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Abstract

Oscillatory brain activity has been widely reported experimentally, yet its functional roles,
if any, are still under debate. In this review we argue two things: firstly, thanks to oscillations,
even slowly changing stimuli can be encoded in precise relative spike times, decodable by
downstream ‘‘coincidence detector” neurons in a feedforward manner. Secondly, the
required connectivity to do so can spontaneously emerge with spike timing-dependent
plasticity (STDP), in an unsupervised manner. The key here is that a common oscillatory
drive enables neurons to remain under a fluctuation-driven regime. In this regime spike time
jitter does not accumulate and can thus be lower than the intrinsic timescales of stimulus
fluctuations, which leads to so-called ‘“‘temporal encoding”. Furthermore, the oscillatory
drive formats the spikes in discrete oversampling volleys, and the relative spike times between
neurons indicate the eventual differences in their activation levels. The oversampling
accelerates the STDP-based learning for downstream neurons. After learning, readout only
takes one oscillatory cycle. Finally, we also discuss experimental evidence, and the question of
how the theory is complementary to the so-called ‘“communication through coherence”
theory.
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The problem: continuous signal transmission through spikessystems
(Eeckman, Frank H., Ed.)

Consider a problem that neurons might be faced with: to transmit with as less loss
as possible a continuous signal — their input currents — through the output spikes.
Let us assume that to do so, they are able to adapt their thresholds.
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Figure 1. Current-to-spike transformation by leaky-integrate and fire (LIF) neurons (see Methods for details). Each line corresponds to a different
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scenario. Left column shows the time courses of input currents (‘“‘Input’’), membrane potentials (“‘V”’) and unconstrained membrane potentials (“V*) ~
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Oscillations oversample slowly changing stimuli 89

magnitudes can thus be rapidly extracted from the relative latencies of the first
spikes that follow the suprathreshold peaks, without having to count spikes on long
time-windows, as in the above-mentioned mean-driven regime. The temporal
resolution of the readout is given by the prominent frequencies of the common
drive, which, by definition, are faster than the stimulus frequencies, thus leading
to oversampling.

To summarize, a common fluctuating drive is a way to encode slowly changing
stimuli (or even static) in discrete spike volleys with precise relative spike times
(~10-20ms or below). As we will see, this precision enables rapid feedforward
decoding via spike timing-dependent plasticity (STDP) and coincidence detection.
Importantly, periodicity of the fluctuating drive is not required to get precise relative
spike times (Nikoli¢ et al. 2012). In the remainder of the paper we use the term
“oscillations” without implying periodicity — a common practice (Nikoli¢ et al.
2012). Finally, although we have thus far been considering continuous individual
input currents and common drives, these currents are, in fact, thought to be
generated by (possibly numerous) incoming spikes, with each spike leading to a
(possibly tiny) excitatory or inhibitory post-synaptic current.

Experimental evidence and the reference-time issue

Our hypothesis H in this paper is that, thanks to a hidden oscillatory drive, a static
or slowly changing stimulus is encoded in discrete spike volleys with reproducible
relative spike times. To test H experimentally one must simultaneously record
multiple neurons to determine whether time-lags between neurons are reproducible
and stimulus-dependent. This approach was taken by ref. (Schneider et al. 2006;
Havenith et al. 2011), and this indeed showed evidence for H.

If only one neuron is recorded, then an intermediate step might be to use a
prominent local field potential (LFP) oscillation as reference-time. If we assume
that this oscillation corresponds to a common input for several neurons (even if in
practice only one is recorded) — a debatable hypothesis given the controversies about
the origin of LFP, see for e.g. ref. (Rasch et al. 2009; Zanos et al. 2011) — then
reproducible and stimulus-dependent spike phases, a phenomenon referred to as
“phase-of-firing coding’ (PoFC), implies reproducible and stimulus-dependent
time lags between these neurons. The converse, however, is false, so the approach
might be missing some evidence for H (if the LFP turns out not to reflect a common
input). It thus should be used with caution. That being said, evidence for PoFC has
been accumulating. It was first observed in the rat’s hippocampus, where spike
phases with respect to theta oscillations encoded the animal’s position (O’Keefe
and Recce 1993; Mehta et al. 2002). More recently, it has been observed in the
somatosensory (Siadatnejad et al. 2013), auditory (Kayser et al. 2009) and visual
(Montemurro et al. 2008; Vinck et al. 2010; Turesson et al. 2012) modalities of
mammals

In some cases, oscillations come from a certain overt sensor sampling cycle,
allowing the testing of whether with respect to this cycle spike phases are
reproducible and stimulus-dependent. This appears to be so in the case of sniffing
in the olfactory system (Cury and Uchida 2010; Shusterman et al. 2011), whisker
movements in the rat’s somatosensory system (Panzeri and Diamond 2010),
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or licking in the gustatory system (Gutierrez et al. 2010). In vision, it has been
suggested that saccades or micro-saccades play a similar role (VanRullen et al. 2005;
Masquelier 2012; Martinez-Conde et al. 2013). To our knowledge, however,
any direct evidence for latency coding with respect to (micro) saccade landing times
is lacking.

Finally, it should be noted that if the oscillatory drive is not phase-locked to the
stimulus, then the spikes are not stimulus-locked either. So using the stimulus onset
as a reference-time may fail to reveal evidence for H (Masquelier 2013).

A possible variant: binary coding

In some cases spikes lock to an LFP oscillation, yet the preferred phases do not vary
with the stimulus (Jacobs et al. 2007; Ray et al. 2008), which rules out PoFC.
However, it is possible that certain neurons remain silent during certain cycles,
indicating weak individual input. In principle then, some information about the
stimulus should be inferable just by looking at the set of neurons that fire at least
one spike during a cycle (ignoring their phases). This is referred to as binary
coding. To our knowledge, however, direct evidence for this in oscillatory
regimes is inexistent, although the scheme is theoretically appealing (Shamir et al.
2009). It is worth mentioning that binary coding cannot be evidenced using
“spike-centered” measures (e.g. spike-triggered average, spike-field coherence). It
can only be evidenced using a LFP-triggered window (e.g. 10 ms of a peak), a
stimulus-triggered window in case of stimulus-locked oscillations, or, when
simultaneously recording multiple neurons, a population-triggered window (e.g.
around a population activity peak as in ref. (Panzeri and Diamond 2010)).

STDP-based decoding

If we now admit that H is true, how could the information in the relative spike times
be extracted by downstream neurons? That is, how could those downstream
neurons selectively respond to certain stimuli, or to certain features of stimuli? And
how could they learn to do so? It turns out that all that is needed is STDP.

Whenever the slowly changing stimulation corresponds to a particular spatial
pattern (“‘the target’’), the oscillations generate similar spatiotemporal spike volleys
(Masquelier et al. 2009b). So when the target appears frequently and/or stays for a
long time, the corresponding spike volley is repeated many times (oversampling),
allowing the downstream neurons equipped with STDP to become selective to such
a repeating spike volley, thanks to feedforward coincidence detection, in an
unsupervised manner (Masquelier et al. 2008; Masquelier et al. 2009a; Gilson et al.
2011). Importantly, a teaching signal is not necessary, although such a signal,
if available, could certainly facilitate the STDP-based learning (Legenstein et al.
2005; Legenstein and Maass 2006; Franosch et al. 2013), and so could a simple
reward signal (Izhikevich 2007; Legenstein et al. 2008; Pawlak et al. 2010;
Cassenaer and Laurent 2012).

To summarize, the oscillations could be a way to ‘“‘repeat’ a stimulus several
times, even if it only appears once, thereby accelerating its STDP-based memory
encoding. Consistent with this idea is a growing body of experimentalevidence
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in animals and humans that demonstrates that successful long-term memorization
correlates with increased oscillatory activity across a broad range of frequencies
(from theta to gamma), and in both the sensory and associative areas (Jensen et al.
2007; Klimesch et al. 2008; Tallon-Baudry 2009; Benchenane et al. 2011).
Interestingly, and also in line with our proposal, beyond the mere oscillation power,
what appears to be a prerequisite for successful memory formation is that single
units must be phase-locked to the oscillation (Rutishauser et al. 2010).

Finally, it is worth mentioning that STDP-based decoding is only a possibility.
To discriminate the oscillation-generated spike volleys, other biologically plausible
learning mechanisms could be used, especially when a teaching signal is available
(Gutig and Sompolinsky 2006; Ponulak and Kasinski 2010; Florian 2012;
Yu and Ferster 2013). Yet, to our opinion, these mechanisms are not as well
established as STDP. Furthermore, the fact that STDP-based decoding can work
without supervision is appealing. Lastly, STDP has another desirable effect in
oscillatory regimes: it stabilizes the firing phases (Cassenaer and Laurent 2007),
thereby enabling robust PoFC.

Communication through coherence

Thus far, we have only considered one ‘““pool” of neurons that all receive a common
oscillatory drive. Let us now consider two pools, A and B, each oscillating at the
same frequency. A projects on B, but A’s output spikes significantly influence B
neurons if, and only if, they arrive during a critical period of excitability. Thus,
by shifting the phase between the pools, one can virtually activate or deactivate the
communication link between the pools. In other words, rhythmic synchronization
allows the flexible routing of information between neuron pools. This is known as
the “‘communication through coherence” (CTC) hypothesis (Fries 2005). It is still
somewhat speculative today, but data at least consistent with the proposal has
been accumulating (Womelsdorf et al. 2007; Colgin et al. 2009; Bosman et al. 2012;
Koralek et al. 2013).

CTC and our hypothesis H are complementary: CTC suggests a way to
temporally activate a directed communication link between two pools A->B. Once
this is achieved, H explains how information could be transmitted in the relative
spike times. Additionally, B neurons could extract this information thanks to STDP,
which would shape the A->B synapses accordingly. Let us now imagine that the
A->B link is temporally deactivated. A fundamental issue is the extent to which the
A->B synapses would be altered by STDP during the deactivation period, possibly
leading to catastrophic forgetting. More research is needed to address this issue.

Methods

Below are the details of the numerical simulations of Figure 1. We have used
Leaky Integrate-and-Fire (LIF) neurons, of which the membrane potential I obeys
the following Langevin equation:

Tm%: =V +1(t) + ovV21,¢
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Table 1. Numerical parameters.

Common

Mean input m 1.0 (arbitrary units)
o 0.02 (a. u.)
T 20ms
Bandpass filter Butterworth (order: 10)
Scenario A

Input frequencies 2-8Hz
Standard deviation of I(z) 0.1 (a. u.)
Threshold 1.1 (a. u.)
Scenario B

Input frequencies 2-8hz
Standard deviation of I(z) 0.1 (a. u.)
Threshold 0.6 (a. u.)
Scenario C

Input frequencies 0.25-1Hz
Standard deviation of I(z) 0.1 (a. u.)
Threshold 1.1 (a. u.)
Scenario D, E, F

Slow input frequencies 0.25-1Hz
Slow input standard deviation 0.1 (a. u.)
Fast drive frequencies 2-8Hz
Fast drive standard deviation 0.3 (a. u.)
Threshold 1.2 (a. u.)

Where 7,, is the membrane time constant, I(z) the input, {(z) a Gaussian white noise
(with (£(z)) = 0 and (£(2)¢(s)) = 6(z — 5)), and o the resulting standard deviation
of the membrane potential. Whenever IV reaches the threshold, it is instantly reset
to 0, and the integration starts over (for simplicity’s sake we have ignored the
refractory period).

All the numerical parameters are gathered in Table 1.

Conclusion

In many cases the world around us evolves in timescales in the order of a second or
more. It follows that to optimally average-out noise, the brain should accumulate
evidence over such long timescales before coming to a decision. This is possible by
using a neural network with strong recurrent connectivity, and slow NMDA
currents (see (Masquelier et al. 2011) and references therein). In this article, we
have suggested that in a number of cases an alternative strategy is used. Oscillations
cut the input into discrete oversampling ‘“‘snapshots”, the duration of which is
compatible with feedforward neuronal integration and readout. This scheme,
although being more sensitive to noise, has two main advantages: the first one is
higher reactivity (classic speed-accuracy tradeoff); and the second one is that, due to
the oversampling, the same stimulus tends to get ‘“‘repeated’” many times over,
thereby facilitating its STDP-based long-term memory encoding.
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