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Abstract— Chronically implanted neural interfaces are 

aiming to create an intimate and long-term contact with neural 

cells. This would potentially allow the development of 

neurocontrolled artificial devices. However the precise nature 

of the compound signal recorded and the interaction between 

the neural population and the electrode are still poorly 

understood. Consequently there is limited knowledge available 

on the optimal strategy for the design of peripheral electrodes 

in order to achieve high information harvest while insuring 

long-term reliability of the device.  

In this paper, we introduce a novel integrated hybrid Finite 

Elements/Biophysical model for recording, based on anatomical 

data of the human median nerve. Using this model, we 

simulated the signal recorded intrafascicularly with implanted 

Transversal Intraneural Multichannel Electrode (TIME). The 

preliminary results help in understanding the properties of 

recorded signals and suggest that a substantial portion of the 

spikes detected with electrodes implanted in the peripheral 

nervous system might actually be multi-unit events formed by 

the superposition of several fibers activity. 

I. INTRODUCTION 

Neuro-controlled prosthetic devices would enable for 
effortless, intuitive, and close-to-natural control by 
neurologically impaired users [1]. However, in order to 
achieve such an ambitious goal, the sensing device 
(implanted electrode), should be able to record selectively 
and in a stable manner the activity of a limited population of 
neural cells. For example, in the case of interfacing with the 
peripheral nervous system, intra-fascicular electrodes should 
be able to record the subsets of the fascicular population 
correlated to the user’s fine motor intention (e.g. single finger 
flexion), while displaying a functioning life comparable to 
the user’s one [2]. Several efforts have been performed in 
order to achieve that goal [3, 4]. However in the first case the 
signals were unstable, while in the last, the nature of the 
signals was uncertain. Therefore, there is a scientific and 
technological need to understand the nature of the complex 
interplay between ionic currents produced by axons and 
consequent recording of the electrical field by means of metal 
electrodes. To do so, we constructed a detailed finite 
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elements model (FEM) of the human median nerve and 
combined it with a realistic implemented axons population 
whose activity was used to generate the electrical field 
recorded by an implanted electrode. Our hypothesis is that 
this will allow us to better understand the nature of the 
recorded signal and the population involved in its generation.  

II. MATERIALS AND METHODS 

A. General Model Architecture 

The present model aims at recreating the electrical 
activity recorded via a given invasive electrode and generated 
by a chosen peripheral nerve fibers population. The simulator 
was constructed as a group of subsystems each focusing on a 
different physical aspect of the process. The nerve population 
is decomposed in a series of sources created via a biophysical 
model. The effect of each source on the electrical field of the 
nerve is then computed independently through a finite 
element model. The population signal is finally assembled at 
the electrode and post processed to emulate the 
transformation undergone by experimental recordings. 

B. Neural Population 

The nerve was populated with a series of independent 
myelinated fibers whose activity can be individually 
controlled. Each cell was modeled using a double cable 
biophysical model specially tuned for mammalian peripheral 
nerve and implemented in NEURON [5]. The electrical 
properties of such cells strongly depend on their diameter. 
Our population followed the diameter distribution reported 
experimentally [6]. As a first estimate, we limited the present 
simulation to the discrete set of diameters proposed in the 
original model [5] and already validated. 

For each fiber we recorded the current crossing the cell 
membrane at the 4 nodes of Ranvier closest to the electrode. 
The electric field generated decreasing rapidly in space, those 
were considered as the most significant contributors. These 
currents were passed as input parameter to the FEM. 

C. 3D Nerve Model 

The complexity of the 3D shape and electrical structure of 
a nerve and electrode play a primordial role on the properties 
of recorded signals [7]. To fully take both aspects into 
consideration, we developed a FEM based on the anatomical 
structure of a human median nerve. The shape of the nerve 
and its fascicles were extracted from histological pictures [8] 
with the use of ImageJ and then extruded in an 80mm long 
segment (optimal length found for convergence of the FEM 
solution). The nerve was implanted with a virtual Transversal 
Intraneural Multichannel Electrode (TIME) built in 
polyimide and platinum following the dimension described in 
[9]. This whole geometry (Fig. 1) was built, meshed and 
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TABLE I.  ELECTRICAL PROPERTIES OF MATERIALS USED  
IN THE SIMULATION 

Material Conductivity: σ (S/m) 

Epineurium 0.0826 

Endoneurium (transversal) 0.0826 

Endoneurium (longitudinal)  0.571 

Perineurium 0.0021 

Polyimide 6.67e-14 

Saline 2 

 

 

 
Figure 1.  Detail of geometry used for the simulation: the fascicle 

containing the modeled fibers can be seen inside the nerve through 

transparence, implanted electrode in red. (Scale in meters) 

solved in COMSOL Multiphysics 4.3b. All electrically 
relevant materials of the model were represented as different 
compartment with individual properties based on literature 
[10] (Table 1). 

Each source defined from the neural population was 
represented by a point current source in the FEM and solved 
separately for extracellular distribution of electric potential 
Ve. The frequency range involved in our simulated signal 
being sufficiently low [11], we followed a quasi-static 
approximation of Maxwell’s equation and the 
electromagnetic problem was solved with the Laplace 
Equation:  

 ∇.σ∇Ve=0 

With Dirichlet boundary conditions set to zero at infinity 
(emulated by a large cylinder of saline solution of radius 
60mm x 80mm high). 

To simplify the mesh and save computing time, the final 
model (Fig. 1) focused on only one fascicle. This was 
deemed acceptable as the potential generated by a single 
nodal source decrease rapidly in space and have very limited 
effect outside of their fascicle (Fig. 2). 

The quasi-static approximation meant we only had to 
solve the effect of each spatial source for a single value of its 
membrane current. Thanks to the implied linear scaling of the 
potential generated, the time dependent signal could then be 
reconstructed at the electrode surface. 

D. Electrode Model 

Single source contribution was calculated by averaging 
the spike shape over the surface of the electrode active sites 
(60μm diameter circular shape plated with a 300nm thick 
platinum layer [9]). These single spike shapes were then 
assembled per fiber to recreate each spike train according to 
the cell activity. The whole population signal was finally 
constructed by summing every independent spike train. 

For more accuracy, we also modeled the interface 
between the electrode and the extracellular medium using the 
equivalent filtering circuit proposed in [12]. 

E. Noise Model 

The background noise present in neural recordings is 
typically due distant cells activity. In this model, it arises 

 
Figure 2.  Representation of the biophysics model: the current crossing the cell membrane at the central node of the double cable model is used as an input 

by the FEM to compute the extracellular distribution of electric potential (color bar: normalized log scale). 

 

 



  

from the overall population. In order to take into account 
smaller sources (thermal noise…) we also added a Gaussian 
noise with zero mean and a standard deviation of 1μV [13]. 

F. Experimental Filtering 

The goal of this model is to help study the properties of 
recorded data. To be exploitable, experimental data typically 
require a form of preprocessing which might introduce 
distortion of the original signal. We recreated this by filtering 
our noisy signal with the same filter as currently used by our 
team experimenters on their experimental data (namely band 
pass Butterworth 3rd order filter with cutoff frequencies set at 
500Hz and 5kHz). 

G. Simulating the neural activity 

We focused our analysis on a single fascicle. As a trade-
off between the realistic number of approximately 2000 
fibers which would populate such volume in a human median 
nerve and the computational time, we modeled 777 fibers. 
The final signal sampling rate was set at 200kHz to preserve 
the temporal detail of the spike shapes. The spike train of 
each single-unit followed a Poisson process, with a mean 
firing rate of 5Hz. Considering the diameters of the cells 
involved, such population could be assimilated to a group of 
slow adapting type I fibers innervating a single finger and 
responding at their peak sensitivity during the holding stage 
of a grasping task (static force) [14] (e.g. monitored by a 
hypothetical closed loop FES system to modulate grip force). 

H. Spike Detection 

As typically used for experimental data, spike detection 
was performed using an amplitude threshold set using the 
following expression: 

 Thr = mean(x) − 4std(x) 

Where x is the simulated signal and std(x) its standard 
deviation as estimated by the std() function in Matlab. 

III. RESULTS 

The processing time to generate each fiber activity was 
around 45min on an Intel Core i7 PC with a clock frequency 
of 3.4GHz.  

The detected spike displayed shape similar to those 
observed in extracellular recordings. An analysis of their 
origin, showed that only 28% of them were created by the 
activity of a single fiber (Fig. 3a). The rest of the event 
detected actually corresponded to multi-unit spike. Such 
events were formed by the superposition of several action 
potentials originating from different fibers firing closely in 
time. As displayed in the example of (Fig. 3b), the event 
detected at the electrode (red dot line) is actually formed by 
the combination of 5 spikes fired by 5 independent fibers 
(thin violet lines). Each of these unitary action potentials is 
necessary for the multi-unit event to reach the detection 
threshold and becomes completely unidentifiable once mixed 
with the rest of the population. 

The detected single-unit spikes originated from fibers 
close to the electrode active site. In general, the fibers 
contributing the most to the recording’s amplitude were the 
one closest to the active site (Fig. 4a). This can be explained 
by the fact that, due to the nerve electrical and geometric  

 
Figure 3.  a) Percentage of events generated by the synchronous activity of 

the given number of fibers. b) Decomposition of a multi-unit spike into each 

separated fibers contributing and the remaining “silent” population. 

properties, the electric field generated by the nodal source 
decreases rapidly in space. For this reason, and since the 
nodal current amplitude is more important for bigger fibers, 
we were expecting them to help more frequently a multi-unit 
event to reach the detection threshold. We were however 
surprised to observe that there did not seem to be any 
significant preference in the diameter of the fibers 
contributing (Fig. 4b). The portion of the population 
contributing to detected spikes is also larger than we were 
expecting in respect of the observed spatial dilution of 
electric field. Necessary contribution of faraway cells to 
reach detection threshold imply that multi-unit events might 
carry information about the synchrony of the full population 
rather than be restricted to local cells. 

IV. DISCUSSION AND CONCLUSION 

In this paper, we introduce a novel integrated hybrid Finite 
Elements/Biophysical model to simulate invasive recording. 

 



  

 
Figure 4.  a) Effect of source-to-electrode distance on recording amplitude 

(each circle indicate the position of a source, the color indicate the 

normalized amplitude of a spike from that source as recorded by an 

electrode centered at (0, 0)). b) Ratio of each neural population (as defined 
by fiber diameter) contributing to at least one detected spike. 

With this simulation, we observed that for a mean population 
firing frequency of 5Hz, most of the detectable spikes were 
actually created by the mixed activity of multiple 
independent cells. It is not uncommon for fibers conveying 
haptic information to fire at frequency largely superior to the 
one fixed in our simulation [14]. It is also probable that a real 
population, encoding different subpart of a single haptic 
object, would display more synchronicity than our model. 
Therefore, detecting only a so small proportion of single unit 
spikes in this modeled favorable situation tend to indicate that 
in many experimental setup, it might be almost impossible to 
detect single unit spike. 

We also found evidence suggesting that, contrary to 
electrical stimulation of nerve, diameter of the fibers may not 
play a key role in their detection. Furthermore, even if fibers 
really close to the electrode might be detected as single-cell 
spike, they are also the most subject to be physically 
damaged by the insertion of the electrode and therefore most 

event detected with electrode implanted in the peripheral 
nervous system might actually come from the synchronous 
firing of fibers spread in the whole fascicle. 

Regarding the limitations of the present model, further 
simulation with more varied populations are in process but 
have been slowed by the amount of computing time required. 
We also need to perform very robust experimental validation 
[15] of the findings. 

Overall, this new model can be used to develop and test 
new electrodes and bring precious information on the 
technical nature of recorded signal. This will help in the 
design of more efficient and robust devices suitable for 
prolonged implantation which would finally permit a transfer 
of the neuroprostheses technology toward the patients in 
need. 
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