that show that the magnocellular pathway is
less affected by detrimental aging effects. It also confirms our idea that the effects of input
noise can propagate through the visual system and cause a wide range of aging effects that
at the first glance do not seem to be caused by increased input noise.
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Chapter 4

Investigating Aging by Modelling
Psychophysics

Everything you see or hear or
experience in any way at all is specific
to you. You create a universe by
perceiving it, so everything in the
universe you perceive is specific to you.

Douglas Adams in "Mostly Harmless"

4.1 Introduction

While the previous chapter modelled neural data, most of electrophysiological data is bound
to come from non-human animals. But the goal of aging research is primarily concerned with
human aging, since humans are the ones with increasing life-span and the resulting increase
in age-related pathologies and the ultimate goal is to improve the quality of life of humans in
old age.

With human subjects of course we are limited non-invasive methods such as psychophysi-
cal measurements. Invasive neural recordings are only possible in rare cases (such as during
necessary neuro-surgery) and thus don’t allow us to adequately sample the population to
the same degree as we can do in non-human animals. Some electro-physiological findings
might transfer between species, while some may not. It would be very helpful to know which
changes in e.g. rhesus monkeys also occur in humans without having to repeat the same ex-
periments. A method to approach this problem is to use computational models of the aging
effects we find in other species and verify these models with data we can collect from humans
without ethical concerns.

We already reviewed some psychophysical results of aging changes in chapter 1. One of
the largest changes is a decrease in contrast sensitivity. Importantly, contrast sensitivity does
not change homogeneously over spatial frequency and if we also measure contrast sensitivity
in noise, the changes become even more diverse. To explain these changes with computa-
tional aging and disease mechanisms, we used a simple computational model and a decoding
approach to measure a perceptual threshold in our model, which can then be compared to
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the psychophysical findings. We specifically looked at aging effects due to the number and
receptive field size of cortical cells spanning the visual field and lateral inhibition.

From Section 4.4 on we present a framework to integrate neuro-computational and psy-
chophyiscal methods by measuring perceptional thresholds in computational models that try
to encode a visual stimulus. Our goal was to find a very simple model that incorporates
possible aging mechanisms (see Section 1.9) that can replicate psychophysical data and thus
reveal something about the internal changes in the aging visual system.

We will first present the psychophysical methodologies and data that we want to model,
then we present the neurological basis for our model. We simulated two models, a two-layer
model which one of my students ran in a number of configurations, changing the number of
cells and the size of receptive fields, and later a three-layer model with a lateral inhibition
parameter.

4.2 Contrast Sensitivity of the Primary Visual Cortex

An axis of insight we use in our group to investigate the aging process is the change in con-
trast sensitivity (CS) in noise between young versus old human subjects observed in (Allard
et al. 2013) and (Silvestre, Cavanagh, et al. 2017; Silvestre, Arleo, and Allard 2018b). Con-
trast of visual stimuli is more important to our perception than absolute luminance as shown
in e.g. Cornsweet stimuli (see Figure 4.2.1) where a shaded edge can change our estimation
of the brightness of a whole shape. While luminance is normalized very early in the visual
system, increase in contrast is still detectable in the firing rates of neurons in the primary vi-
sual cortex, but the feature tuning of their responses are already contrast invariant Carandini
2007.

A stimulus with a strong contrast is easily perceivable by a subject in an experiment, which
we can test by presenting either vertical or horizontal stripes of alternating bright and dark
patches and asking the subject to report whether the stimulus was vertical or horizontal.
Decreasing the contrast below a certain point makes this task harder and the subject will
have to make uninformed guesses when the stimulus becomes imperceptible. This allows us
to measure a threshold between fully invisible, ie. random guessing, and fully visible with
a performance of close to 100% correct (baring occasional mistakes made in reporting the
orientation). The contrast sensitivity (CS) is the inverse of the threshold 𝐶𝑆 = 1/𝐶𝑡ℎ𝑟𝑒𝑠ℎ

This threshold is very stable for each subject, but changes with the spatial frequency of the
stimulus. In our notation, the contrast sensitivity function (CSF) is always the CS over spatial
frequency. Figure 4.2.4 shows a CSF measured by Watson and Ahumada 2005 over a range
of spatial frequencies from 0.1 to 25 cycles per degree (cpd). It is interesting to note, that
there is an optimum at around 3cpd (see Figure 4.2.2 A) where performance is best, while for
both higher and lower frequencies the performance deteriorates until the threshold becomes
technically infinite for high spatial frequencies (very small objects beyond the subjects acuity)
and very large spatial frequencies (larger than the screen used to project the stimuli).

If we add noise to the stimulus, we can observe that the threshold is increasing. Increasing
noise has a roughly linear effect on the threshold, as an increase of 𝑛 noise contrast units will
result in 𝑘 · 𝑛 contrast units of increase of the threshold. The linear factor (here 𝑘) is related
to the calculation efficiency (CE) (in our case 𝑘 = 1/

√
𝐶𝐸). However, at very low noise levels

this no longer holds: if the noise added to the stimulus is close to zero, there are still internal
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Figure 4.2.1: The Cornsweet Illusion: The left part of the image appears darker, even though
the color values at both sides are exactly the same. The only difference is the two ramps in
the middle that generate an impression of a contrast edge. In the lower part of the image,
the change in brightness is shown as a line graph.

noise sources that give a limit to performance. We can measure these internal sources by
finding the external noise level that starts to impact the threshold. This point is called the
Equivalent Internal Noise (EIN) (also sometimes 𝜎𝑖𝑛𝑡). It is called “equivalent” since it is
measured in equivalent units to the external noise we used to find it.

The relation between threshold, CE, EIN and CS relative to the external noise level 𝜎 can
be summarized by the following formula:

𝑐𝑡ℎ𝑒𝑠ℎ(𝜎) =
1

𝐶𝑆
=

√︂
𝐸𝐼𝑁2 + 𝜎2

𝐶𝐸
(4.1)

The relation of CS to spatial frequency is more complex and we chose a possible fit in
section 4.2.1

Allard et al. 2013 measured contrast sensitivity, EIN and CE of young and old subjects.
They found a decrease in sensitivity over all spatial frequencies, however for each of the in-
vestigated spatial frequencies (1, 3 and 9 cpd) this sensitivity decrease is caused by a different
combination of CE decrease and EIN increase.

Figure 4.2.3 shows the age related change in CS, EIN and CE.
Daphne Silvestre extended the work of Allard et al. 2013 and measured across more spa-

tial frequencies, in higher noise levels and with a correction for the optical transfer function
in Silvestre, Arleo, and Allard 2018b and another paper is in preparation that compares old
and young subjects with the updated methodology (Silvestre, Arleo, and Allard 2018a).
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Figure 4.2.2: Contrast Sensitivity: A: The dark band shows a typical CS function over spatial
frequency. There is an optimal sensitivity at intermediate spatial frequencies, while very
fine and very large patterns become increasingly hard to see. B: This plot shows different
combinations of signal and noise contrast. Even without a marked threshold line the observer
is able to see their very own threshold varying over noise levels. The apparent plateau at low
noise levels stems from the noise being masked by the noise in both the display or print quality
of the image and the observers internal noise sources (dependent on viewing distance) C: A
typical CS curve over noise with the asymptotes of the external noise limited and internal
noise limited parts of the CS curve shown as dashed lines.

Figure 4.2.3: Contrast Sensitivity in Aging: Change of A CSF, B CE and C EIN due to age.
Solid lines show data from young subjects, dashed lines show data from old subjects. Adapted
from Allard et al. 2013
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4.2.1 Interpolated Data of Contrast Sensitivity in Noise

To get a better idea of what the complete contrast sensitivity profile in noise could look like,
we combined data from two sources. The work from Allard et al. 2013 builds the basis for our
investigation since it provides data for young and old subjects in different noise conditions.
We used their data from their dynamic noise condition and used the values of calculation
efficiency and internal noise to replicate the contrast sensitivity curve over noise.

Since Allard et al. 2013 only investigated a small set of spatial frequencies, we used a
continuous CSF used by Watson and Ahumada 2005 to fit to their data, which had more
measurement points of spatial frequency, yet no change in age or noise conditions. Out of the
multiple continuous CSF that Watson and Ahumada 2005 considered, we chose the 𝑆𝑌 𝑄𝑀

function (adapted from Yang, Qi, & Makous (1995)), since it has a good fit to their data and
does not feature a discontinuity when going to very low spatial frequencies. Figure 4.2.4
shows the (arbitrarily scaled) CSF of both data sources combined.

4.2.1.1 Methods and Results of Allard 2013

Two groups of subjects (20 young, mean age 24; 20 old, mean age 69) were shown noisy
sine wave gratings of 1, 3 and 9 cpd in a circular window of 4 visual degree with randomized
orientation (horizontal or vertical) and phase. At each presentation the stimulus is shown
for 500ms with an additional on- and off-ramp of 125ms. Three different noise conditions
were used: no noise, static local noise that was only added to the stimulus area and global
dynamic noise that was applied to the whole image. Since Allard et al. 2013 showed that
only the dynamic, extended noise gave ecological results, we only consider this data. Using a
2-down-1-up contrast staircase the threshold for each subject was determined for a no-noise
and high-noise condition and CE and EIN were computed from these thresholds.

4.2.1.2 Methods and Results of Watson2005

Watson and Ahumada 2005 used a library of static stimuli (the “modelfest-stimuli”) of natural
and synthetic stimuli of varying second order statistics and spatial frequency content. They
included a series of gabor function stimuli with a fixed number of cycles and others with fixed
extend. They collected contrast thresholds for all stimuli for 16 observers in 10 different labs.

They then tested a number of different CSF models on their ability to predict the contrast
threshold from the input image. They evaluated the CSF in a pipeline of fixed elements that
model well known effects, such as the “oblique effect” and aperture effects.

Of the multitude of CSF functions, we chose to use 𝑆𝑌 𝑄𝑀 , since it was the best performing
model with a low number of parameters. It is defined as follows:

𝑆𝑌 𝑄𝑀 =
𝑒𝑥𝑝[−𝑓/𝑓0]
1 + 𝑎

1+(𝑓/𝑓1)2

(4.2)

def S_YQM(_f,f_0=7.0,f_1=0.6951,a=7.7712):
# our implementation of the S_YQM function
# default parameters correspond to the fit from Watson2015
return np.exp(-(_f/f_0)) / (1+ a / (1+(_f/f_1)**2))
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Figure 4.2.4: Scaled CSF data with continuous CSF fit: blue: data from Watson and Ahu-
mada 2005, orange: fit from Watson and Ahumada 2005 using the YQM sensitivity function,
black: data from Allard et al. 2013: the solid line is the CSF of young participants, the dashed
from old participants

4.2.1.3 Merging the Data Sources

We then fitted the CSF from Watson and Ahumada 2005 to the different noise conditions
from Allard et al. 2013 and thus created two CSF surfaces that show the CSF at each noise
level and spatial frequency continuously for young resp. old participants (see Figure 4.2.5).

Looking at the data from Allard et al. 2013 alone, the effects of aging at each spatial fre-
quency do not show a homogeneous direction of change (see Table 4.1). While the decrease
in CS is universal at all spatial frequencies, the increase in EIN is strong in both 1 and 9 cpd
but not at 3 cpd. CE even changes in opposite directions for 1 and 9 cpd, even if only very
slightly. We take this as a strong indicator, that for each spatial frequency, the mechanisms
are distinct, leading to differential outcomes of the aging process. We have summarized the
changes in Table 4.1. In section 4.7.1 we use only the differences of CS, CE and EIN to test
hypotheses about changes in the receptive field mosaic of the visual system.

Table 4.1: Changes in calculation efficiency (CE), equivalent internal noise (EIN) and
contrast sensitivity (CS) with age

SF Calculation Efficiency Equivalent Internal Noise Contrast Sensitivity

1 CE → EIN ↗ CS ↘
3 CE ↘ EIN CS ↘
9 CE ↘ EIN ↗ CS ↓↓
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Figure 4.2.5: CSF threshold surfaces: for young and old participants (green: young, orange:
old). The surfaces are generated from a fusion of data from Watson and Ahumada 2005 and
Allard et al. 2013. Dashed lines on the x-z plane represent the internal noise curves. The
finely dashed line on the surface gives the projection of the internal noise curve onto the
surface. On the surface of young participants, the CSF over noise curves are marked as
well: they connect the CSF at no noise to the CSF curve at high noise at each of the spatial
frequencies 1, 3 and 9.
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4.3 Decomposition of Noise Sources

In more recent publications Silvestre, Arleo, and Allard 2018b used multiple luminance levels
and modulation transfer function (MTF) measurements to get cleaner, more interpretable
data, also using a modified stimulus that has a constant number of cycles. The MTF can
be measured directly or approximated by a Lorentzian function (see Equation 4.3). Since
luminance has different effects on different internal noise sources, the measured EIN was
modelled as the sum of three components: (1) photon noise, which is inversely proportional
to luminance as less photons means a more noisy signal, (2) early noise and (3) late noise that
occurs after contrast normalization. Photon noise is independent of spatial frequency, while
both early and late noise sources have characteristic curves, the shape of which becomes
apparent when the corresponding noise source is limiting perception.

𝑀𝑇𝐹 (𝑓) =

(︃
𝑎+

(︂
𝑓

𝑢(𝑑)

)︂2
)︃−𝑎√︀

𝐷(𝑓, 𝑑, 555) (4.3)

𝑁𝑒𝑞(𝐿, 𝑓)× 𝐿 =
1

𝑀𝑇𝐹 2(𝑓)
×
(︂
𝑁𝑝ℎ𝑜𝑡𝑜𝑛 +

𝑁𝑒𝑎𝑟𝑙𝑦(𝑓)

𝐿
+ 𝐿×𝑁𝑙𝑎𝑡𝑒(𝑓)

)︂
(4.4)

While this extension is very promising for future efforts to convert the psychophysical
models into neuro-computational models, the procedure was so far only performed and anal-
ysed on subjects under 40, so the aging effects shown in Allard et al. 2013 are pending to
be re-evaluated as well. However, the considerations and simulations that are presented in
sections 4.2.1, 4.7.1 and 4.7.2 can be extended to new data and more fine grained to specific
noise sources.

4.4 Decision Model of LIP Neurons

To model a biologically plausible, neural decoding mechanism, we took inspiration from a
model for a perceptual decision making task performed developed by the lab of Michael
Shadlen (e.g. Mazurek et al. 2003) on monkeys while recording neural activity in the middle
temporal visual area (V5 or MT) and the lateral intraparietal cortex (LIP).

The task for the monkey was to judge the direction of random dot motion which has a
varying degree of coherence. The direction of the majority of the dots then has to be indicated
by a saccade. The monkeys were able to learn the task and their performance depended on
the coherence of the dot motion, ie. the percentage of dots that move in the same direction. If
the coherence is high, the monkeys also answer faster and more reliably than if the coherence
is low. The neural recordings from MT give responses that correspond to the direct sensory
input. Each cell is sensitive to motion in a specific direction and the firing rate is correlated
to the coherence of dot motion: complete random motion will create activity at noise level
and if all dots are moving in the preferred direction, the response is maximal.

From these cells we can already say something about the performance of the monkey and
the decision in each trial: if the firing rate averaged over one trial of the population sensitive
to rightward motion is higher than the firing rate of the population sensitive to leftward mo-
tion, the monkey will be more likely to answer that the stimulus contains rightward motion.
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Figure 4.4.1: A model for perceptual decision making based on data recorded from MT and
LIP neurons. The first stage filters specific patterns from sensory information (here: motion
direction). The activity is directly related to the strength of the detected pattern. The second
stage integrates sensory evidence and subtracts counter-evidence. Once the units in this stage
cross a specific threshold, an action e.g. a saccade is performed. From: Mazurek et al. 2003

The maximal performance is dependent on the direction selectivity of the neurons and their
signal-to-noise-ratio (SNR), ie. their firing rate for preferred vs. non-preferred stimuli.

But the model doesn’t end there: the recordings in LIP give more insight into how the
sensory information is processed to come to a decision. The firing rate of LIP neurons is
increasing over the course of a trial, giving the impression that they act as integrators of
the sensory information from MT. The rise in firing rate over time is directly related to the
strength of coherence of the dot motion. In the model, these cells are taken to be “integrators
of evidence”: strong coherence results in a strong rise, weak coherence in a slow rise; when
the direction of dots reverses, the firing rate drops in accordance to the coherence in the
new direction. Once the firing rate of the population representing a specific decision (e.g. a
saccade to the right) reaches a specific threshold, the corresponding action is taken.

The model discussed in Mazurek et al. 2003 fits well to the response data of the monkeys
for accuracy as well as response time over a range of motion coherence. It is also a very sim-
ple model that combines basic neural operations to perform a decision based on perceptual
information. In a more general framework we can describe the model as (1) representing
sensory information by specialized neurons that give a noisy representation of their “best
guess” as to the current state of the perceived stimulus; then (2) the sensory information is
e.g. integrated in neurons with slow time constants or recurrent connections; positive evi-
dence increases the activity while contrary evidence has an inhibitory effect and decreases
the activity. Finally (3) either an action is performed as soon as a threshold is reached, or at
the end of the trial the activity of the different integrators is compared.

While the models we present in section 4.7.1 and 4.7.2 will not have exactly the same
architecture, they use the key concept of temporal integration of sensory evidence to model
perceptual thresholds.
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4.5 Decoding Directional Population Codes

We extended the model introduced in section 4.4 with a decoding method that takes into
account the activity of cells sensitive to all directions, not only the ones with the most active
firing rate. We used a population vector approach that computes the most likely direction
given the activity of a population of direction sensitive neurons. In our special case we
extended this method to orientation instead of direction, but we first want to introduce the
concept as it was used in e.g. Salinas and Abbott 1994 to decode wind sensitive neurons
in crickets. Given a population of neurons of which we know for each neuron a preferred
stimulus direction that maximizes the firing rate, we can represent the population activity as
a set of scaled vectors, each having a length proportional to the firing rate and pointing in
the preferred direction of the neuron (Figure 4.5.1 gives an illustration). We can then add all
of the vectors, which can be imagined as laying them end to end as shown in the Figure. But
mathematically this can be done separately for the x and y dimension simply by adding up
all the x components and y components of the vectors separately. The resulting vector will
give us two interesting quantities: we have decoded a direction that the population codes for
in their joint activity and we have the length of the vector which corresponds to the relative
certainty about the direction. If all neurons are very active and their activity does not differ
by much, the resulting vector will be very close to the origin, showing a strong disagreement
in the population. If one the other hand all neurons are silent except one, the length of the
vector will be the same as the vector of this one neuron.

In our model we code orientation which wraps around not at 360 degree, but at 180
degrees. The population vector method can still be used, however we multiply the preferred
orientations by 2 and divide the decoded orientation by 2 to get a sensible result.

2 · 𝜃𝑒𝑠𝑡 = 𝑎𝑛𝑔𝑙𝑒
(︁∑︁

𝑟𝜃 * u2𝜃

)︁
(4.5)

\begin{explain} u𝜃 is a unit vector in the direction 𝜃, 𝑎𝑛𝑔𝑙𝑒 is a function that returns the
angle of the resulting vector and 𝜃𝑒𝑠𝑡 is the estimated orientation. \begin{end}
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Figure 4.5.1: Population Vector Decoding: On the left the process for determining the
preferred direction of a single cell is shown. For different stimulus directions the response of
the cell is recorded and the resulting tuning curve is fitted e.g. with a Gaussian to estimate
the preferred direction of this cell. On the right, the activity of a population of cells, each of
which had its preferred direction estimated before, is shown as scaled vectors pointing in the
preferred direction. The vector decoding method then simply takes the mean of these vectors
to obtain the

4.6 Aging Effects on Contrast Sensitivity

Silvestre, Arleo, and Allard 2018a investigated the change in CS with respect to aging using
the model defined in Equation 4.4. They found significant aging changes in the MTF at very
high spatial frequencies, Calculation efficiency was found to be almost flat, with a significant,
but small change due to age.

4.7 Simulations

4.7.1 Project 5: Investigating the Parameter Space of Cortical Repre-
sentation - Internship of Atle Eskeland Rimehaug

→ see also List of Projects

Neurons tune themselves to represent patterns, that are helpful to code the environment.
For the primary visual cortex these patterns are usually thought to be spatial gabor patches
that differ in orientation, spatial frequency, size and phase.

Together with Master student Atle Eskeland Rimehaug, I created a simple model of the
primary visual cortex that can capture two important dimensions of neural representations
that are suspected to change with age: the size 𝑑 and the number 𝑛 of receptive fields.

In Chapter 2, we show that the change in the size of receptive fields is a possible anti-
noise mechanism. While we did not count general cell loss as a process that is bound to occur
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in the normal aging, we do change the number of receptive fields in this simulation. This
could either represent changes due to neuro-degenerative disease, or a reorganization of the
cortex, in which the visual field is tiled with fewer receptive fields (compare Figure 2.3.1 and
Section 2.3.1).

We measure the size 𝑑 relative to the spatial frequency the receptive field is sensitive to by
counting the cycles contained in the gabor patch. The number of receptive fields we simulate
is very small, compared to the actual visual system, however the results are extendible to
larger numbers easily.

4.7.1.1 Data and Hypothesis

The goal of the model is to explain the differences between data from young and old subjects
in Allard et al. 2013 with a simple neuro-computational model. In that work the authors
found that while CS decreases very uniformly across the spatial frequencies presented, equiv-
alent internal noise and calculation efficiency behaves differently for high vs. low spatial
frequencies. We summarize the changes simplified in table 4.1.

4.7.1.2 Method

In each simulation we determine the 75% contrast threshold of our model to detect horizon-
tal versus vertical stripes over a range of stimuli that differ in spatial frequency and noise
parameters. The threshold is determined by running the model and comparing a decoded
orientation to the actual orientation and varying the contrast in a staircase scheme (increas-
ing contrast when the task is too hard, reducing contrast when the task is too easy), such that
we can measure the 75% threshold by averaging over the last 20 trials.

4.7.1.3 The Model

The model consists of noisy, leaky integrators that receive the input filtered with a linear
Gabor receptive field. Their output is passed through a non-linearity and then decoded by
linearly weighting a vector aligned with twice the optimal orientation of each receptive field
(to represent orientation values from 0-180 instead of 0-360 as would be done for directional
decoding) with the activity elicited by the stimulus and taking the spatial average of these
vectors. The resulting vector points to twice the predicted orientation and can be compared
to the ground truth to determine the error of the model.

Varying the contrast of the stimulus gives a sigmoidal psychometric function, making the
staircase method a valid instrument to find the 75% threshold.

In this part of the project we examined the effect of the number of receptive fields and
their size relative to their spatial frequency. Figure 4.7.1 shows this parameterspace.



Section 4.7.1 | Chapter 4: Investigating Aging by Modelling Psychophysics 88

Figure 4.7.1: Parameter Space of the Two Layer Model The y axis shows an increase in the
number of receptive fields while the y axis shows an increasing size of the gabor patch with
constant spatial frequency selectivity

Two Layer Model (Atles Project)

d𝑟1𝑥,𝑦,𝜃,𝜑,𝑓
d𝑡

= −0.9 * 𝑟𝑥,𝑦,𝜃,𝜑,𝑓 +𝑁(𝑔𝑎𝑏𝑜𝑟𝑥,𝑦,𝜃,𝜑,𝑓 ·
(︀
𝑖𝑚𝑎𝑔𝑒+ 𝜂𝑒𝑥𝑡)

𝑇 + 𝜂𝑖𝑛𝑡
)︀

(4.6)

d𝑟2𝜃,𝑓
d𝑡

= −0.9 * 𝑟2𝜃,𝑓 +𝑁

(︃∑︁
𝑥,𝑦,𝜑

𝑟1*,*,𝜃,*,𝑓 + 𝜂𝑖𝑛𝑡

)︃
(4.7)

𝜃𝑒𝑠𝑡 = 𝑎𝑛𝑔𝑙𝑒
(︁∑︁

𝑟2𝜃,𝑓 * u𝜃

)︁
(4.8)

The input of a neuron at position 𝑥, 𝑦 (with orientation 𝜃 and phase 𝜑 and spatial fre-
quency 𝑓) is the linear response of a Gabor receptive field passed through a non-linear func-
tion (for the shown simulations simple rectification). 𝜂𝑖𝑛𝑡 is a small, internal noise source.
Each neuron low pass filters the input to get its response 𝑟. The population estimate of the
decoded response is the angle of the sum of the response of all cells, multiplied by a unit
vector u𝜃 in the corresponding direction 𝜃 for each neuron.

Neurons were created for 16 orientations and 8 spatial frequencies. Each neuron had its
receptive field placed at a random position. So our minimal number of cells of 3 actually
creates 384 cells and our maximum of 7 creates 896.

Table 4.2: Parameters of the two layer model

Parameter Value(s)

Spatial Frequencies [0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 12.0, 16.0]
Orientations 0..180∘

Positions random for each receptive field
leak 0.9
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Parameter Value(s)

noise_level Normal distributed noise with 𝑠𝑑 = 2.0

4.7.1.4 Results

The results in Figure 4.7.2 show that there is a clear optimal spatial frequency range in
which our model is able to perfectly perceive the stimulus: The CSF has an inverted U-shape.
Apart from the lowest spatial frequency, the CE has a linear slope that declines with spatial
frequency of the stimulus.

The decline in CE with spatial frequency might be explained by the fact that even though
the receptive fields (RFs) are smaller for higher spatial frequencies, we kept the number of
cells for each spatial frequency constant.

We hoped to find that along the two dimensions 𝑛 and 𝑑, CS, CE and EIN behave differ-
ently, making it possible to control CE and EIN arbitrarily to emulate the change observed
between young and old. However, under closer inspection only the effect of the number of
cells produced significant changes. For the most representative spatial frequency of 2.7 cpd
Figure 4.7.3 shows the changes in CSF, CE and EIN over both parameters. In Figure 4.7.2
it is visible that over all spatial frequencies, the receptive field size (number of cycles) has
almost no effect (A-C), while the number of cells has a well-defined slope (D-F).

It is possible that the change in receptive field size was to small. It is also possible that
overlap of the receptive fields is detrimental to contrast sensitivity since it can introduce
noise correlations into the activity of the encoder neurons. This detrimental effect could then
cancel the beneficial effect of larger receptive fields. However, it could also be the case that
the effect of cell numbers so strong that, while for the internal and external noise levels we
chose the effect of cell numbers was robust (varying the amount of cells from 300s to 800s),
while the effect of receptive field size was masked by the variability of the simulations.

The range of both the number of cycles and the number of cells was very constrained
since the simulated visual field was not very large and receptive fields span a range of spatial
frequencies (from 0.5 to 16 cpd). The highest spatial frequencies run the risk of coming close
to a size of only a few pixels, while the largest spatial frequencies risk to partially lie outside
of the simulated visual field. Running the simulations with a larger visual field or a more
restricted set of spatial frequencies could also lead to more insights. Also it could be possible
to remove cells instead of adding them, allowing for more nuance in the number of cells.

4.7.2 Project 6: Effect of Lateral Inhibition on Cortical Selectivity

→ see also List of Projects

We created a three stage model to simulate successive cortical stages that become more
and more specific to a pattern, but less specific to precise location. Each stage was simulated
by leaky integrate and fire neurons with lateral inhibition creating a winner-take-all mecha-
nism if the inhibition had sufficient strength. The stimuli were converted to spiking activity
using VirtualRetina (Wohrer 2008). The spike trains were then loaded in Python and fed into
the network implemented brian2 (Goodman and Brette 2009).
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Figure 4.7.2: Results of Project 4.7.1 over spatial frequencies: The plot shows the effect
of different cell numbers and Gabor cycles each on CSF (A, D), CE (B, E) and EIN (C, F) over
spatial frequencies.
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Figure 4.7.3: Results of Project 4.7.1: The plot shows the effect of different cell numbers
and Gabor cycles on CSF, CE and EIN (at spatial frequency 2.7cpd) as 3d surface plots. The
number of cells has a strong effect on the contrast sensitivity (CS), which is not surprising,
since CE and EIN are both strongly influenced by the number of cells. The lines projected at
the sides give the mean and standard deviation over cycle resp. cell numbers. Figure 4.7.4
shows a contour plot of the same data.
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Figure 4.7.4: Results of Project 4.7.1: The plot shows the effect of different cell numbers
and Gabor cycles on CSF, CE and EIN (at spatial frequency 2.7cpd) as contour plots. The
number of cells has a strong effect on the contrast sensitivity (CS), which is not surprising,
since CE and EIN are both strongly influenced by the number of cells. The lines projected at
the sides give the mean and standard deviation over cycle resp. cell numbers. Figure 4.7.3
shows a 3d surface plot of the same data.

4.7.2.1 Architecture

The network receives input from On and Off ganglion cells simulated by VirtualRetina in a
retinotopic grid. To simulate the response of V1-like cells in the first layer L1, a number of
Gabor shaped projection fields were generated that determined the synaptic weights between
ganglion cells and cortical cells. The responses of these cells were selective for spatial fre-
quency and orientation and phase of the stimulus. Since the output of the cortical cells is
again spiking activity, their response is rectified as all responses are positive. Each stimulus
position, orientation and phase combination is coded by a group of neurons redundantly. The
next two layers (L2 and L3) integrate the response of multiple L1 cells with similar orienta-
tion and phase with increasing spatial extend. The final layer sums up all responses that cor-
respond to a specific orientation, irrespective of phase, such that its activity is a direct readout
of the estimated orientation. In contrast to 4.7.1.3, we did not perform population decoding,
but judged the firing rate difference between the true orientation and all other orientations as
a measure for performance calculating the Signal-to-Noise-Ratio signal-to-noise-ratio (SNR).

Table 4.3: Parameters of the three layer model. The parameters differ between layers to keep
firing rates in physiological ranges.

Parameter Value(s)

Simulation duration 500 ms
Inhibition 𝑖𝑛ℎ [ 0, 0.5, 1, 2, 4, 8, 16 ] mV
Neuron type Leaky integrate and fire
- threshold 10 mV
- reset 0 mV
- refractory period 2 ms
Number of Inpuy Neurons 12800 (On and Off layers of 6400 pixel)
Synaptic strength Input → L1 5 mV
L1 Number of Neurons 960 (10 per feature combination)
L1 𝜏 50 ms
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Parameter Value(s)

L1 noise std 10 mV
L1 self-inhibition 𝑖𝑛ℎ * 0.5 mV
Synaptic strength L1 → L2 5 mV
L2 Number of Neurons 96
L2 𝜏 20 ms
L2 noise std 10 mV
L2 self-inhibition 𝑖𝑛ℎ * 1.0 mV
Synaptic strength L2 → L3 20 mV
L3 Number of Neurons 8 (2 per orientation)
L3 𝜏 100 ms
L3 noise std 10 mV
L3 self-inhibition 𝑖𝑛ℎ * 1.0 mV

4.7.2.2 Results

At a constant contrast, the addition of targeted lateral inhibition shows a clear improvement
of signal-to-noise-ratio (SNR) (Figure 4.7.7) before signal-to-noise-ratio (SNR) for very high
inhibition values. The effect accumulates through hierarchical layers as the improved signal-
to-noise-ratio (SNR) at one layer enables the next one to further suppress noise and get
a cleaner winner signal. Figure 4.7.6 shows the inhibitory currents of the network in one
simulation and a raster plot for the first layer. Without inhibition, the firing rate of the purple
and blue cells is slightly higher than the firing rate of other neurons, coding the stimulus
correctly, but allowing for a lot of spontaneous activity.
In the case of excessive inhibition, each layer becomes a stable multi-attractor system that
ignores inputs as soon as one cell starts to spike. This affects for one the firing rate which will
be lower for large inhibition values and the network will also be unable to react to switches
in the stimuli (see arrows in Figure 4.7.6).

4.7.2.3 Discussion

The change of signal-to-noise-ratio (SNR) observed in this part of the project relates to the
CE of the first part, as the CE is proportional to the signal-to-noise-ratio (SNR) needed to
successfully perceive the stimulus (Pelli 1990). Since in the first part the EIN and CE were
affected almost anti-proportionally by the number of cells, the inhibition mechanism can be
used affect them both differentially. We are planning to extend the simulated psychophysical
paradigm to the dimension of lateral inhibition (in different strengths and possibly in differ-
ent operational modi, see figure 4.7.5) to test this intuition. The next steps are then to find
the parameter combinations for each spatial frequency that correspond to the curves on the
surface of figure 4.2.5.
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A feed forward B recurrent

C recurrent pooling D recurrent w.s.

Figure 4.7.5: Inhibition Mechanisms Lateral inhibition can be implemented several ways. A
feed forward inhibition as in A would transmit targeted inhibition from a previous layer in the
hierarchy. This scheme requires some histochemical targeting of synapses as e.g. can happen
in the retina. B instead shows recurrent inhibition that affects neighbouring neurons (which
in turn can inhibit the original neuron). This system can already exhibit self-amplification
since the strongest neuron will suppress all others, which makes it harder for the other neu-
rons to inhibit the original neuron. C shows a collective inhibition pool (e.g. a large inhibitory
interneuron) that indiscriminately inhibits alls cells. But since the activity of all cells will still
remain proportional, the cell with the strongest activity will remain the most active one. In
the retina, the horizontal cells are very large and form gap junctions. Their activity is not
targeted. D shows inhibition without pooling with self-connections. This could be possible if
inhibitory interneurons have only a small dendritic tree but still target many other neurons.
This scheme is similar to D, except that each neuron can also inhibit its own activity.
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Figure 4.7.6: Inhibition Affecting Three Layer Model With increasing lateral inhibition,
each stage functions more like a winner-take-all mechanism. The stimulus inverts at the half
way point of the simulation, indicated by arrows. For each Layer, a plot shows the inhibitory
current being applied to all other neurons. For the first layer L1, additionally a raster plot
is shown at the very top. Colours correspond to the number of each neuron, the correctly
encoded stimulus corresponds to neurons that are coded purple in the first half and later blue
in L1 and L2, and only blue in layer L3. At the very highest inhibition level the inhibition is
so strong that each layer functions as a stable attractor that ignores new inputs.
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Figure 4.7.7: Inhibition Affecting Signal to Noise Ratio The signal to noise ratios of each
layer over different inhibition strengths. High-level layers have an optimum at lower inhibi-
tion values due to the accumulative effect of lateral inhibition.
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4.8 Summary

In this chapter we showed a method to model psychophysical thresholds with neuromimetic
models. We simulated a simple cortical model and varied parameters of the model and
compared them to expected contrast thresholds in noise. Contrast thresholds in noise can
be decomposed into EIN and CE, which we do by fitting psychometric functions to the raw
thresholds. EIN and CE vary over spatial frequency and with age. In his M1 project, Atle Eske-
land Rimehaug varied receptive field size and number, first separately, then as a grid search.
He found that the number of cells had strong influence on EIN as well as CE while the size of
receptive fields relative to their spatial frequency selectivity had almost no effect. Overall the
strong effect of cell number was affecting CE and EIN similarly, but in opposite directions,
increasing CE and decreasing EIN. This is unfortunate since the age-related changes have a
more diverse effect on CE and EIN. In a follow-up project we found that lateral inhibition
can increase the signal-to-noise-ratio (SNR) in a single processing stage and that with subse-
quent processing stages this mechanism becomes stronger. As we discussed in section 1.9.4,
inhibition undergoes major changes in old age. With this mechanism it might be possible
to recreate the exact changes that occur at each spatial frequency. In following projects this
relationship will be studied further.

References
Allard, Rémy et al. (2013). “Contrast sensitivity, healthy aging and noise.” In: Vision re-

search 92, pp. 47–52. ISSN: 1878-5646. DOI: 10.1016/j.visres.2013.09.004. URL:
http://www.ncbi.nlm.nih.gov/pubmed/24070688.

Carandini, Matteo (2007). “Melting the Iceberg: Contrast Invariance in Visual Cortex”. In:
Neuron 54.1, pp. 11–13. ISSN: 08966273. DOI: 10.1016/j.neuron.2007.03.019.

Goodman, Dan F M and Romain Brette (2009). “The brian simulator”. In: Frontiers in Neu-
roscience 3.SEP, pp. 192–197. ISSN: 16624548. DOI: 10.3389/neuro.01.026.2009.

Mazurek, Mark E. et al. (2003). “A Role for Neural Integrators in Perceptual Decision Mak-
ing”. In: Cerebral Cortex 13.11, pp. 1257–1269. ISSN: 10473211. DOI: 10 . 1093 /
cercor/bhg097.

Pelli, Denis G (1990). “The quantum efficiency of vision”. In: Vision: Coding and efficiency,
pp. 3–24. URL: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed%
7B%5C&%7Dcmd=Retrieve%7B%5C&%7Ddopt=AbstractPlus%7B%5C&%7Dlist_
uids=1048499772360596297related:SZuh3vwEjQ4J.

Salinas, Emilio and L. F. Abbott (1994). “Vector reconstruction from firing rates”. In: Jour-
nal of Computational Neuroscience 1.1-2, pp. 89–107. ISSN: 09295313. DOI: 10.1007/
BF00962720.

Silvestre, Daphné, Angelo Arleo, and Rémy Allard (2018a). “Healthy aging impairs photon
absorption efficiency of cones”. In: in press.

— (2018b). “Internal noise sources limiting contrast sensitivity”. In: Scientific Reports
8.1, pp. 1–11. ISSN: 20452322. DOI: 10.1038/s41598-018-20619-3.

Silvestre, Daphné, Patrick Cavanagh, et al. (2017). “Adding temporally localized noise can
enhance the contribution of target knowledge on contrast detection”. In: Journal of
Vision 17.2017, pp. 1–10. ISSN: 15347362. DOI: 10.1167/17.2.5.doi.

Watson, Andrew B and Albert J Ahumada (2005). “A standard model for foveal detection
of spatial contrast.” In: Journal of vision 5.9, pp. 717–740. ISSN: 1534-7362. DOI:
10.1167/5.9.6.

Wohrer, Adrien (2008). “Model and large-scale simulator of a biological retina, with con-
trast gain control”. PhD Thesis. University of Nice-Sophia Antipolis.

http://dx.doi.org/10.1016/j.visres.2013.09.004
http://www.ncbi.nlm.nih.gov/pubmed/24070688
http://dx.doi.org/10.1016/j.neuron.2007.03.019
http://dx.doi.org/10.3389/neuro.01.026.2009
http://dx.doi.org/10.1093/cercor/bhg097
http://dx.doi.org/10.1093/cercor/bhg097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed%7B%5C&%7Dcmd=Retrieve%7B%5C&%7Ddopt=AbstractPlus%7B%5C&%7Dlist_uids=1048499772360596297related:SZuh3vwEjQ4J
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed%7B%5C&%7Dcmd=Retrieve%7B%5C&%7Ddopt=AbstractPlus%7B%5C&%7Dlist_uids=1048499772360596297related:SZuh3vwEjQ4J
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed%7B%5C&%7Dcmd=Retrieve%7B%5C&%7Ddopt=AbstractPlus%7B%5C&%7Dlist_uids=1048499772360596297related:SZuh3vwEjQ4J
http://dx.doi.org/10.1007/BF00962720
http://dx.doi.org/10.1007/BF00962720
http://dx.doi.org/10.1038/s41598-018-20619-3
http://dx.doi.org/10.1167/17.2.5.doi
http://dx.doi.org/10.1167/5.9.6


96

Chapter 5

The Convis Toolbox for Convolutional
Vision Modelling

There must be a better way! And there
is.

Raymond Hettinger Python core developer

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.

PEP 20, The Zen of Python

5.1 Introduction

In this chapter we present convis, a Python toolbox for modelling the visual system using
convolutional vision models. Out of our groups’ usage of the VirtualRetina simulator, we
started to extend the software (Section 5.1.1), but had to find an alternative when we wanted
to use arbitrary receptive fields within the simulator.

The convis toolbox is based on PyTorch and features ready built models (see Section
5.4) from the reimplementation of VirtualRetina, basic LN-cascade models, up to convolu-
tional neural nets. All of the models can be automatically differentiated and thus optimized
with gradient based optimization algorithms. The toolbox has a dual emphasis on efficient,
large scale simulation and model fitting to electrophysiological recordings.

In this chapter we will discuss the architecture of the toolbox as an extension to PyTorch
(Section 5.3), some aspects of the usage (Section 5.3.2.1-5.4.5) and finally the advantages
and challenges of gradient based optimization (Section 5.5).
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5.1.1 Project 7: The Inofficial VirtualRetina Repository

→ see also List of Projects

Together with Emilie Mayer, I extended VirtualRetina (Wohrer 2008) with some custom
functions for use in Project 3.5.2. During this process we found a few minor bugs. To make
these bug fixes available to the general public, I created a github repository under https:
//github.com/jahuth/virtualretina that contains the last version of VirtualRetina that was
under CeCill-C open-source licence which permits modification and (re-)distribution. Since
opening the repository, another researcher contributed a bug fix and a number of users have
used the Issue forum to ask questions about VirtualRetina.

The official distribution of VirtualRetina is now part of the PRANAS software package
(http://pranas.inria.fr/) with the source code requestable at https://team.inria.fr/biovision/
virtualretina/.

5.2 A Convolutional Vision Model to Model Retina, LGN and
the Primary Visual Cortex

What started as a re-implementation of VirtualRetina has turned into a flexible toolbox that
supports a range of different models, from LN cascade models, to bio-mimetic mechanistic
models like VirtualRetina, up to deep convolutional approaches.

The VirtualRetina implementation of its retina model is very efficient since it uses recursive
filters wherever possible. These filters can be computed very efficiently on single thread
systems, but are limited in their shape. Initially, the only change we wanted to make to the
model was to replace the spatial filters with 2d convolutions, which would allow for receptive
fields with a more sophisticated internal structure.

To be more flexible in the implementation, we implemented a prototype in Theano, a
python computation library. To our pleasant surprise, most of the implementation could be
done directly from the mathematical formulas, rather than reimplementing the algorithms
of the C++ version. The prototype was then extended into a toolbox that allows vision
models to be created in Theano. With Theano one can create a computational graph of
abstract variables and operations that can be optimized and compiled to run on either CPUs
or GPUs. More complex operations on the graph itself allow for symbolic differentiation to
create expressions of the gradient of the output with respect to any of the inputs. This can
be used to optimize the parameters of the model, such that the output becomes close to
a training signal and is one of the ingredients that made deep learning so successful. No
matter, how complex the model becomes, as long as each step is differentiable, an expression
for the gradient can be generated. The gradient in Theano is itself an expression, i.e. a
graph, which can be hard to derive and to turn into code, which is why Theano has much
longer compile times than e.g. Torch. But conversely, this also easily allows for higher order
derivatives, since the process to create a gradient of a gradient is exactly the same as for any
other output variable. In PyTorch, the gradient is computed by adding to a buffer attached
to each Variable in a separated backwards pass. The graph for this operation is created
during the forward computations on the fly by simply memorizing which operations were
done to create the Variable that has just been computed. While this graph is less flexible

https://github.com/jahuth/virtualretina
https://github.com/jahuth/virtualretina
http://pranas.inria.fr/
https://team.inria.fr/biovision/virtualretina/
https://team.inria.fr/biovision/virtualretina/
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than the one used in Theano, e.g. it can not be optimized, it is computed a lot faster, which
makes optimization almost irrelevant. PyTorch builds on the rapid execution of just-in-time
compiled code snippets. While each operation is optimized, there is no global optimization
to check for redundant computations or unused results.

The toolbox was then ported to PyTorch which increased performance and made the tool-
box more flexible.

The outcome was a flexible toolbox that can calculate and also fit models of the retina,
lgn, primary visual cortex and even higher visual areas, e.g. a V2 model.

5.2.1 Project 8: Creating Convis

→ see also List of Projects

Initially convis was written using Theano as the computational backend. But for mul-
tiple reasons the toolbox was rewritten for PyTorch and as a consequence is much more
concise and easy to maintain. An internal change in PyTorch further simplified convis, as
the distinction between Tensors and Variables was removed.

The source code of the toolbox was published as a repository on github1 under GPL-3.0
license. GPL-3.0 is a strong “copy-left” license, which allows users (commercial or private) to
copy, distribute and modify the software. However it is required that derivative software is
also published under GPL-3.0.

The documentation and an issue tracker are also hosted on github. Through pull-requests
contributions from other developers can be integrated into the main distribution. travis-ci.
org, a free continuous integration service runs automated tests with every revision done to
the toolbox to check that the code still runs on both Python 2 (≥ 2.7) and Python 3 (≥ 3.5).

Releases are published on the “Python Package Index” (PyPI), so that package managers
such as pip or conda can install the latest stable version directly. To use GPU acceleration on
an Nvidia GPU, the CUDA library has to be installed.

5.3 PyTorch Implementation

The last iteration of the toolbox was published as a method paper in Huth, Masquelier, and Ar-
leo 2018. We switched from Theano to PyTorch because the lead team of the Theano project
was announced to discontinue their support of the package in autumn 2018 2. Although
another project has stepped up to continue the support of Theano, the future uncertainty
and a number of “hacks” that were necessary to make convis work well with Theano made
it advisable to switch to a simpler codebase. The current implementation is an extension to
PyTorch in that it creates subclasses of some of their classes with added functionality, while
the underlying structure is kept intact such that any package written for the use of PyTorch
can also be used for convis.

1https://github.com/jahuth/convis
2See the discussion on https://groups.google.com/forum/#!topic/theano-users/7Poq8BZutbY

travis-ci.org
travis-ci.org
https://github.com/jahuth/convis
https://groups.google.com/forum/#!topic/theano-users/7Poq8BZutbY
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5.3.1 PyTorch

To give some context to the features we added to PyTorch, a small introduction to the usage
of PyTorch can be helpfull.

Data in the RAM or on the GPU of a computer is manged by Tensor objects, which
know the location, dimensionality and data type of their associated data and can call the
appropriate methods when they are asked to combine themselves with other data.

As an example, two tensors on a GPU can be added together, resulting in a new tensor.
Or alternatively, one of the tensors can be asked to add the other Tensor in-place, such that
only its own value changes and no new tensor is created. All operations on these tensors
are accelerated depending on the location they are in and which acceleration libraries are
available. To do a complex computation, one can write a Python function that calls the
operations sequentially, very similar to processing data in numpy arrays. While in Theano,
any iterative loops require special attention, in PyTorch they do not look different than any
other loop in Python.

On top of this basic functionality, PyTorch comes with an add-on module called autograd.
To be able to use automated differentitation on the output of these computations, Tensors
are wrapped in autograd.Variable objects, which create new Variable objects on each
operation with an attached graph of all computations that were done to create this variable
and a buffer that stores the accumulated gradient on the backwards pass.

Further PyTorch adds the nn sub-module, which as the name suggests makes it easier
to create neural networks, such as convolutional neural nets or LSTMs. This module adds
Parameters and Modules classes. Parameters are special Variables, that by default expect
to be optimized. Modules contain a function performing a computation, but they are them-
selves combinable into larger computations. A Module can for example be a single operation
(e.g. convolution), a more complex layer (combining convolution and a non-linearity) or a
neural network as a whole.

To use PyTorch in practice to e.g. create a convolutional neural net, one would write a class
that inherits from Modulewhich has all ingredients of the network as attributes (Convolution
and ReLU Modules) and a method forward in which the computation is performed. To use
the model, it can be called like a function with a Variable containing the input images as a
parameter.

class MyNet(torch.nn.Module):
def __init__(self):

self.c1 = torch.nn.Conv2d(1,1,(5,5))
self.n1 = torch.nn.ReLU()
self.c2 = torch.nn.Conv2d(1,1,(5,5))
self.n2 = torch.nn.ReLU()

def forward(self, inp):
return self.n2(self.c2(self.n1(self.c1(inp))))

net = MyNet()
things = torch.autograd.Variable(torch.ones(10,10))
outputs = net(things)

All variables that were created as Parameters can be collected recursively for the com-
plete model to generate update routines for optimizers in a few steps.
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5.3.2 Extensions to PyTorch

We extended PyTorch with a Layer class, which is similar to the nn.Module, but adds some
functionality. We chose to call it Layer, rather than Module, since module already has a
specific meaning for python packages. Also we created Variable and Parameter classes
that can contain more custom information, such as doc strings and initializer functions.

To make it possible to process continuous video input and generate continuous streaming
output, an additional method had to be added that receives a long video stream or numpy
array and chops it into smaller chunks that can be processed sequentially. PyTorch objects
by default perform their computation (e.g. executing their forward method or calling a pre-
compiled library) when they are called as a function. To maintain compatibility with other
PyTorch packages, this method of calling a computation was kept in place and the new func-
tionality was added to Layer objects as a method called run that accepts the input as well
as a chunk length dt. Also we added a method optimize to the Layer class that performs
all of the boilerplate steps necessary to perform automated parameter optimization with any
of the optimizers available from torch.optim to approximate a given target output. A spe-
cific optimizer can be selected by calling layer.set_optimizer(...), which will then
be used for any optimize calls.

my_model = convis.models.LN()
my_model.set_optimizer.SGD(lr=0.001)
my_model.optimize(some_input, some_output, dt=500)

This very simple process can be customized by choosing different optimizers, adjusting
their parameters and also replacing the loss metric that is used to compare the current and
the desired output. By default, this is root-mean-squared, but for e.g. spiking output the
log-likelihood is more appropriate.

5.3.2.1 Tab Completion and Self-Documentation

As a general rule for usability, most features of the toolbox and the models created with it
should be discoverable interactively when using a REPL interactive command line3 or Jupyter
notebook environment. To make all internal parameters of a model discoverable by tab-
completion, we added special attributes to the Layer class which dynamically collect all in-
ternal variables, states and parameters - similar to what param() is doing for nn.modules,
but without requiring the user to actually execute a statement. The variables can be inspected
hierarchically in the nested structure of the Layers and Functions that call each other, or
as a flat list.

In Jupyter notebooks, Layers also have a special handler that will create a more useful
representation of the contained model, including a link to the online documentation should
the Layer be one of the convis operations or models. On a text console, printing will create
a text representation of sub-modules (similar to nn.Modules ).

5.3.2.2 Special Layers

convis implements a set of layers specialized for dynamic vision models. All layers also
inherit methods for parameter loading and saving and running chunked input.

3Read-Evaluate-Print Loop, e.g. the default *Python* interactive shell
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Figure 5.3.1: Linear Filters A shows a 2d convolution filter. A set of filters is applied to each
location on the image and a set of images is generated as output. Not pictured here is the
padding process (Section 5.3.2.2). B shows a fully connected filter that connects each output
through a weight map to the whole image. C shows a 3d convolution: each filter has extend
in space and time and is multiplied with the input at each spatio-temporal position. Again,
multiple filters can generate multiple outputs. D A SmoothConv filter that can reduce the
number of parameters for very long filters drastically. It uses recursive filters to convolve the
input in time with increasing delays and then applies a number of spatial filters (here: 5)
to different delays. The result is a smooth, spatio-temporally inseparable filter that can be
several hundred or thousands of bins long without taking up much memory or increasing the
running time of the model.
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Convolution Layer One of the most basic, but powerful layers is the convolution layer. The
Conv3d layer of convis performs linear filtering by multiplying a linear kernel at each posi-
tion in space and time with the input (see Figure 5.3.1 A for a 2d and C for a 3d convolution).

convis internally uses five-dimensional tensors as in- and outputs since the Conv3d
operation accepts five-dimensional inputs and filters. The two additional dimensions of the
input are interpreted as “batch” and “channel” dimensions, while the two additional channels
of the filter are “in-channel” and “out-channel” respectively. This means that if we have more
than one “batch”, each “batch” will be treated independently (potentially with speed-up due
to parallelization). If there is more than one “channel”, e.g. 3 for RGB colour coded input
video, the filter is required to have a matching “in-channel” dimension, so that a filter is
defined for each “channel”. The “out-channel” allows for an output with multiple “channels”.

The dimensions are in order: [batch × channel × time × x × y] for the input and [in-
channel × out-channel × time × x × y] for the filter.

If we want, e.g. to process RGB coded video and produce grey scale output, we need a
filter with 3 “in-channels” and one “out-channel”. If we want to preserve colour separately,
we either need a filter with 3 in- and 3 out-channels (which means the kernel is 9 times
its original size), or if the processing is independent, we can switch the colour dimensions
from “channel” into “batch” dimensions. In CNNs, the channels play an important role, since
throughout the processing chain, the image tends to become smaller, but the number of
channels increases, projecting the visual information into a more and more position invariant
and conceptual representation. For vision models in convis, the channels can e.g. be produced
from different orientation selective filters.

Implementing orientation selective, or even motion direction selective filters as a convo-
lution is straight forward since the filter can mimic the preferred stimulus, so that even very
complex motion patterns can be implemented as a 3d-filter.

The time complexity of executing a convolution operation can increase rapidly with the
size of the filter if executed on a CPU, however since the operation is very parallelizable, it
can be executed a lot faster on a GPU. For simple shapes, such as Gaussian or exponential
filters, recursive filters are more effective (see Section 5.3.2.2), but for more complex shapes,
or even arbitrary receptive fields (RFs) obtained from electro-physiological recordings, nu-
merical convolutions are necessary.

In its most basic definition, convolution operation compute output that is smaller than the
input since there are less positions for the kernel to fit inside the input than there are pixels
in the input. To avoid inconsistent output sizes when any of the internal filters are changed,
convis uses two different padding strategies to guarantee that the output has the same size
as the input independent of filter size. In the two spatial dimensions, a border is added to the
input, by default by mirroring the input at its edges, so that pixels in the border have a similar
mean and contrast as the pixels in the input. In the temporal dimension, the padding has to
use a different strategy since convis processes input stimuli in chunks of a user defined
length (e.g. 500 frames at a time). To get the convolution to work on continuous streaming
input, a part of the previous input has to be remembered between runs so that the output is
perfectly independent of chunk size. The length of the input that needs to be remembered is
the temporal length of the filter minus one.

Recursive Layers Similar to the recursive filtering operations used in VirtualRetina, the re-
cursive Gaussian and exponential filters are very efficient. The Gaussian filter is implemented
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according to Deriche 1993 and operates separately on the vertical and horizontal dimensions.
This limits the filter to Gaussian filters that are either circular, or ellipsoid and aligned either
with the horizontal or vertical axis. The temporal exponential filters are implemented similar
to Clifford and Langley 2000, including high-pass, low-pass and cascaded exponentials.

Temporally Smoothed 3d Convolution Since convolutions can be expensive to compute
for very long filter lengths, we implemented a hybrid filter between recursive and convo-
lutional filters. The layer is initialized with the number of basis functions that should be
used. Each basis function has a smooth temporal profile (which is computed recursively) and
is multiplied with a spatial filter (see Figure 5.3.1 D). The different filters are staggered in
time, either with equal or increasing distance to model a spatio-temporal receptive field that
smoothly changes over time. This filter has the advantage over a full spatio-temporal convo-
lution that it has less parameters. When fitting sparse experimental data that is expected to
have slow dynamics it needs less data to be fitted.

Receptive Field Layer Similar to a convolution, the RF layer uses a 3d linear filter, but
produces only a single output pixel (see Figure 5.3.1 B). In terms of implementation it is
actually a convolution, but with a filter that matches the spatial extend of the input. In time,
the filter still works as a convolution filter with the same padding strategy as the Conv3d
layer. It is possible to create multiple outputs by using the out-channel dimension of the
filter, e.g. by concatenating a set of receptive fields such that they are joined at the second
dimension.

Spiking Layers Spiking mechanisms introduce a serious non-linearity into a model. In
many cases, a firing probability will be the output of a model rather than an actual spike
train. However, to generate data from a model either for simulating downstream mechanisms
or to validate an analysis method, it can be important to produce plausible spikes from the
prediction of the model.

The simplest assumption is that of a Poisson spike train. Each spike is temporally inde-
pendent and the firing probability over time can be interpreted directly as the probability of
observing a spike at each time point.

If we assume that membrane potential is accumulated over time, we can model this
instead with a leaky integrate and fire model, which will spike if the accumulated mem-
brane potential crosses a set threshold. The layer that implements this spiking mechanism in
convis also has an optional refractory period that will prevent the neuron from firing for a
short amount of time.

To give the user even more options for spike generation, we implemented the Hodgkin-
Huxley, the Fitz-Hugh Nagumo and the Izhikevich model, which together cover a large
range of dynamics. Figure 5.3.2 shows the output of different spiking mechanisms to the
same input.
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Figure 5.3.2: Different Spiking Mechanisms This figure illustrates that with the same input,
different spiking mechanisms can generate very diverse patterns. White pixel signify a spike
in an On-layer, black pixel spikes in an Off-layer.

5.4 Models Implemented

Next to the retina model from Wohrer 2008 (section 5.4.2), we implemented a range of
linear-nonlinear cascade models as described in Real et al. 2017, which offer a range of
complexity from the most simple linear-nonlinear model to a subunit model with per-subunit
feedback and delays (section 5.4.1).

In Mcintosh et al. 2016, the authors used a convolutional neural network to model retina
data. Since this seemed like the optimal application for the toolbox, we implemented their
architecture (details in section 5.4.3). While they published their code, the convis imple-
mentation has the advantage of processing continuous streaming input instead of processing
isolated chunks. Also, depending on the precise complexity and quality of retinal ganglion
cell data, their model might have to be adapted slightly to fit other datasets by e.g. changing
the number of subunits assumed. While it is possible to change that in their code, the class
implementing their model in convis is very short, making a reimplementation very easy.

We also implemented a V2 model which was proposed by Rowekamp and Sharpee 2017
(section 5.4.4). Since V2 is mostly interested in delicate patterns, but less in their exact
position or polarity, the model is a quadratic model capturing the spatial correlations be-
tween input pixels, which is then turned into a convolutional model by adding the response
at different spatial positions. As an advantage over the implementation from Rowekamp and
Sharpee 2017, we could create the model in a very short code segment. The pure numpy
implementation by Rowekamp and Sharpee 2017 is a file with over 900 lines of code (not
counting the custom gradient descent mechanism) with each gradient being implemented
by hand. With our implementation we were able to create larger correlation maps and posi-
tional invariance. We could also try out different fitting methods, such as the limited-memory
Broyden–Fletcher–Goldfarb–Shanno optimization algorithm (LBFGS), which found correla-
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tion structures very similar to the ones published in Rowekamp and Sharpee 2017 in only
a few seconds as opposed to several thousand iterations of the slow, hand-tuned gradient
descent mechanism used in Rowekamp and Sharpee 2017.

5.4.1 LN Cascade Models

A commonly used model for the visual system is the combination of linear and non-linear
filters. In the simplest case a single linear Receptive Field (RF) is combined with a rectifying
non-linearity to formalize the intuition of what the measured Receptive Field (RF) represents:
a linear filter of the stimulus that governs the response, while negative responses are not
possible. Figure 5.4.1 A shows a schematic for this case.

The implementation in convis is straight forward: a linear layer and a non-linear layer
are applied sequentially. For the linear stage e.g. a convolution operation can be used to
create a set of local responses over the whole visual field, or a simple multiplicative filter that
will create a specific set of responses. The non-linearity can be a simple expression such as
rectification or squaring.

An LN cascade model is a sequence of linear and non-linear operations. These models
allow more complex responses and also create more complicated error surfaces (see Section
5.5)

Figure 5.4.1: Three kinds of convis models. A shows a LN-LN model that uses three
different convolution filters, rectifies and sums their responses. Instead of a sum, another
convolution could be used and the cascade can be repeated multiple times. B shows a sim-
plified schema of the retina model (section 5.4.2) B.1 shows an example stimulus, B.2 shows
the effect of the OPL layer and B.3 shows an example of spiking activity. C shows an almost
conventional convolutional neural network. Each layer is comprised of a 3d convolution
(and implied rectification). The number of layers and their channel-width determines the
complexity of the model (see section 5.4.3 for an example).
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5.4.2 The VirtualRetina Model

We implemented a version of the retina model published as VirtualRetina (Wohrer 2008) (see
Figure 5.4.1 B). Our version has the advantage that all spatial filters can be replaced by 2d
convolutions with arbitrary filters, the OPL can even be replaced with a full spatio-temporal
convolution filter.

The retina model contains a linear stage in which the input is bandpass filtered with an
a-causal spatio-temporally inseparable filter to create a contrast signal corresponding to the
OPL. This contrast signal is then gain controlled with a highly non-linear local-gain con-
trol mechanism that replicates the phase-advance seen in the gain control dynamics of LGN
recordings and finally a spike generation stage.

The linear “Outer Plexiform Layer” stage models the photon absorption at the level of
photoreceptors and the lateral inhibition of horizontal cells which create a center-surround
receptive field. To achieve this, VirtualRetina uses spatial gaussian filters and temporal expo-
nential filters to first create a center signal by linearly filtering the input. This center signal is
then filtered by another spatial and another temporal filter to create a surround signal which
is then subtracted from the center signal. The linear weight between center and surround
determines if the luminance input is converted to a pure contrast image (transient in space as
well as time), or whether the amount of luminance will create a sustained response as well.

In the “Bipolar” stage provides contrast gain control, similar to the feedback that amacrine
cells cells give to bipolar cells. It is implemented with a spatial map samples the local contrast
and provides the leak current to the shunting inhibition on the bipolar cell.

In the biological retina, computations up to this point are (mainly) performed by non-
spiking neurons. However, the retinal ganglion cells, the output neurons of the retina, create
spikes to transmit visual information through their axons and the optic nerve. Spiking is
inherently a highly non-linear process in which low or negative levels of input will result in
no activity at all and a sufficiently positive input might create a roughly linearly proportional
amount of spikes until a limit of refractory time is reached in which no increase in firing
rate is possible. The model contains a static non-linearity which models the strictly positive
response of the neuron and a leaky integrate-and-fire neuron model with refractory period.
The rectified input is integrated over time, while a leak current drives the neuron back to
its resting potential should the input be too weak. But once enough input is accumulated to
cross a predefined threshold, a spike is recorded and the neuron is set to be in its refractory
period, which will last a certain number of milliseconds. Only once the refractory period is
over can the neuron start again to integrate more input.

Some ganglion cell types show an additional level of non-linearity, which stems from their
dendritic tree integrating spatially over many non-linearly rectified signals. In the model this
is done by having an optional spatial filter stage between the static spiking non-linearity and
the spike generation.

5.4.2.1 Linear Filtering in the OPL

The first stage of the model is linear and models the combined response of photo-receptors
and horizontal cells. Together they form a center-surround receptive field with the inhibitory
surround slightly delayed in time. In VirtualRetina, this filter is created using recursive spatial
and temporal filtering separately. By subtracting the delayed, inhibitory response from the
excitatory response a spatio-temporally inseparable receptive field is created.
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𝐿(𝑥, 𝑦, 𝑡) is the luminance input.

𝐶(𝑥, 𝑦, 𝑡) = 𝐺 * 𝑇 * 𝐸𝑛 * 𝐿(𝑥, 𝑦, 𝑡) (5.1)
𝑆(𝑥, 𝑦, 𝑡) = 𝐺 * 𝐸 * 𝐶(𝑥, 𝑦, 𝑡) (5.2)

𝐼𝑂𝐿𝑃 (𝑥, 𝑦, 𝑡) = 𝜆𝑂𝑃𝐿(𝐶(𝑥, 𝑦, 𝑡)− 𝑤𝑂𝑃𝐿𝑆(𝑥, 𝑦, 𝑡)) (5.3)

Our model also offers a fully recursive implementation. Alternatively, a half-recursive
filter is available that replaces the spatial filters of center and surround with convolutions,
but keeps the temporal filters recursive. Another implementation allows for convolution
filters for each of the separated filters (spatial and temporal) and another one allows for a
convolutional 3d receptive field. All implementations take the same parameters. The 3d
receptive field, can be initialized using the parameters, however changes in the kernel can
not be translated back into the input parameters.

5.4.2.2 Contrast Gain Control

The contrast-gain-control stage is implemented as a iteratively evaluated differential equa-
tion:

𝑑𝑉𝐵𝑖𝑝

𝑑𝑡
(𝑥, 𝑦, 𝑡) = 𝐼𝑂𝐿𝑃 (𝑥, 𝑦, 𝑡)− 𝑔𝐴(𝑥, 𝑦, 𝑡)𝑑𝑉𝐵𝑖𝑝(𝑥, 𝑦, 𝑡) (5.4)

𝑔𝐴(𝑥, 𝑦, 𝑡) = 𝐺 * 𝐸 *𝑄(𝑉 𝐵𝑖𝑝)(𝑥, 𝑦, 𝑡) (5.5)

with 𝑄(𝑉 𝐵𝑖𝑝) = 𝑔0𝐴 + 𝜆𝐴𝑉
2
𝐵𝑖𝑝

5.4.2.3 Spike Generation

The spike generation is done using numerical integration of a leaky integrate-and-fire model
with refractory period. But first, the input is processed by a spatial filter and a static non-
linearity:

𝐼𝐺𝑎𝑛𝑔(𝑥, 𝑦, 𝑡) = 𝐺 *𝑁(𝑒𝑇 * 𝑉𝐵𝑖𝑝) (5.6)

with 𝐺 being a spatial Gaussian kernel and the static nonlinearity 𝑁(𝑉 ) being:

𝑁(𝑉 ) =

{︃
𝑖0𝐺

1−𝜆(𝑉−𝑣0𝐺)/𝑖0𝐺
if 𝑉 < 𝑣0𝐺

𝑖0𝐺 + 𝜆(𝑉 − 𝑣0𝐺) if 𝑉 > 𝑣0𝐺
(5.7)

The actual LIF then has the equation:

𝑑𝑉𝑛
𝑑𝑡

= 𝐼𝐺𝑎𝑛𝑔(𝑥𝑛, 𝑦𝑛, 𝑡)− 𝑔𝐿𝑉𝑛(𝑡) + 𝜂𝑣(𝑡) (5.8)

If the neuron is in the refractory period, 𝑉 is clamped at 0. When 𝑉 crosses a certain
threshold, 𝑉 is reset to 0 and a random refractory time is chosen from a normal distribution
of specified mean and standard deviation.
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5.4.2.4 Other Features

Our retina model can load xml files that contain VirtualRetina configurations, however some
options are ignored. Additionally, the parameters of the model can be saved and loaded as
json files.

There is a number of features which we didn’t implement. The output spike trains in
our model are computed per pixel, not from explicitly positioned neurons. Also the spiking
neuron model is not event driven, so the spikes are produced with the resolution of the
internal frame rate (usually 1kHz). We did not implement a microsaccade generator since
most of our stimuli already contain motion.

5.4.3 Convolutional Models

Deep convolutional networks (see Figure 5.4.1 C for a simple example schematic) are gener-
ating a lot of scientific interest due to their successful application in visual object classifica-
tion, speech recognition, translation and game playing.

To model responses of retinal ganglion cells (RGC) Mcintosh et al. 2016 created a convo-
lutional model with three stages. The first layer of the model has 8 subunits and sums over
an area of 5 × 5 pixel and 10 time bins. The 8-channel output is fed into the second layer
that has 16 subunits and uses spatio-temporal RFs of the same size as the first layer. The last
layer then fully connects the 16-channel output to however many output units are supposed
to be fitted. See section 7.3 for our reimplementation.

In contrast to VirtualRetina, this model does not come with exemplary parameters and is
meant mostly for data-fitting. Recently, Maheswaranathan et al. 2018 compared the subunits
of the fitted model to the receptive fields of bipolar cells and found that the internal structure
of the retina matches the internal filters of the model fitted only to RGC responses. This more
recent extension of the model has normalization and two 8-channel layers. A poster from the
group hinted at an LSTM at the last stage (McIntosh et al. 2016).

5.4.4 V2 Model

A very intersting model that is challenging to fit was proposed by Rowekamp and Sharpee
2017 to model V2 cells recorded in macaque viewing natural stimuli (Willmore, Prenger,
and Gallant 2010). Since V2 cells both are slightly location invariant and respond to the
cross-correlation of the input rather than a fixed pattern, the model is a mix between a
convolutional model and a quadratic model. The quadratic parameter of the model can be
decomposed into the different subunits which can then be analysed. Rowekamp and Sharpee
2017 showed that these subunits are forming cross-orientation suppression patterns, i.e. the
orientation of positive and negative subunits tended to be orthogonal.

Our implementation of the model is not particularly long (see Appendix 7.3.1) and there
is no need to write special code for the fitting procedures, as all gradients can be derived
automatically. Unfortunately the models complexity requires a very slow gradient descent,
both for the original implementation and ours, that is initialized with a solution found by a
simpler model earlier. However, when using LBFGS, after only a few iterations a model is
found that - while it doesn’t replicate the firing rates of the data - found quadratic parameters
that had very similar principal components to the one that was found by the slow gradient
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descent method, which lets us to believe that information about the stimulus cross-correlation
is found in the curvature of the error surface. It is possible, that a more sophisticated fitting
procedure could improve drastically on the slow gradient descent procedure and find the
correct model faster.

5.4.5 Run-Time and Comparison to Other Software

We compared the features of convis to other software packages that also provide models for
retinal or early cortical responses (see Table 5.1). We examined for each software whether
they provided luminance gain control and contrast gain control. Most packages provide
luminance gain control as some form of high-pass filter, e.g. VirtualRetina and other software
built on it’s theoretical foundation (COREM and convis) adapt to luminance in the outer
plexiform layer stage. Contrast gain control is much less common and all but one of the
examined software packages use the same formulation as VirtualRetina. Only topographica
implemented an alternative contrast gain control stage after Naka and Rushton 1966.
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Figure 5.4.2: Run-time of different models Each line shows the time it takes to compute 1
second of 1kHz sampled output at a specific image size of different convis models and Vir-
tualRetina as a comparison. The intersections with the real-time line (one second computed
in one second) is marked for each model and the image size at the real-time intersection is
shown in the corresponding colour.

Computing convolutions is slower than recursive filters, so computation speed is not a
natural strength of the models implemented in convis. The run-time depends strongly on
the size of the image that is processed. In Figure 5.4.2 we plotted the run-time to compute
1 second of output of different convis models over the width of a square input image.
We compared the run-time to VirtualRetina, in one run only saving the generated spikes,
in another saving the output of each layer to a hard-disk. We included the second run,
since the only way to analyse the output of each layer of VirtualRetina is to save it to a file,
while in convis all outputs can remain in memory to be analysed with common scientific
Python tools. Not surprisingly, the convis implementation (using separate convolutions in
the outer plexiform layer layer) ran slower than VirtualRetina on the same computer. It uses
convolutions, which are slower to compute than recursive filters and it performs Also the
image size that still allows to run the model in real time was only 18 × 18 for the convis
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retina model, compared to 44 × 44 for VirtualRetina. If VirtualRetina saves all outputs on a
hard-disk, it has about the same speed as the convis retina model. But more interesting is
the comparison to the simpler LN and LNLN model, as well as the McIntosh model. The small
LN model had a filter size of 20, 10, 10, i.e. 20 time steps times a 10 × 10 filter at each time
step. The large LN model had a filter that was twice the size in each direction (40, 20, 20),
which increased the run time dramatically. All other models were faster to compute than
even VirtualRetina, since they only had up to three, relatively small linear convolution stages.
Despite the small filter size, the McIntosh model was shown to be able to fit RGC responses
very well (Mcintosh et al. 2016).
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Table 5.1: Comparing different retina simulation software: VirtualRetina (Wohrer and Kornprobst 2009), Topographica (Bednar
2012), Virtual Retina++ (continued development of VR in the ENAS / PRANAS package Cessac and Palacios 2013), Lorach et
al. (Lorach et al. 2012), and RetinaStudio (Martínez-Álvarez et al. 2013) . ≈VR signifies that the gain control was implemented
similarly to VirtualRetina: Contrast gain control through shunting inhibition, using a local estimate of spatio-temporal contrast
(Wohrer, Kornprobst, and Vieville 2007).

Name / Application
Luminance
Gain Control

Contrast Gain
Control

Language of
Source Code,
Configuration

Open Source Filters
continuous
in/output

Optimization/
Plasticity

VirtualRetina
(Wohrer and Kornprobst 2009)
RGC responses

Yes Local Shunting C++, xml
Yes
(CeCILL-C) recursive No No

Lorach et al. 2012
Neuroprosthetics Yes No

hardware DVS,
Matlab No convolution No No

Topographica
(Bednar 2012)
PVC / Neural Maps

Yes
Naka-Rushton
(Naka and Rushton 1966) C, Python Yes (BSD 3) convolution Yes

ENAS
(Cessac and Palacios 2013)
Model Verification

Yes ≈VR C++, xml/GUI No recursive No No

iModel Ret_Mesh
(Baker and Bair 2013)
RGC responses

Yes No
C/OpenGL
/ Java

code available
from imodel.org
website

hexagonal grid
RFs No No

RetinaStudio
(Martínez-Álvarez et al. 2013)
Neuroprosthetics

C#/Flowlang Flowlang No No

COREM
(Martínez-Cañada et al. 2016)
RGC responses

Yes ≈VR C++, scripts
Yes
(CeCILL-C) recursive Yes No

deepretina
(Mcintosh et al. 2016)
RGC responses

HP filters
possible No

Python /
Theano

available
on github
(no license
specified)

convolution No Yes

isetbio
(Brainard et al. 2017)
Perceptual thresholds optical
aberations photoreceptor sampling

- Matlab / Yes (MIT) hexagonal grid No No

pulse2percept
(Beyeler et al. 2017)
Perceptual thresholds of
RGCs for implant assessment

- Python / Scipy
Yes (BSD
3-clause)

square or
gaussian RFs,
radial current
spread

No No

Convis (Huth, Masquelier, and Arleo 2018)
RGC responses Yes ≈VR

Python /
PyTorch

Yes (GPL-3)
recursive or
convolution Yes Yes
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5.5 Fitting of Models

The backpropagation mechanism of PyTorch allows for efficient parameter fitting using a
number of different gradient based optimization mechanisms. The goal of every parameter
optimization is to minimize a loss function by changing the values of a set of parameters. The
values of the parameters form the parameter space and the error surface is the loss associated
with each position in the parameter space. This surface can be very smooth with a unique
minimum, or it can be arbitrarily “peaky” with many local minima. What gradient based op-
timization is doing is using the local information of the error slope to make a more informed
guess about where to look next.

An algorithm that makes fairly few assumptions is naive gradient descent. It simply fol-
lows the gradient scaled by a learning rate: Each parameters value changes proportional to
the gradient of the error with respect to that parameter. Since the gradient at the optimum is
0 in all directions, the algorithm stops once the minimum is reached.

The following code listing ?? illustrates how to manually do gradient descent in PyTorch.
The outp goal variable was created by an LN model with a randomized weight and the LN
model called model uses the mean squared distance of its output to outp to get a gradient
to adapt its weight. The Figure 5.5.1 shows the loss during the optimization as well as the
distance between the weights of the two models.

import numpy as np
import convis, torch
model = convis.models.LN()
model.conv.set_weight(np.ones((5,5,5)),normalize=True)
for i in range(50):

o = model(inp)
loss = ((outp-o)**2).mean()
loss.backward(retain_graph=True)
model.conv.weight.data = (model.conv.weight.data

- 0.1 * model.conv.weight.grad.data)
model.conv.weight.grad.zero_()

PyTorch offers optimizer objects that perform the optimization steps and hold hyperpa-
rameters and e.g. momentum terms. In convis, the boilerplate for optimization can be
omitted making optimization as easy as:

model = convis.models.LN()
model.set_optimizer.SGD(lr=0.01)
for i in range(50):

model.optimize(inp, outp)

The approach makes one assumption that is easily violated: that there are no local min-
ima. And even if there is only one minimum, the algorithm could be trapped in a cycle
around the minimum and never reach it as a large learning rate will cause an optimization
step to overshoot the minimum, potentially ending up at a symmetric position on the other
side. Because of these shortcomings, a number of extensions can help gradient descent to
find the global minimum faster and to avoid local minima. One is stochastic gradient descent
(SGD) which adds a small noise term to jump out of local minima. Another is a “scheduler”
that changes the learning rate over the course of the optimization: in the beginning, it makes
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Figure 5.5.1: Trace of the loss and weight distance of the example in 5.5. Both, output
loss and the distance of the parameters to the ground-truth parameters decrease. However, as
the parameters get closer to the true parameters, the error gets smaller and thus the gradient
gets smaller as well. This leads naive gradient descent to slow down more and more the
closer we are to the solution.

a lot of sense to have a high learning rate to get close to the minimum, later the learning rate
has to be lowered, so that the minimum can actually be reached. Alternatively, a momentum
term can be used to accelerate the learning if the gradient has been in the same direction for
multiple steps and to decrease it if one has passed the minimum.

Since the error change depends strongly on what the parameter that was changed is
doing, different algorithms can be better suited for different models. For the models we
implemented in the convis toolbox, some have a very convex error surface and are thus
relatively easy to fit. Others have a more complex behaviour.

5.5.1 Gradient Descent Methods

The simplest group of gradient guided optimizers are gradient descent algorithms. Stochastic
gradient descent (SGD) for example simply subtracts the gradient linearly scaled from each
parameter. While this method literally goes in the right direction, it will not reach a minimum
rapidly for small learning rates and it will overshoot beyond the minimum for large learning
rates, causing it sometimes to oscillate around the minimum. In the case of quadratically
decreasing gradient toward the minimum, SGD will slow down more and more the closer it
is to the minimum, making it impossible to actually reach it. To counter that, one can add
a momentum term, which will add a bias such that the gradient is followed more strongly
if it is pointing in the same direction as in the past. The learning rate and momentum term
can be fixed by hand, but it is more common to use learning rate schedulers to use large
steps initially and then gradually decreasing learning rates, the more iterations were already
performed.
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Figure 5.5.2: Fitting an exponential filter Similar to the example in section 5.5, we can
also optimize the parameters of recursive filters. A shows how the target voltage trace is
approximated after successive iterations (colours from purple to yellow show the number of
iterations). B shows how different optimizers can deal with this problem. Simple gradient
descent methods are robust and can handle a parameter like the recursive time-constant well,
while the more sophisticated LBFGS algorithm fails.

Advanced gradient descent methods like Adadelta Zeiler 2012 have a dynamic learning
rate. Adadelta is more robust to noisy gradients than standard SGD. AdaGrad can work
with sparse gradients, RMSProp can deal with non-stationary objectives. The Adam opti-
mizerKingma and Ba 2014 uses two moment terms and combines the advantages of AdaGrad
and RMSProp.

Figure 5.5.2 shows a fast convergence of SGD and Adadelta.

5.5.1.1 LBFGS

Newton methods and pseudo-Newton methods also use information about the change in gra-
dient with respect to the parameters, i.e. the curvature of the error landscape. In the simplest
case of a linear filter and a quadratic error function, this allows to find the global minimum
instantaneously, since the local curvature of a quadratic function uniquely determines the
minimum. As long as the error landscape has a quadratic Taylor expansion close to a mini-
mum, the curvature can be used to directly jump to the minimum. For large convolutional
filters, this can even be performed for all parameters in the same step. The limited-memory
Broyden–Fletcher–Goldfarb–Shanno optimization algorithm (LBFGS) optimizer implements
a pseudo-Newton method and estimates the curvature by evaluating the error function at
different points in the parameter space. While this can make the parameters converge very
fast to an optimal solution, this algorithm has a weakness when the parameters are too close
to a local solution and so the gradient and its curvature is weak. In this cases it might be
more successful to initialize a model multiple times with completely random parameters and
performing only a few LBFGS iterations each and then choosing the parameter combination
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Figure 5.5.3: Fitting a spatial filter Repeating a similar optimization to Figure 5.5.1, we now
optimize a spatial filter of an LN model to replicate another LN model using two different
optimization algorithms: SGD and LBFGS. A shows the loss of each optimizer for the first
10 iterations. B shows that SGD slowly approaches the true values (shown in D) (colours
from purple to yellow show the number of iterations). LBFGS in contrast achieves a very low
loss after only three iterations. C shows that almost immediately a solution close to the goal
is reached and then subsequently improved upon. E and F show the recovered linear filters
after 10 iterations. Compared to *D**, both filters look fairly similar.

Figure 5.5.4: Fitting LN model. A-F show the parameter values during the optimization
process when a specific non-linearity is used for the LN models. A and D pose no difficulty
at all, B and *C prolong the fitting process slightly and E and F are more difficult to fit.
In G** the loss decreases after only few iterations for all non-linearities. The plot averages
multiple initial conditions.
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with the lowest loss, rather than trying to improve a solution iteratively.
Figure 5.5.2 shows how LBFGS can fail, in contrast Figures 5.5.3 and 5.5.4 show that

LBFGS can converge almost immediately to a solution very close to the optimum, even if
non-linearities are used that flatten out a large part of the parameter space (e.g. a sigmoid
far from 0).

5.5.1.2 Fitting multi-stage models

Once one of the linear stages of a two-stage subunit model is fixed, fitting the other one
is no longer a problem. To test whether convis can fit both stages at once we created a
model with a convolution with a vertical bar, then a rectification and then a convolution
with a horizontal bar. Then we created a second model that also had two convolutions and
two non-linearities, but the convolutions were initialized to random filters. Using stochastic
gradient descent or Adagrad, the error is decreasing over time, but the shape of the receptive
fields does not look in any way satisfying. Using LBFGS instead, a solution very close to the
ground truth is found after only two iterations. This means that the curvature of the gradient
is smooth enough for this problem to make the global minimum easy to find.

The situation is slightly more complicated if we have multiple subunits which are com-
bined. In this case, LBFGS from random initial positions might become trapped in local
minima, hinting at a “peaky” error landscape. Using random initialization points for LBFGS
seems to work well in that case.

Good and Bad Input A stimulus used in an experiment has to explore the dynamics
of the system in question sufficiently to make it possible to build a model that captures this
mechanism afterwards. For the very simple LNLN model discussed, the non-linearity cascade
requires the stimulus to have certain properties such that we can recover the model parame-
ters by the input-output relationship. If we e.g. use an input, that is spatially homogeneous,
we will not be able to see any spatial structure in the output. Also if we use a stimulus that
has many, strongly negative values, since all weights in the ground truth model are positive
the non-linearity will remove any information and the model will be completely silent. In the
previous simulations we used spatio-temporal noise from a normal distribution with a mean
of 0 - which coincidentally is the threshold of the non-linearity. In a physical experiment, we
can only model neurons that respond to the stimulus at some point, but not others, taking
care of at least one rectification of which we explore both sides. But there can be many more
non-linearities that we will only notice if we explore the stimulus space sufficiently. In the ex-
ample above, we can change the mean of the input distribution gradually. For very negative
input, we can observe that we can not recover the internal structure of the model, since it is
silent always. For very positive values, we can also not recover the structure, since the recti-
fication we use behaves linearly at very high values, combining the filters of both layers into
one linear filter. Closer to the threshold of the non-linearity, we can see a gradual improve-
ment in final loss from high values to smaller positive values. On the negative side, we see
that sometimes we can fit the model really well, even with a negative mean, but other times
we fail, leading to a gradual increase in the probability that the final loss will be very small,
however the distribution is bimodal. This effect comes from the sparseness, introduced by
the non-linearity on negatively biased values. Sparseness itself is very helpful to investigate
non-linearities between spatial integration layers - however a sparse stimulus will need more
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time to explore the parameter space. The thresholded negative values from the first Layer
have a high sparseness and so sometimes they will explore the second filter enough for the
optimization process to infer it, in other runs it will fail to do so.

5.6 Conclusion

We presented convis, a Python toolbox for modelling visual responses based on PyTorch.
The toolbox allows for efficient simulation of models as well as gradient based model fitting.
Among the models that are implemented in convis are LN-cascade models, convolution
models, and a detailed retina model.

In addition to the already implemented models, new models can be created by combining
layers. The design of convis allows for models to be defined in only few lines of code
with expressions similar to Matlab or numpy. All models inherit the ability for gradient
descent, processing of very long (potentially infinite) input sequences, self-documentation
and parameter management.

Gradient descent methods can speed up model fitting drastically, however their use is not
always straight forward. The reason why deep neural networks need so much data and have
such a slow convergence is that the combination of linear and non-linear operations creates
a highly peaky error landscape. Many models used to model e.g. RGC responses are much
simpler than these models. They can still require special strategies to fit (see the Section
5.4.4 as an example), but having access to the gradient helps fitting these models immensely.

convis also implements spiking neuron models, such as LIFs, Hodgkin-Huxley, Fitz-Hugh
Nagumo and Izhikevich models, which each also provide a gradient. But since these models
are highly state dependent and usually have some form of discontinuity that implements their
spiking behaviour, the gradient is less useful for fitting these models. Still convis gives the
opportunity to explore the gradient of spiking models which might at some point give better
insights into how to fit complex spiking models to data since today this is still a hard problem
(see e.g. Rossant et al. 2011).

convis is available under GPL-3 license at https://github.com/jahuth/convis.
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Chapter 6

Concluding Remarks

In this thesis we started the first steps in an effort to understand the multi-faceted neural
changes that occur due to aging. We started out from a discussion of observed aging effects
and developed four minimal aging hypotheses (Section 1.9). We will quickly outline the
approaches that grew out of this framework in this introduction before discussing possible
extensions to the work in the following sections.

One approach, outlined in chapter 2, connected the observed increase in receptive field
size in aging to the input noise hypothesis using a side-effect of spike-time dependent plas-
ticity (STDP). We might even consider this a compensatory mechanism that is triggered by
increased input noise and leads to larger, more noise robust receptive fields. In the scope of
a planned cooperation with an experimental lab in Göttingen, we analysed retinal ganglion
cell (RGC) data to estimate the likelihood of successfully proving a change in the size of
RGCs caused by bipolar cell sprouting (Section 3.4.2.4). Unfortunately we concluded that
the project was not feasible with the methods we had in mind. We will describe some possi-
ble future projects that have a better chance of success than the planned project. Since gain
control and normalization is a repeated motive in the visual system (Carandini and Heeger
2012), we examined the effect of input noise on a contrast gain control circuit, first across a
small range of input noise, yielding inconclusive results, then across a larger range and finally
using a modified spike train distance that compensates for the firing rates of the inputs. To
connect our theoretical models to psychophysical data that was available to our group, we
developed a method based on decoding and psychophysical threshold estimation to measure
calculation efficiency (CE) and Equivalent Internal Noise (EIN) in models of the visual sys-
tem. We explored two dimensions: receptive field (RF) size and number, which can both be
expected to change in age.

As a methodological advance, we have presented convis, the convolutional vision model
toolbox that supported some of the simulations, but more importantly offers approaches for
experimental data fitting and efficient simulation in an integrated, easily extensible frame-
work.

6.1 Aging Hypotheses

We presented a framework of minimal hypotheses of aging effects that reduce the large num-
ber of age associated changes to single, causal origins. Not all minimal hypothesis developed
in chapter 1 could be tested in the short span of our work. We mostly explored the input noise
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hypothesis. The increase of cortical receptive fields as suggested by the increase of population
receptive fields (pRFs) could be shown in chapter 2 to be caused by the effect of input noise
on plasticity mechanisms. The other projects were so far also explored from the perspective
of input noise, but they also offer opportunities to explore some of the other hypotheses. Still,
there are many questions remaining to be answered. We will discuss issues specific to one
of the projects in the following sections. In addition, there are still approaches we could not
examine within this thesis.

The plasticity hypothesis could be tested in simulations similar to 2.6.1. Instead of chang-
ing input noise, the ratio of facilitation and depression can be changed. As we discussed in
section 1.8.3, plasticity might very well be biased towards depression. This will evidently not
lead to an enlargement of receptive fields as we defined them in section 2.6.1. However, if the
decrease in the numbers of synapses is combined with lateral inhibition that normalizes the
activity of the cortical neurons, the overall activity levels will stay constant, but the patterns
that activate neurons will come from less afferents. This sparser connectivity pattern might
lead to simpler computational structures or it might result in more stochastic behaviour since
there is less opportunity for redundant processing that could keep timing constant. There is a
large number of possible follow-up hypothesis that give rise to interesting theoretical models
that could be tested. Is a decrease in synaptic connections necessarily detrimental? Is it nec-
essary for the brain to recruit more neurons to do the same computations if each of them has
less connections? Would a network with a strong bias for depression stabilize at some point
or would it lose all synapses in specific circumstances?

For the inhibition hypothesis (section 1.9.4), a suitable experiment is already set up in
section 4.7.1. The model we proposed is using lateral inhibition, although we so far kept it
at a constant level in these simulations, but varied inhibition in section 4.7.2. In section 6.5,
we give an outline on how to extend the full project to lateral inhibition.

The white matter hypothesis can be tested in theoretical models or experimentally. Mod-
elling approaches can focus either on increased noisiness of transmitted signals by adding
noise to a multi-stage model, or on the decreased bandwidth of cortical connectivity that
can lead to stronger information bottle-necks, resulting potentially in a decrease in the com-
plexity of the information that can be transmitted. However, it is also possible that changes
in coding strategy could compensate for a loss of white matter fibers. E.g. temporal mul-
tiplexing can reduce the number of channels needed to transmit the same information at
the cost of reaction time. Whether the brain can actively switch between different coding
schemes depending on available bandwidth has not been widely discussed and would be a
remarkable discovery. It is more likely that if a neural code is a mix of synchronous/par-
allel and temporal/sequential coding, it could adapt flexibly to either be more distributed
across white matter fibers or adapt more sequential cognitive strategies. This would still im-
ply that cognition changes drastically with a loss of white matter fibers, which might be in
line with a general increase in reaction time associated with old subjects. Whether and how
the brain can cope with a loss of long-range connections is a fascinating topic that we would
have loved to explore in much more detail. On the experimental side, correlation studies
between specific cognitive functions and white matter anisotropy can differentiate between
white matter and other anatomical changes, such as eg. cortical thickness as was done in
Ziegler et al. 2010. Approaches to link white matter defects at specific locations to specific
cognitive functions could be possible, but we do not know of specific evidence that white
matter degradation could be a localized phenomenon. Diseases that specifically target retinal
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ganglion cells, the axons of which form the optic nerve, could be considered a localized white
matter loss, however the effects tend to be disruptive only locally and result simply in a loss
of visual perception.

6.2 Receptive Fields and Noise

The positive effect of noise on receptive field size is a fortunate coincidence. If our pilot
simulations had yielded negative results, we would have to devise a much more complicated
mechanism that could relate the change in receptive field size to regularities of the input. It is
still possible that the brain uses a different mechanism for this task since the size of receptive
fields does seem to be constrained by the two forces: the desire to be large enough such that
noise can be reasonably compensated and the desire to still provide information with as high
resolution as possible.

It still remains to be explored if there is an asymmetry between the temporal and spatial
aspects of receptive fields.

The internal structure of receptive fields was so far not in the scope of this particular
project - we only considered the number of non-zero weights, but not their configuration.
Yet, we would assume that even though there are neurons with circular receptive fields and
others with intricate patterns, some only responding to a single stimulus while others will
respond to a class of objects, that still all of these neurons locally use the same strategy to
choose their inputs. If this is an effect of a hierarchical increase in complexity along the
visual pathways, we can expect insights from deep neural networks and the visual system to
complement each other, as both show this hierarchical increase in complexity.

6.3 Retinal Data Analysis

Early on in the project, we approached the group of Tim Gollisch for a possible collaboration
on the aging effects in retinal circuits. We had considered to add a 6-9 month data acquisition
period to the thesis in which multi-electrode array (MEA) recordings could be performed on
retinas of young and old mice to examine possible differences. Even though, robust evidence
exists that the dendrites of bipolar-, horizontal- and ganglion cells in the retina reconfigure
in mice and men (Eliasieh, Liets, and Chalupa 2007, Samuel et al. 2011), functional charac-
terizations of these changes were very limited. Samuel et al. 2011 only confirmed that cells
are still in principle functional and that direction selective cells still exist. A change in the
dendritic tree would result in a change of receptive field, which Samuel et al. 2011 estimate
as a 10% decrease for ganglion cells, which however might be compensated by a similar in-
crease at the level of bipolar cells. The shift of receptive field integration from ganglion cells
to bipolar cells can change the coding properties of retinal cells even without changing the
overall extent of the receptive field, since then most of the spatial integration happens before
rather than after the bipolar-amacrine-ganglion cell synapse non-linearity.

But examining these changes experimentally is not trivial since receptive field sizes vary
between retinal ganglion cell types and with eccentricity. Since only a limited number of
RGCs can be recorded in a single experiment using the proposed method of MEA record-
ings, a statistical analysis comparing cell populations from young and old animals require a
certain number of experiments to be performed. We did a simulation of the Receptive Field
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(RF) estimation procedure assuming an optimistic effect of 10 % Receptive Field (RF) size
change and calculated the number of cells that had to be recorded for a certain likelihood
of statistically significant results. Our conclusion in section 3.4.2.4 was that the number of
experiments that needed to be performed would be too high to add the experimental data
acquisition as a side-project to the thesis. Restricting the population of cells to a single type,
eg. direction selective RGCs, would not alleviate this problem, since the decreased spread in
possible receptive field size (which should make the comparison easier) is compensated by
the decreased yield in analysable cells. MEAs are not able to target specific cells, rather the
recorded cells have to be filtered by functional analysis to differentiate between cell types.

The experiments could still be carried out in the future. As the sole goal of a PhD thesis
it might be feasible to record enough data. A more targetable recording technique might
also improve the odds of finding a result, as would a technique that yields a larger number
of recorded cells, eg. using larger MEAs or Calcium imaging. If no change in Receptive
Field (RF) size is notable, single cell recordings and current injection into bipolar cells might
be necessary, as was eg. done in Liu et al. 2017, to explore the changes in non-linearity.
However, these experiments are very difficult to perform even on retinas of young animals
and might be even more difficult if done on old animals.

While it is not clear if the change in RGC receptive fields can be characterized and whether
it has a notable effect on retinal coding of different RGC types, the mechanisms that cause
these changes are posing interesting questions in their own right. Is it possible that these
changes are input-driven, eg. by a decay of photo-receptors? Are they a side effect of changes
in Calcium buffering dynamics, similar to what is speculated in Ashok and Foster 2007 but
in this case causing a proliferation rather than a depression of dendritic development? The
answers to this questions can reveal the remodelling possibilities of the retina that could help
in integrating iPCs or retinal implants to combat degenerative diseases such as RP, AMD and
Stargardt.

6.4 Gain Control and Noise

Closely related to the VirtualRetina retina model, we investigated the interaction between
gain control and noise. Gain control can emphasize or diminish the ratio between signal
and noise, depending on the dynamic range that is projected onto the output range. Since
gain control can be implemented by recurrent or lateral inhibition, our inhibition hypothesis
would predict decreased gain control throughout the visual system which would result in a
large repertoire of changes. However, a much simpler effect can be observed in the very early
visual system: in the lateral geniculate nucleus (LGN) a number of pathways are separated
which each have different properties. The magnocellular and parvocellular pathways both
project to the visual cortex, however they carry complementary information (see 1.3.1). Of
interest to us was foremost that the parvocellular pathway is more affected by aging (Bonnel,
Mohand-Said, and Sahel 2003; Elliott and Werner 2010). This might suggest that a prop-
erty of the magnocellular pathway is responsible for the increased resistance to aging. The
magnocellular pathway is more heavily gain-controlled and can contain a spatial integration
stage after the initial non-linearity. Both can work as anit-noise mechanisms, which fits well
with our input noise hypothesis: If we assume that the only difference between young and old
is an increase in receptor noise, we would expect that pathways featuring computations that
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combat noise are more resistant to this change.
We created two iterations of simulations and analysis to validate the intuitive assumptions

and to disentangle whether spatial integration or gain control has a greater effect on noise
reduction.

The method we demonstrate in sections 3.5.2 and 3.5.3 to quantify the relation between
input and output variability can be translated to other mechanisms as well that are assumed
to affect the processing of noisy signals. Moving away from the distance-to-noise-free mea-
sure to the difference between noise induced and internal variability gives us the insight that
both, The observation that with increasing noise level the output firing rate increases, sim-
ilar as it does in response to an increase in contrast, leads us to the definition of a spiking
difference that normalizes over firing rate.

The results from section 3.5.3 were computed with the convis implementation of con-
trast gain control rather than the VirtualRetina simulator used in section 3.5.2. The convis
implementation made integrating the model into the analysis code easier, since no data had
to be written to a file on disk.

The results leave some room for interpretation. Using the Victor-Purpura Distance (VPD),
there is a large difference between non-gain-controlled and gain-controlled simulations in
that non-gain-controlled show a larger noise induced variability than internal variability. The
gain-controlled simulation shows almost the same values, indicating that for a constant noise
level, all noise induced variability is masked by internal variability. However, if we control
for firing rate by using a firing-rate independent distance measure (Figure ??), the effect
vanishes, i.e. the increase in variability was mostly due to the large increase in firing rate due
to the increase in noise-induced contrast. Using this distance measure, the difference between
gain-controlled simulations with and without spatial integration becomes more pronounced.

6.5 Receptive Fields Affecting Psychophysical Measurements

In this project, there are many avenues wide open for exploration. While we did test a range
of numbers and sizes, the simulations were limited strongly for the smallest and largest sizes
possible. In the visual system the size of receptive fields scales from minutes of arc, for
acuities close to 30cpd, to tens of degrees with numbers of cells per visual area varying in-
versely to the size of receptive fields. From Brewer and Barton 2012 and other pRF studies,
we know that cortical regions coding for the very high density areas of the visual field which
would cover only 0.5 degree in young subjects, covers 4 times as much visual space in old
subjects, more similar to more peripheral pRF. At the same time, the surface area that corre-
sponds to the central 0.5 degree shrinks to a third of its size in aging1. The notes in section
2.3.1 about pRF still apply here, so the very central, high-resolution receptive fields might be
masked in the change size of the population RFs and the underlying change for those cells
might be even higher. In the project we laid out in section 4.7.1, we aimed to examine the
whole spectrum of spatial frequencies visible to humans to compare the measures of inter-
nal noise and calculation efficiency with our models. But we could not emulate the spatial
frequency spectrum adequately due to the constraints on image size and resolution: if we
cover the high-spatial-frequency end, we have to increase the resolution, but to cover the
low end, we have to increase the image size. Both scales together result in large demands

1see specifically Fig. 2 in Brewer and Barton 2012
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for memory during the simulations and consequently, the simulations only cover very few
cells per spatial frequency, as opposed to the large number of overlapping cells in the cor-
tex. A method that circumvents this issue by appropriately adjusting resolution and noise
strength by downscaling or cropping input images could extend the results to more appro-
priate number of neurons. Another option could be to investigate a single spatial frequency
channel at a time, however this would remove effects of harmonics and interference between
spatial frequency channels which could be an important factor that affects cells with high
and low spatial frequency selectivity very differently. Reimplementing the pure Python code
in convis can bring some improvement, since convolution is a more natural approach to
simulating receptive fields over the whole visual space. The issues of image scale still plays a
role for convis, requiring the same constraints as discussed before.

Another extension of this project, which has less to do with its method and more with the
scientific scope, is to investigate the effect of lateral inhibition. We introduced the inhibition
hypothesis in chapter 1 and listed evidence that inhibition is altered in high aging. Inhibi-
tion can function as a gain control, anti-noise mechanism, soft winner-take-all circuit and
guide attention. We already included lateral inhibition in the model to enhance the cross-
orientation suppression leading to a lower contrast threshold. But so far we did not include
the parameter for lateral inhibition as an independent variable that can have an effect on EIN
and CE. We did do preliminary simulations that showed lateral inhibition suppressing input
noise up to a point where the recurrent part of the network becomes a stable attractor and no
longer responds to changes in the input. The combination of all three variables can then be
used to fit the characteristics of different points of the spatial-frequency spectrum in terms of
contrast sensitivity (CS), CE and EIN. Since it is unlikely that lateral inhibition in the cortex
would change heterogeneously, but systematically for different parts of the primary visual
cortex, it should be noted that even with constant lateral inhibition profiles, which depend to
some part on the physical cortical distance, a change in the spacing between cortical positions
that code for certain visual positions will result in changes of lateral inhibition.

This project is far from concluded, which might seem unfortunate for this thesis, but
we are certain that with the ground work laid in section 4.7.1, many changes in the visual
system can be characterized more deeply than descriptive models used traditionally in psy-
chophysics.

6.6 Further Applications of Convis

Convis proved to become a versatile tool that grew beyond it’s original intended scope. As
originally intended, it can replace VirtualRetina with a comparable model that offers more
flexible spatio-temporal filters - at a cost of processing speed depending on the resolution
used in the simulation. Further, we also implemented alternative retina and V1 models on
a spectrum of simple to complex linear-nonlinear cascade models, including Convolutional
Neural Networks such as the model discussed in Mcintosh et al. 2016. The collection of all
of these diverse models in the same framework makes it easy for experimentalists to change
from one model to another only by switching out the name of the instantiated model class.
It is also a novel development that models meant primarily for data generation, such as
VirtualRetina, and models used primarily to fit experimental data are provided in the same
framework. This allows to generate synthetic data either from a model that provides high
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level parameters (eg. the size of receptive fields) or from a model replicating the behaviour
of a specific recorded cell. Conversely, both types of models can be fit to data more effectively
than MonteCarlo methods or parameter grid searches. The architecture of the toolbox allows
for automated differentiation for almost any type of processing which opens the door for a
wide range of gradient based optimization methods - most of which are already implemented
for the PyTorch ecosystem. This advance in the ability to rapidly fit any of a set of well
established models using a wide range of gradient based optimisation routines in very few
lines of code (see examples in section ref{sec:pytorch_extensions} for a three line example)
helps with achieving results that are consistent with other research groups and avoid the
danger of introducing reimplementation errors.

Evidence is emerging2, that 1d convolutions might enable better performance than the
much more complicated, but widely used Long Short Term Memory (LSTM)s. Convolution
kernels are also more easily interpretable than LSTM parameters. Convis offers temporal
convolutions of continuous video streams by adding an overlap between chunks that are
computed separately. While other approaches such as Bai, Kolter, and Koltun 2018 use di-
luted convolution in a deep architecture, convis can combine simple recursive temporal
filtering with convolution to achieve long history sizes with continuous, smooth convolution
using a small amount of parameters (eg. with logarithmic temporal spacing) and a very small
memory footprint of a memory single value per coefficient.

The discontinuities of spiking models are an inherent problem for their differentiability.
Some tentative approaches exist that try to circumvent this problem by defining a proxy
gradient that ignores discontinuity. These approaches make use of computational frame-
works such as PyTorch just like convis. Still, most of these approaches use large batches of
small sequences instead of the continuous processing that convis is based on. Convis is an
ideal testbed for backpropagation in spiking models. Data generators for the neuromorphic
MNIST task are included in the framework3 and a range of spiking mechanisms are imple-
mented in their forward pass, including a Leaky-Integrate-and-Fire model, random Poisson
spiking, Hodgkin-Huxley, Fitz-Hugh Nagumo and the Izhikevich model. To our knowledge
only the Leaky-Integrate-and-Fire model was so far integrated into Deep Spiking Networks
(Deep Neural Networks which use spiking neurons and adapt either through STDP or back-
propagation) and this was also the only model where attempts were made to create a custom
backwards pass. Since some of the other models offer a richer temporal dynamic, they might
have advantages for Deep Spiking Networks which were so far not explored by any research
group.

6.7 Conclusions on Aging

In this thesis we demonstrated in a range of different simulations and considerations how
fruitful the approach of following a minimal hypothesis can be. We started with the hypoth-
esis that noise at the level of photoreceptors is increased in high age. We could relate this
increase of input noise to an increase in Receptive Field (RF) size in a compensatory mech-
anism that only relies on the well established mechanism of STDP. We could explain the
differential aging effects in the magnocellular and parvocellular pathways, even if we could

2see Bai, Kolter, and Koltun 2018 or http://www.offconvex.org/2018/07/27/approximating-recurrent/
3see https://jahuth.github.io/convis/docs_streams.html or search for ’MNIST’ in the ‘convis‘ documentation

http://www.offconvex.org/2018/07/27/approximating-recurrent/
https://jahuth.github.io/convis/docs_streams.html
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not definitely conclude so far whether the increased noise resistance in the magnocellular
pathway is due to gain control or spatial integration. In addition to this first hypothesis, we
also tentatively discussed the consequences of changes in inhibitory circuits as well as plas-
ticity mechanisms. Since evidence for each of these hypothesis exist, it is likely that these
effects occur simultaneously and interact. Aging remains a complex phenomenon, but ex-
tracting possible cause-effect relations using theoretical tools as we have done here, can help
in structuring our knowledge about this multifaceted process. In the earlier sections of this
chapter we outlined possible future projects that can further deepen our understanding of the
underlying mechanisms of aging. While we did not carry out an electro-physiological exper-
iment, we estimated the effort that would go into a project like this from existing data and
have prepared analysis methods to infer the size of receptive fields (spike triggered average
(STA) or direct fitting with convis) as well as the temporal and stimulus related reliability,
quantified as mutual information. A tool that was helpful in quickly setting up simulations
and fitting procedures is the convis toolbox we developed during the project. It has numer-
ous applications outside the discussed projects which we hope to evaluate in future studies
as well.

Much still remains to be investigated, but using the right methods, some of which we hope
to have presented in this thesis, understanding the neural basis of aging will become only an
question of time.
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Glossary

Adadelta

Gradient based optimization algorithm, see
Zeiler 2012. 114

Adenosine Monophosphate (AMP)

The "uncharged" version of the energy
molecules ADP and ATP. 127

Adenosine Triphosphate (ATP)

A molecule that provides energy for intracellu-
lar processes. When it is used up, it reverts to
AMP. 127

After Hyper Polarization (AHP)

A depression of the membrane potential follow-
ing neural activity. Section 1.8.3 discusses how
this influences plasticity in aging. 19, 26

Age-related Macular Degeneration (AMD)

Age-related neurodegenerative disease that af-
fects the centre of the retina. See Section
1.7.2.1. 23, 24, 122

AMP-activated protein kinase (AMPK)

A protein kinase that creates ATP. 18

Bipolar cell

A cell type in the retina that is bipolar cell. Sec-
tion 3.2.1 gives an introduction to cells in the
retina. 59

Calcium (𝐶𝑎2+)

Calcium (𝐶𝑎) is the 20th element of the peri-
odic table. In cellular medium it acts primarily
as the positively charged ion 𝐶𝑎2+. 18–20, 44,
59

Calculation Efficiency (CE)
A constituent component of contrast sensitivity.
See formula 4.1. 77–81, 89–92, 95, 119, 124

Cataract
see section 1.7.1.1. 21, 28

Contrast Sensitivity (CS)
1 over the contrast threshold (lowest contrast a
subject is able to perceive). 13, 24, 77–79, 81,
86, 87, 90, 91, 124

Contrast Sensitivity Dunction (CSF)
The curve of contrast sensitivity (1/threshold)
usually over the range of spatial frequencies.
77, 79–82, 89–91

Convis
A Python toolbox for creating convolutional vi-
sion models which I implemented during my
PhD studies. 2, 6, 8, 65, 96, 98, 100, 102, 103,
105, 109, 110, 112, 113, 116, 117, 135, 138

convolutional neural network (CNN)
An architecture for neural networks that allows
to process images very efficiently. 102

Cycles Per Degree (cpd)
a unit signifying the spatial extent of a stimu-
lus in the visual field (independent of distance).
68, 77, 78, 80, 81, 89

Electroretinogram (ERG)
The response of the retina can be measured with
an electrode attached near the eye. The record-
ing is non-invasive and allows an analysis of
photoreceptor and retinal health. 56

Equivalent Internal Noise (EIN)
A constituent component of contrast sensitivity.
See formula 4.1. 78–81, 83, 89–92, 95, 119,
124
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Firing-Rate Difference (FRD)

Spike train distance that consists of the differ-
ence in spikes (normalized by time). 50

Gabor Filter/Gabor Patch

A linear filter that is created by multiplying a
spatial cosine wave with a Gaussian envelope.
50, 88

Lateral Geniculate Nucleus (LGN)

A neural hub in the brain stem that receives in-
put from the optic nerve and outputs to the vi-
sual cortices. 34, 36, 47, 49, 64, 66, 70, 122,
128

Lateral Intra-Parietal cortex (LIP)

An area of the cerebral cortex involved in eye
movements and working memory, located in the
intraparietal sulcus. 83, 84

LBFGS optimization algorithm

The limited-memory Broyden – Fletcher – Gold-
farb – Shanno optimization algorithm is a
pseudo-Newton method that uses the curvature
of the error surface to find the minimum of an
error surface. 104, 108, 114–116

Long Short Term Memory (LSTM)

a recurrent deep learning method. 125

Long Term Depression (LTD)

a sustained weakening of a synaptic connection.
26, 29, 44

Long Term Potentiation (LTP)

a sustained strengthening of a synaptic connec-
tion, eg. caused by regular stimulation of a cer-
tain frequency. 26, 29, 44

Magnocellular Pathway

A pathway in the visual system that distin-
guishes itself from the parvocellular pathway in
the lateral geniculate nucleus (LGN). See Sec-
tions 2.2.4 and 3.2.2.1. . 6, 8, 13, 34, 36, 38,
44, 45, 47, 49, 64–66, 74, 122, 125, 126, 128

Middle temporal visual area (V5 or MT)

An area of the extrastriate cortex of involved in
vision, specifically in the perception of motion.
14, 40, 83, 84

Modulation Transfer Function (MTF)

The modulation transfer function describes the
change in frequency spectrum before and after
a filtering operation. 83, 86

Multi-Electrode Array (MEA)
a device used for recording many neurons si-
multaneously, eg. in the retina. *MEA*s can
have between a few dozen to thousands of in-
dependent electrodes. 8, 23, 53, 58, 59, 61, 64,
121, 122

Non-Negative Matrix Factorization (NMF)
matrix factorization with the constraint that all
factors are positive. 59, 64

outer plexiform layer (OPL)
The outer layer of the retina that houses the
photoreceptors. 22, 48, 109

Parvocellular Pathway
A pathway in the visual system that distin-
guishes itself from the magnocellular pathway
in the LGN. See Sections 2.2.4 and 3.2.2.1. . 6,
13, 34, 36, 38, 44, 47, 49, 64–67, 74, 122, 125,
128

Population Receptive Field (pRF)
A receptive field measured for a voxel, rather a
specific cell. See section 2.3.1. 14, 39, 45, 120,
123

PyTorch
A computational library for Python, based on
Torch, that is used among other applications for
DeepLearning. 7, 96, 98, 112, 117

Reactive Oxygen Species (ROS)
A family of molecules that contain oxygen and
are highly reactive (see Section 1.5.2). 18

Receptive Field (RF)
A portion of the sensory space that elicits a re-
sponse in a neurons. 22, 30, 34–36, 38–42, 44,
57, 59–63, 89, 102, 105, 108, 119, 121, 122,
125

Retinal Pigment Epithelium (RPE)
A cell layer of the retina that (among other
functions) supplies the photoreceptors with nu-
trients and is closely linked to photoreceptor
health. 22, 23, 48, 58

Retinitis Pigmentosa (RP)
Neurodegenerative disease that affects the pe-
riphery of the retina. See Section 1.7.2.2. 23,
24, 122

RGC
Retinal Ganglion Cell. Section 3.2.1 gives an in-
troduction to cells in the retina. 8, 22, 24, 47,
49, 56–59, 61, 63, 64, 66, 108, 110, 117, 119,
121, 122
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Saccade
A rapid eye movement. 83

signal-to-noise-ratio (SNR)
The ratio of signal strength relative to the
strength of the noise competing with the signal.
28, 30, 34, 64, 84, 91, 92, 95

Spike Triggered Average (STA)
a method to estimate the receptive field of
a neuron by averaging over all stimuli that
elicited a spike. 59, 61, 64, 126

Spike Triggered Covariance (STC)
a method to estimate the receptive field of a
neuron by averaging over the cross-correlations
of each stimuli that elicited a spike. 59

Stargardt Macular Distrophy
Neurodegenerative disease that affects the cen-
tre of the retina. See Section 1.7.2.1. 23, 24,
122

STDP
A plasticity mechanism that modifies synap-
tic weights according to the relative delays at
which spikes are received and emitted. 2, 6, 30,
34, 41, 45, 119, 125, 133

Stochastic Gradient Descent (SGD)
A simple optimization algorithm using random
motion to avoid local minima. 112–115

Superior Colliculus (SC)

A part of the mid brain that (among others) con-
trols saccadic eye movements. 49

Theano

A computational library for Python that is used
among other applications for DeepLearning. 97,
98

VanRossum Distance

A spike distance defined in Rossum 2001. 51,
52

VEP

visual evoked potential. 14, 39

Victor-Purpura Distance

Victor-Purpura Distance. 51, 52, 68, 70–73, 123

VirtualRetina

The VirtualRetina retina simulator described in
Wohrer 2008. 65, 96, 97, 102, 106, 108–110,
122, 123
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7.1 Extended Table of Age Ranges

Table 7.1: Age limits of different species of a selection of scientific studies that separate subjects into young and old groups (and
optionally an intermediate group). Another table lists correlation studies that have more than three or no age groups (Table 7.2).
X-Y: range from X to Y, X +/- Y: mean of X with standard deviation Y.

Animal Young Age Intermediate Old age Study

Human (years) (years) (years)
26-35 36-45 45-60 Brozek and Keys 1945

54 - 79 Friede 1962
18-28 64-81 Salthouse and Somberg 1982
20-29 53-77 Schlotterer, Moscovitch, and Crapper-McLachlan 1983
18-28 62-72 Ball and Sekuler 1986
18-30 59-76 Cremer and Zeef 1987
21-27 66-77 Goggin and Stelmach 1990
18-33 41-63 66-91 Stevens 1992
18-23 62-83 Gilmore et al. 1992 (1)
17-23 63-91 Gilmore et al. 1992 (2)
23 +/- 6 72 +/- 7.5 Porciatti et al. 1992
20-33 37-61 65-84 Huaman and Sharpe 1993
18-28 60-74 Kramer et al. 1994
17-27 55 to 90 Stuart et al. 2003
17-27 55 to 90 Stuart et al. 2003
mean 23 mean 66 Riecker et al. 2006
19-25 65-72 76-92 Poliakoff et al. 2006

74.4 +/- 5.6 Kalisch, Tegenthoff, and Dinse 2008
19-25 64 - 82 Elliott and Werner 2010
mean 30 mean 66 Sebastián and Ballesteros 2012
21 +/- 1.83 69.53 +/-4.05 Bernard and Seidler 2012

60-94 Kattenstroth et al. 2013
20-33 60-82 Cheng and Lin 2013
20-40 40-60 60-90 Heise et al. 2013
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Animal Young Age Intermediate Old age Study

20-29 65-76 Allard et al. 2013
22-36 66-95 Strömmer, Tarkka, and Astikainen 2014

Monkey (years) (years) (years)
- Rhesus Monkey 5 - 16 25-28 Spear et al. 1994

6-15.2 17.5-26.5 Koo et al. 2012
21-22 28-32 Yu 2005; Wang et al. 2005

5-13 21-26 Luebke et al. 2015

Mouse
- C57BL/6J 40 weeks 100 weeks Zerweck, Mitchell, and Anthony 1981

Rat (months) (months) (months)
- Long Evans rats 20 Connor and Diamond 1982:
- BN TNO/IVEG 5 33-35 Fliers, De Vries, and Swaab 1985
- WAG/Rij 3 19 25 Ravid et al. 1987 (Pilot)
- BN/BiRij 3 and 7 32-33 Ravid et al. 1987
- BN/BiRij 7-8 32-32 Van Gool et al. 1987
- FBNF1 hybrid 4-7 27-32 Hickmott and Dinse 2013

Aplysia californica >240 days Zolman and Peretz 1987

Table 7.2: Age range of a selection of correlation studies (human subjects, age in years). For studies that include group analyses,
we included the number of groups as well as the range of the oldest group in the analysis.

Minimum Number of groups (age span) Highest age group Maximum Study

18 4 groups (7 years) 45-60 60 Brozek and Keys 1945
7 17 groups (4 years) 87-91 91 Misiak 1951
20 6 groups (10 years) 70-79 79 Coppinger 1955

2 groups (>50, <50) 50-80 80 Sokol, Moskowitz, and Towle 1981
4 (every 7 years) 90 Snyder, Dustman, and Shearer 1981
19 87 Owsley, Sekuler, and Siemsen 1983
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Minimum Number of groups (age span) Highest age group Maximum Study

15 89 Morrison and McGrath 1985
24 100 Terry, DeTeresa, and Hansen 1987
22 4 groups (20 years) 80-92 92 Kline et al. 1992
19 84 Tobimatsu et al. 1993
6 61-80 80 Emmerson-Hanover et al. 1994
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7.2 Additional Results For Receptive Field Increase Due To
Noise

In section 2.6.1 we show that spike-time dependent plasticity (STDP) can enlarge receptive
fields in response to jittered input. To show that this effect is not dependent on the specific
parameters of the simulation we show other parameter constellations. We varied each pa-
rameter and took the difference of the number of weights < 0.01 of a low noise (0.5ms jitter)
and high noise (100ms jitter) simulation.

At multiple points the plots cross 0, showing that in that specific simulation there is no
decrease in small weights: When the firing rate of the pattern (p_pattern) is too low or the
firing rate of the poisson neurons (p_poisson) is too high, there is no difference between the
jittered and unjittered patterns, resulting in similar weight distributions. More interesting is
the effect of high taupre or low taupost, which both abolish the difference between high and
low jitter: When taupre is larger than 30ms or taupost is 10ms (all other time constants being
20ms), the mechanism is biased towards facilitation, so all weights are driven to high values,
leaving no weights < 0.01. The inhibition parameter also seems crucial, but that effect is
only related to the firing rates of the simulation.

Table 7.3: Parameters of STDP simulations

E 10 E 11 E 12

fr p pattern 5% 5% 10%
fr p noise 5% 5% 0%
taupre 40ms 60ms 20ms
taupost 40ms 10ms 20ms
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Figure 7.2.1: Parameter Exploration

Figure 7.2.2: Experiment with plasticity bias: Using longer time constants for presynaptic
spikes, the effect gets even more pronounced. A: raster plot of different noise levels, B
histogram of weights. C number of weights in the coloured areas in C.
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Figure 7.2.3: Experiment with symmetric plasticity and long time constants. The simula-
tion is very similar to the one discussed in section 2.6.1.2.

Figure 7.2.4: Experiment with stronger pattern and decreased, symmetric time con-
stants the increased firing rate of the pattern is compensated by a decrease in noise spikes.
Overall, less non-zero weights are generated compared to the other experiments, but a de-
crease is still notable.

7.3 Convis: McIntosh Model

This code fully implements the convolutional retina model from Mcintosh et al. 2016 in
convis. The model is also included in the toolbox as convis.models.McIntosh.

class McIntosh(Layer):
"""

Convolutional Retina Model
Contains two convolutional layers and one readout layer.
The first convolutional layer has 8 channels.
The second convolutional layer has 16 channels.
The readout is a linear combination over all space
and all channels of layer 2, resulting in ‘out_channels‘
many output channels.
To set the weights individually::

m = convis.models.McIntosh(out_channels=5)
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m.layer1.set_weight(np.random.randn(8,1,20,10,10))
# mapping from 1 to 8 channels
m.layer2.set_weight(np.random.randn(16,8,10,50,50))
# mapping from 8 to 16 channels
# the readout needs some number of outputs
# and 16 x the number of pixels of the image as inputs
m.readout.set_weight(np.random.randn(5,16*input.shape[-2]

*input.shape[-1]))
# plotting the parameters:
m.plot()

[1] Mcintosh, L. T., Maheswaranathan, N., Nayebi, A., Ganguli, S.,
& Baccus, S. A. (2016). Deep Learning Models of the Retinal Response
to Natural Scenes. Advances in Neural Information Processing Systems
29 (NIPS), (Nips), 1-9. Also: arXiv:1702.01825 [q-bio.NC]

"""
verbose = False
def __init__(self,filter_size=(10,5,5), random_init=True, out_channels=1,

filter_2_size=(1,1,1), layer1_channels = 8,layer2_channels = 16):
super(McIntosh,self).__init__()
layer1 = Conv3d(1,layer1_channels,filter_size,time_pad=True,autopad=True)
self.add_module(’layer1’,layer1)
self.layer1.set_weight(1.0,normalize=True)
if random_init:

self.layer1.set_weight(np.random.rand(
layer1_channels,
1,
filter_size[0],
filter_size[1],
filter_size[2]

), normalize=True)
layer2 = Conv3d(layer1_channels,

layer2_channels,
filter_2_size,
time_pad=True,
autopad=True)

self.add_module(’layer2’,layer2)
self.layer2.set_weight(1.0,normalize=True)
if random_init:

self.layer2.set_weight(np.random.rand(
layer2_channels,
layer1_channels,
filter_2_size[0],
filter_2_size[1],
filter_2_size[2]

), normalize=True)
self.readout = torch.nn.Linear(1,out_channels,bias=False)

def forward(self, the_input):
a = torch.nn.functional.relu(self.layer1(the_input))
a = torch.nn.functional.relu(self.layer2(a))
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self._last_processed_image = a.size()
# The readout should consider all channels and all locations
# so we need to reshape the Tensor such that the 4th dimension
# contains dimensions 1,3 and 4
# - moving dimension 3 to 4:
a = torch.cat(a.split(1,dim=3),dim=4)
# - moving dimension 1 to 4:
a = torch.cat(a.split(1,dim=1),dim=4)
if self.readout.weight.size()[-1] != a.size()[-1]:

if self.verbose:
print(’Resetting weight’)

if self._use_cuda:
self.readout.weight = torch.nn.Parameter(

torch.ones((self.readout.weight.size()[0],a.size()[-1])))
self.readout.cuda()

else:
self.readout.weight = torch.nn.Parameter(

torch.ones((self.readout.weight.size()[0],a.size()[-1])))
a = self.readout(a)
return a
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7.3.1 Convis: Rowekamp Model

This code implements the quadratic-convolutional V2 model from Mcintosh et al. 2016 in
convis.

class V2(convis.base.Layer):
"""

V2 model From Rowekamp & Sharpee 2017
doi: 10.1038/ncomms15739

"""
def __init__(self,

im_shape=(20,20),
subunit_shape=(16,16),
delays=[0,1,2,3,4,5,6,7,8,9]):

self.dims = 5
super(V2, self).__init__()
self.subunit_shape = subunit_shape
self.subunit_len = np.prod(subunit_shape)
self.a1 = Parameter(0.0,doc="")
self.a2 = Parameter(0.0)
self.d = Parameter(1.0)
self.v = Parameter(np.random.rand(*(subunit_shape)))
self.J = Parameter(1.0*(np.random.rand(*(

np.prod(subunit_shape),np.prod(subunit_shape)))<0.01))
self.subunit_weight = Parameter(np.ones((10,5,5)))
self.delay = []
for d in delays:

self.delay.append(convis.filters.Delay(delay=d))
def forward(self, inp):

sub_unit_responses = []
x_positions = inp.shape[-2]-self.subunit_shape[0]+1
y_positions = inp.shape[-1]-self.subunit_shape[1]+1
if self.subunit_weight.shape == (1,1,1):

self.subunit_weight.set(np.ones((len(self.delay),
x_positions,y_positions)))

for t in range(len(self.delay)):
t_inp = self.delay[t](inp)
for x_pos in range(x_positions):

for y_pos in range(y_positions):
x = t_inp[:,:,:,

x_pos:x_pos+self.subunit_shape[0],
y_pos:y_pos+self.subunit_shape[1]
].contiguous()

x_flat = x.view(x.size()[0],
x.size()[1],
x.size()[2],
self.subunit_len)

y = ((self.v[None,None,None,:,:] * x).sum(-1).sum(-1)
+ torch.mul(

x_flat,torch.matmul(x_flat,self.J)
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).sum(-1)+self.a1)
sub_unit_responses.append(sigmoid(y))

sub_unit_responses = torch.mul(
self.subunit_weight.view(self.subunit_weight.size()[0]*

self.subunit_weight.size()[1]*
self.subunit_weight.size()[2]).contiguous()[:,None,None],

torch.cat(sub_unit_responses,dim=0))+self.a2
r = torch.sum(sub_unit_responses,dim=0)[None,:,:,None,None]
return self.d*softplus(r)

The code that is required to fit this model to data contains the steps to initialize the
parameters, load the data, choosing an optimizer and calling optimize:

centered_stimulus = np.load(’e0040.p1.stimulus.centered.npz’).items()[0][1]
psth = np.load(’e0040.p1.psth.npz’).items()[0][1]
psth[np.isnan(psth)] = 0.0

v = V2(delays=np.arange(10))
v.p.J.set(0.0*np.ones((256,256)))
v.p.v.set(np.zeros((16,16)))
v.p.subunit_weight.set(np.ones((10,5,5)))
loss_func = lambda x,y: torch.nn.functional.poisson_nll_loss(x,y,log_input=False)
v.set_optimizer.LBFGS()
t_init = np.random.randint(5000)
loss = v.optimize(centered_stimulus[t_init:6000][:-1],

1.0*psth[t_init:6000][1:,None,None],
dt=200,
loss_fn=loss_func)
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