I. P. Gurov and D. V. Sheynihovich

Vol. 17, No. 1/January 2000/J. Opt. Soc. Am. A 21

Interferometric data analysis based on Markov
nonlinear filtering methodology

Igor P. Gurov and Denis V. Sheynihovich

Saint Petersburg Institute of Fine Mechanics and Optics (Technical University), 14 Sablinskaya Street,
Saint Petersburg 197101, Russia

Received March 15, 1999; revised manuscript received July 15, 1999; accepted August 2, 1999

For data processing in conventional phase shifting interferometry, Fourier transform, and least-squares-fitting
techniques, a whole interferometric data series is required. We propose a new interferometric data processing

methodology based on a recurrent nonlinear procedure.

The signal value is predicted from the previous step

to the next step, and the prediction error is used for nonlinear correction of an a priori estimate of the param-
eters phase, visibility, or frequency of interference fringes. Such a recurrent procedure is correct on the con-
dition that the noise component be a Markov stochastic process realization. The accuracy and stability of the
recurrent Markov nonlinear filtering algorithm were verified by computer simulations. It was discovered that
the main advantages of the proposed methodology are dynamic data processing, phase error minimization, and
high noise immunity against the influence of non-Gaussian noise correlated with the signal and the automatic
solution of the phase unwrapping problem. © 2000 Optical Society of America [S0740-3232(99)01012-1]

OCIS codes: 050.5080, 070.6020, 030.4280, 100.5070.

1. INTRODUCTION

The phase restoration of interference fringes is widely
used in wave-front analysis,™® dimensional metrology
and testing,>4~" and surface characterization.>® Inter-
ferometric data are often distorted by the influence of il-
lumination and background nonuniformity, speckle noise,
and phase fluctuations. Interference patterns can be
represented by the interferometric signal model

S(Xv Y, e) = Sb(x! y) + Se(xr y)COS‘D(Xy Y, eq&)
+ Na(x,y), @)

where S, is the background component, S, is the enve-
lope function, ® = E + ¢(X,y), E is the fractional part of
the phase cycle 27 at the point (x = 0,y = 0), ¢(X,y) is
the phase deviation with its own vector of parameters
O,, N, is the additive noise, and © = (S,,S., ®,6,")"
is the vector of parameters. The parameter O, defines
the form of the phase deviation function ¢(x,y) in the
parametric form. For example, in the case of the linear
function  ¢(x,y) = Ux + Uy, the vector O,
= (Uy, Uy)T, where U, , U, are the circular frequencies
of interference fringes along the x and y axes, respec-
tively. In general, the parameters U, , U, may depend
on x and y, respectively.

The essence of interferometric data analysis is the so-
lution of the nonlinear inverse problem of the phase func-
tion ®(x,y, O,4) restoration by processing of the signal
S(x,y, ©) under the condition that © contain components
with a priori unknown values.

Conventional methods used to solve this problem may
be classified by the concept of multidimensional (multi-
channel) interferometric signal analysis® that represents
the interferometric data in the form

Sy = S(Xk» Yk Ok,
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where k is the pair (p, q) of numbers, p, q = 0, 1,...; that
is, Xy = pAX, Yy, = Ay, where Ax, Ay are the two-
dimensional-discretization steps of the interference
fringes. The multidimensional interferometric signal

Sk = (Sk?, Sker® s ST 2

represents (N + 1) samples of a single interference pat-
tern, and the multichannel interferometric signal

St = (SGm:» Sim -+ Skm»--» Sikm) " ®)

contains the signal values detected simultaneously in
(K + 1) points of (M + 1) interference patterns with
temporal separation between them.

For processing the signal [Eq. (2)], the Fourier trans-
form method*®7 is often used, which is mathematically
equivalent to the convolution method.*®!! To reduce the
systematic error of spectral analysis and restore the ana-
lytical signal argument!® with high accuracy, this method
requires that the interference pattern contain a large,
preferably integer number of fringes. The method is per-
formed by increasing the tilt between the reference and
the test wave fronts.*’ The phase retrieval accuracy de-
pends on the extent of the interference pattern and the
form of the edge of the interference pattern area.®”’

The phase shifting interferometry (PSI) technique pro-
posed by Bruning et al.! is more accurate. The phase
stepping process may be represented by a vector signal
[Eq. (3)], where m is the phase step number, m
=0,1.,M, M=2

The PSI method is widely used in optical metrology and
testing®'? and in x-ray interferometry.*® Simple data
processing algorithms are usually realized, but it is diffi-
cult to optimize such methodology for the increasing ac-
curacy and noise immunity of the totality of the data be-
cause of the nonlinear nature of the data transform.
Some effective techniques and data correction algorithms
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for error reduction were proposed in recent years.'*1°
The basic approach was usually selected as a least-
squares fitting of the interferometric data series and
phase estimation under the condition that the least-
squares-fitting error be minimized.31518

It is well known that such an approach gives effective
and unbiased estimates when the data noise is Gaussian,
additive, and uncorrelated.?® The real interferometric
data series are distorted by phase fluctuations,?* phase
shifting nonlinearity,'®'%22 and signal-dependent noise.*®
In these cases the least-squares-fitting approach is gener-
ally not optimal and can give incorrect phase estimation
results. In addition, an important problem is the noise-
immune phase unwrapping?® at intervals greater than 2.

The phase and intensity of interference fringes depend
on each other nonlinearly. Therefore it is reasonable to
minimize the phase error directly by nonlinear filtering of
an interferometric data series [Eq. (2) or Eq. (3)]. We
propose a nonlinear filtering method based on the theory
of the Markov stochastic process for accurate phase esti-
mation of a distorted interferometric data series. The
Markov nonlinear filtering (MNLF) method is realized as
a recurrence procedure and can be used for dynamic sig-
nal processing. The signal value is predicted from the
previous step to the next step, and the prediction error is
used for nonlinear step-by-step correction of an a priori
estimate of the parameters phase, visibility, or frequency
of interference fringes. It will be shown that the MNLF
method ensures high noise immunity and accuracy
against the influence of background nonuniformity, phase
fluctuations, and correlated Gaussian noise.

2. THEORY

The Markov theory of optimal nonlinear filtering®® was
developed for a wide class of data processing problems for
which an optimal filtering problem could not be solved
earlier. The advantage of the recurrence MNLF method-
ology is that it is free from essential restrictions that are
inherent to other methods, such as Kalman—Bucy linear
filtering.?* The requirement that the stochastic compo-
nent has to be the Markov process realization is not very
strict, since a real stochastic process can be approximated
by the Markov process with any degree of accuracy.?®

Let us consider a component of a multichannel inter-
ferometric signal [Eq. (3)] in the form (upper indices are
omitted to simplify the notation)

Sk = Sbk + Sek COS(q)k + Nphk) + Nak' (4)

where &, = EE,:OUk,Ax + E; Uy, is the circular fre-
quency; E is the initial phase at point k = 0; x, is the ar-
gument; S, = Sp(Xk) are a priori unknown background
component samples; S, = S¢(xi) are a priori unknown
envelope function samples of interference fringes; Na,
= Na,(xy) are the additive white-noise sample series with
characteristics M[N, ] = 0, M[NyNyn] = 0,°6(n); o,
is the noise variance; M[.] is the average over the en-
semble of frames; §(n) is the delta function; and Nph, is
the phase fluctuation represented by correlated noise.
Usually correlated noise can be described by the first-
order stochastic differential equation
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dNpn(x)

ix = —aNpp(X) + aw(x), (5)
where w(x) is white-Gaussian-noise realization (the
“forming” noise), M[w(x)] =0, M[w(xX)w(x + x)]
= Npd(x), and « is a constant. It is well known? that
the spectral density of the process described by Eq. (5) is
defined in the form

CYZNO

G S S
N 2(a? + u?)

(u) = (6)

ph

The normalized value spectral density Eq. (6) is illus-
trated in Fig. 1. The spectrum width on level 0.5 is de-
fined by the value of . The lower « is, the faster the
spectral density of process N,(x) decreases; i.e., the
more the noise is correlated.

The proof that phase fluctuations described by Eq. (5)
correspond to the Markov process is given by the Doob
theorem.?> Discrete approximation of Eq. (5) has the
form

Nphk = Nphkfl(l - a)AXk + aWy,

where Ax, = X, — Xix_1, Wy is the Gaussian stochastic
series.

Interferometric signal parameters in Eq. (4) may be
taken into account as vector © = (S,, S, U, E)T compo-
nents and can be estimated by processing signal samples
S(Xy)-

For simplicity, let the signal parameters be Sp, = A
= const and Se, = AV exp(—Cy2), where C, = (X4
— Xg)By and V is the visibility at the point x,, = Xg, Xg IS
the position of the envelope maximum, and B, is the
width envelope parameter. The model of the form of Eq.
(4) can be rewritten in the form S, = Sy (Xy, Oy), where

0 =[d, U, C, B, V,]". Theinterferometric data series
can be presented in the form

GN ph (u)

N ph

max

1.0

0.5

0 L
o

Fig. 1. Spectral density of the stochastic process described by
Eq. (6).
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B = A[L + Vexp(—C?)cos(®y + Npp )] + N (7)

The problem is to estimate the vector © at the point X as
the result of processing the data measured by point x,_,
in the Eq. (7) series.

To solve the problem, let us include the phase fluctua-
tion component N, in the vector of parameters O,
namely,

©=[d, U, C, B, V, Nyl" (8)

and consider the data as the function S = S, (X, O,).
So the analyzed model is

Bk = Sk(Xk, O) + Ng,.

Let us first assume that the components of the vector ©
change continuously. Using this assumption and the
simplifications described above, we can consider the prob-
lem as the solution of the vector stochastic differential
equation

do
i = F(x, ©) + G(x, O)N(x), M[N(x)] = 0,
MINOCON(X + x)]1 = No?8(x), ©)
where
F(x,0) =[U,0,B,0,0,—aNy,],
G(x,0) = G is a (6 X 6) matrix,
G;=0 i,j=1,..,5 Gg=a  (10)

As mentioned above, the Doob theorem confirms that the
process described with Eq. (9) is the Markov stochastic
diffusion process.

Using this representation of the vector of parameters
and taking into account all simplifications described
above, we can present an estimation algorithm (see Ap-
pendix A) in the following form:

O = Ot + RETIDEk — S(x¢, OF 1) — B2]L, Y,
(11a)

R, (11b)

RETH(1 — DDRETILCY),

Structure of the system for optimal nonlinear processing of phase shifting interferometric data.

where R is the covariance matrix of parameters, D is the
sensitivity vector that includes the partial derivatives of
the signal model [Eq. (4)] with respect to the components
of the vector of parameters, E is the series of measured
scalar values of the interferometric signal samples [Eq.
M1, S(x, 9{2’1) is the series of predicted values of the
signal samples, B,/2 is the correction coefficient of the
Gaussian approximation of the second-order of the prob-
ability density function® (see Appendix A), L, ! is the dy-
namic filter amplification factor L, = ¢,% + D, 'R Dy
+ Bj/2, B; is defined by derivatives of the signal with re-
spect to the components of the vector of parameters of the
second order (see Appendix A), and I is the unit matrix.
The upper index (k — 1) denotes the prediction from the
previous step. The method for obtaining formulas (11) is
outlined in Appendix A.

Now we can present the structure of the processing sys-
tem synthesized with the concept of a recurrence MNLF
methodology.?® A schematic diagram of the system is
given in Fig. 2. Its structure is clearly defined by Egs.
(11).

3. COMPUTER SIMULATIONS

To compare the MNLF algorithm with the well-known
conventional PSI method, we assume that S, = S, Sp,
= S,, S¢, S, are a priori unknown constants and take
the vector of parameters © = [, U, V, Nph]T, where
U = 27/P, P is the unknown fixed number of samples on
the 27 phase cycle, and V = S./S,,. Then the vector of
derivatives in Eqgs. (11) takes the form

J T
D, ={|——
« 90K 1

—AVE ESin[@F T + (Npp)i ]

0

0
—AVE T sin[@F T + (Npp)E ]
The coefficients B, and B4 for this case are calculated in

Appendix A under the assumptions described above.

The accuracy of optimal phase estimation by the MNLF
method was verified?’” by processing the computer-
simulated data series defined by Eqgs. (11). We assumed

S(xe, O

(12)
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Fig. 3. Phase recovered by the MNLF algorithm [curve (a)], and
the PSI method [curve (b)].

that speckle noise affects the data series both as additive
noise N, and phase fluctuation N, . It was discovered
that under conditions of speckle noise the MNLF method
provides stable phase recovery and the problem of phase
unwrapping is solved automatically, because at each step
the value of the unwrapped phase function ® [Eq. (4)] is
calculated by the recurrent procedure considered above.
To illustrate this property, we compared results of the
MNLF algorithm and the conventional PSI method. The
results are shown in Fig. 3.

The phase data restored by the MNLF algorithm are
presented by curve (a). The data series Sy processed by a
four-step PSI method with phase shifts 7/2 is illustrated
by curve (b). In this graph one can clearly see the 27 un-
stableness effect that is inherent in the PSI method.
This disadvantage is eliminated by the MNLF algorithm.

The results of accurate verification of phase recovery
under the influence of phase fluctuation and additive
noise are illustrated in Figs. 4 and 5. In Fig. 4 an ex-
ample of phase estimation for selected phase values of
& = 8.64rad is presented. As is seen in Fig. 4, the
peak—valley phase error does not exceed 0.15 rad (in the
case presented in Fig. 4 this error is equal to 0.065 rad).
The rms error is near 0.011 rad.

Figure 5 shows the experimental curve for the histo-
gram of phase errors in Fig. 4 in the range of PV error, in
percent. A PV error range of 100% means the maximum
span of the PV phase error of phase estimation in Fig. 4.
We used the Monte Carlo method and estimated errors by
generation of the 1024 data series. By using Pirson cri-
teria we found out that the probability density of this es-
timation is similar to that of Gaussian noise; this similar-
ity confirms the correctness of nonlinear filtering
procedure.

Let us consider the results of processing a signal with a
more complex model [Eq. (7)] with variable envelope and
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nonuniform background.?® An example of the signal re-
alization is presented in Fig. 6(a). Note that in the signal
model [Eq. (7)] nonuniform background is not taken into
account, which leads to phase errors [Fig. 6(c)]. How-
ever, the value of the phase error is small, and the algo-
rithm is not destabilized.

Since the influence of phase fluctuations on the signal
value depends on the signal phase, it is similar to noise
correlated with the signal. Phase filtering results pre-
sented in Figs. 3 and 6 show the noise immunity of the
MNLF algorithm against correlated noise.

Estimation of @, rad

8.68

8.66 -

8.64 -

8.62 =i ©

8.60

i ! ] § i
200 400 600 800 1000

© wsmmmmesinebne

Experiment number
Fig. 4. Typical phase error of the MNLF algorithm.

Number of experiments in 1% PV-interval

40.00 T

30.00 —

20.00 —

10.00 —|
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0 20 40 60 80 100

PV error range, %

Fig. 5. Histogram of the phase error (the estimated phase error
is presented in Fig. 4).
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Fig. 6. Reconstruction of the phase function in the case of vari-

able envelope and nonuniform background: (a) intensity distri-
bution, (b) phase function, and (c) phase error.

4. CONCLUSIONS

The MNLF algorithm gives phase estimates [Egs. (11)] by
predicting the value of the vector of parameters for the
next step by using all the information available from the
current step. The last estimation is the most accurate.
The necessary number of steps L can be taken to reduce
rms error as /L.

The main advantages of the Markov nonlinear filtering
method are the following. It gives the optimal estimates
of signal parameters that depend nonlinearly on the sig-
nal meaning. The algorithm is optimized for minimizing
phase errors under the influence of phase fluctuations
and of noise correlated with the signal. Since the algo-
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rithm of Markov filtering is written not in integral form
but in recurrent form, it reduces a number of calculations
and the amount of memory required. It also increases
the accuracy of the estimation of noisy data and allows
one to work in a real-time scale of data receiving. The
phase unwrapping problem is solved automatically, and
the interval of the phase restoration is not restricted to 27
rad as in conventional PSI methods.

The considered version of the filtering algorithm was
applied to the PSI method (multichannel data), but it also
can be used for determination of single two-dimensional-
interference-pattern phase characteristics (multidimen-
sional observed data) in a wide range of change of inten-
sity distribution parameters.?®?”  With this method,
phase fluctuations and correlated additive noise influence
is effectively decreased according to a strict optimum cri-
terion, which is an essential advantage of the presented
method in comparison with conventional estimation
methods of interference-pattern phase characteristics.

The accuracy of the MNLF can be increased by itera-
tion processing of the data series.

APPENDIX A

Let us assume that components of the vector © are de-
fined by Markov stochastic process properties. The prob-
ability density function p(x, ©) of the Markov process ©
complies with the Stratonovich stochastic equation,®

ap(x, O)

2
Pram T{p(x, 0)} + N—Op(x,e)

X {&(x)s(X, ©) — s(x, O)Mps
X [s(x, ©)] = &(X)Mp4[s(x, O)]
+ (Mps[s(x, ©)1)%, (A1)

where My -1 = 2. [Z.(-)p(x, ©)II]_,d6; is the a pos-
teriori expected value and T{.} is a Fokker—Planck opera-
tor that has the form

Jd 1 52
T{p(x,0)} = —%[F(X, O)p(x, 0)] + 3 767
X [N(x)p(x, ©)].

Generally the solution of Eq. (Al) is quite complex. An
approximation of the probability density function and a
decomposition of nonlinear functions®® are usually used.
The probability density function is approximated by func-
tions that depend on a limited number of arguments.
The frequent assumption is about the normality of the
probability density function. The basis for this assump-
tion is that when the signal-to-noise ratio and the obser-
vation time period are large enough, an a posteriori dis-
tribution approximates the normal distribution. This
kind of approximation is called the Gaussian
approximation.?®> Below we will consider the Gaussian
approximation of the second order.
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In the general case, when the multichannel interfero-
metric signal S, [EqQ. (3)] is considered, these approxima-
tions give the discrete estimation of the vector O at the
point X :

T
O, = ek*l + Rk*l ST X ,ek*l
K K K P (X, O )
1
X L‘zl Ok - S(Xk, 9{271) - EBZ ) (A2)
T
R, = Rk*l _ Rk*l ST X ’ekfl
k K K ﬂetil ( k k )
a \T ’
1 k-1 k-1
X Lk (Kt_l) ]ST(XKI ek ) Rk ’ (AB)

where O 1, RE™! are the values of the vector of param-
eters and the covariance matrix, respectively, in step X,
which is predicted from the step x4,

T P T
B, =1 |R? S(xy, O,
2 k {?et_l) (ﬂet_l) ] ( k k )
P T T
_ k-1
o=t g foror

-
1

X RET! ST(x, O + —Bs,

k (&9t1>} (Xk, O ) 5 Bs
(A5)

é ?si(x, ©) #sj(x,©)

B;lii = ryr A6
[ 3]Ij oy ﬂepé’eq priql 06r¢98| ( )

Expressions in curly brackets in Egs. (A2)—(A5) are the
operators that should be applied to the next function, and
N, is the intensity matrix of the vector additive noise,
[Nalij = 02 i =], [Na];j =0, i #j. Components of
the vector © and the covariance matrix R in Eq. (A6) are
the values predicted from the previous step, and upper in-
dices are omitted to simplify the notation.

The prediction of the vector of parameters and the co-
variance matrix in step x,. from step x,_; is carried out by
use of Eqgs. (9) with various methods. For example, the
simplest way to predict the vector of parameters is

O = F(x, 0,_y),

where the argument step Ax is assumed to be equal to 1.

As mentioned above, Eqgs. (A2)—(A3) define the algo-
rithm for estimation of © and R in the general case, when
a vector of interferometric data is processed. In this pa-
per a scalar signal is considered, and S'(xy, et*l)
= S(xx, O Y. With this the B; matrix in Eq. (A6) con-
sists of only one element, B;. The vector of derivatives
according to signal model Egs. (4) and (7) has the follow-
ing form:
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Dy = 7 ' S(xe, OF™)
k 69{2_1 k» Yk

= (A exp[—(CEH?IVE T sin[T + (Npr)k 11, 0,
~ACK M expl —(CETHZHL + V!
X sin[®E ! + (Npp)E 1130, 0,
—Aexp[ —(CEHZIVIT sin[@F ! + (Npp)i D™
(A7)

In this equation, the U, B, V derivatives of the vector
of parameters are considered to be equal to 0, since we as-
sumed for simplicity that their meanings do not change
with increasing k. For B, in the case of a scalar signal
we can use the equation

PS(xy, OF 1)
Bo= X Ty

— (A8)
i, j=1 89i¢98j

where r;; are the components of the covariance matrix
and O; are the components of the vector of parameters.

According to Eqg. (A7) we can reduce this expression to
the form

#S
B, = —=(rj;1 + 2rg+ r
2 (96132( 11 16 T Vep)

S S
+ ———(2r3 + 2rg3) + —rss3. A9
&CD&C( 13 63) 9C2 33 (A9)
The term Bj is reduced in the same way as Eqg. (A8).
Taking into account all the simplifications described
above, the estimation algorithm in Eqgs. (A2)—(A3) is
transformed into the Eq. (11) algorithm.

For a simple case of constant envelope and background
components that we use for computer simulations, coeffi-
cients B, and B3 have the following form:

PR
By, = ——(ryy + 2rq4 + rg),
2 9D OD ( 11 14 44)

%S
9D ID

2
) (rig + 21, + )
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