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Abstract

In this model of the head direction cells in the limbic areas of the rat brain, the intrinsic
dynamics of the system is determined by a continuous attractor network of spiking neurons.
Synaptic excitation is mediated by NMDA and AMPA formal receptors, while inhibition de-
pends on GABA receptors. We focus on the temporal aspects of state transitions of the system
following reorientation of visual cues. The model reproduces the short latencies (80 ms) ob-
served in recordings of the anterodorsal thalamic nucleus. The model makes an experimentally
testable prediction concerning the state update dynamics as a function of the magnitude of the
reorientation angle.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Head direction (HD) cells constitute a likely neural basis for the spatial orientation
capabilities of rats. The response of these limbic neurons is tuned to the animal’s
allocentric heading in the azimuthal plane. A HD cell i discharges selectively only when
the head of the animal is oriented in one speci;c ‘preferred’ direction �i, regardless
of the animal’s ongoing behavior and position [11]. The preferred directions of all HD
cells, � = {�i | ∀i}, are evenly distributed over 360◦, such that the HD system could
work as an allocentric neural compass. When the head of the animal remains oriented
in a given direction �, the subpopulation of HD cells with preferred directions �i � �
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remains active for an inde;nite period of time (demonstrating persistence of the neural
coding). During head turns, the active subpopulation of HD cells provides an ongoing
neural trace of the orientation of the animal �(t), according to the head angular velocity
signal !(t).

HD cells have been observed in a network spanning a variety of structures centered
on the brain’s limbic system, including postsubiculum (PSC), anterodorsal thalamic nu-
cleus (ADN), and lateral mammillary nucleus (LMN) [11]. Inertial self-motion signals
(e.g., vestibular) are likely to converge onto the HD system via subcortical projections
from the dorsal tegmental nucleus (DTN) [2]. DTN receives vestibular inputs from the
medial vestibular nuclei and conveys this information to LMN and ADN. Visual inputs
are likely to enter the HD system via the PSC and the retrosplenial cortex (which also
contains HD cells [11]). The PSC receives aHerents from the visual areas 17 and 18,
whereas the retrosplenial cortex receives inputs from higher associative areas such as
the posterior parietal cortex [11].

Although the HD cell system has properties resembling those of a compass, the allo-
centric coding of HD cells is independent of geomagnetic ;elds. Rather, the preferred
directions are anchored to visual ;xes in the environment: in a neutral setting, rotating
a dominant visual cue by an angle I�, induces a shift in all preferred directions such
that �′ = {�i + I� | ∀i} [11]. Recent electrophysiological studies by Zugaro et al. [13]
have focused on the temporal aspects of the preferred direction updates in ADN fol-
lowing the reorientation of a visual cue. The experimental setup consisted of a black
high-walled cylinder with a large white card attached to the inner wall and serving as
dominant visual cue. ADN cells were ;rst recorded in light conditions. Then, in the
darkness, the cue card was rotated by 90◦. Finally, the light was switched back on and
the time necessary to the HD system to update its directional representation (i.e., to
shift the preferred directions of the HD cells) was measured. The quantitative results
showed rather short update latencies of approximately 80 ± 10 ms.

The interrelation between allothetic (e.g., visual) and idiothetic (e.g., vestibular) cues
for determining the dynamics of the HD cell system is a relevant issue for both exper-
imental and computational neuroscience (e.g., [1,9]). This paper proposes a continuous
attractor network that models the ensemble activity of HD cells as a gaussian-shaped
pro;le encoding the current head direction. The model is based upon spiking neurons,
which allow us to study the dynamics of the fast update transient (≈ 80 ms) exhibited
by rat HD cells. Earlier models (e.g., [12]) predicted update latencies of about 200
–250 ms for the HD representation to be reoriented by a visual cue. These models
employed analog (;ring rate) computational units, which are intrinsically limited for
quantitatively describing the temporal properties of real neural populations.

2. Methods

2.1. Global model architecture

Fig. 1(a) shows the global architecture of the model inspired by the HD circuit
of rats [11]. It includes four neural networks modeling PSC, ADN, LMN, and DTN.
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Fig. 1. (a) The model of the HD circuit (adapted from [11]). Arrows and circles indicate excitatory (NMDA
and AMPA) and inhibitory (GABA) synapses, respectively. An attractor–integrator network is formed by
the interaction between LMN and DTN. (b) Rastergram of the activity of the HD cells in ADN over time
(each dot represents one spike). (c) Mean ;ring rate of ADN cells computed by averaging over It = 2 s.

The dynamics of the entire system is primarily determined by idiothetic signals (e.g.,
vestibular) that enter the circuit via DTN and are integrated over time through the
DTN–LMN interaction. This permits head rotations to be tracked based on the head
angular velocity signal !. Visual stimuli are signaled in the PSC and allow the system
to reorient the directional representation following changes in the visual scene. Ex-
trinsic background noise arrives at all formal neurons simulating external spontaneous
activity. This noise is de;ned by a Poisson distribution. In the model, PSC, ADN, and
LMN networks consist of a population of NE = 1000 excitatory directional units with
evenly distributed preferred directions. The intermodule connectivity (see Fig. 1(a) for
reciprocal projections) is such that, for instance, a HD unit j∈PSC with preferred
direction �j projects to a cell i∈LMN with preferred direction �i according to

wij =W− + (W+ −W−) exp
(

− (�i − �j)2

2�2

)
; (1)

where wij is the connection weight, W− and W+ are, respectively, the minimum and
maximum weight, and � is the width of the gaussian.

In the model, a continuous attractor–integrator network is formed based on the inter-
connections between LMN and DTN [3]. The HD cells within LMN are connected by
recurrent excitatory collaterals such that neurons encoding similar states (i.e., having
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similar preferred directions) are strongly coupled. The weight of the collateral pro-
jection between cells i, j∈LMN is de;ned according to Eq. (1). Global inhibition,
necessary to implement the center-surround attractor scheme, is provided by a pop-
ulation of interneurons �∈DTN. The intrinsic dynamics of the LMN–DTN attractor
network make the system settle down to stable (self-sustained) attractor states, in which
subpopulations of HD cells with similar preferred directions are active while the others
remain silent [3,12].

To integrate non-zero angular velocities (i.e., to shift the stable state over the
continuous attractor state space according to !), two other subpopulations of in-
terneurons �cw ; �ccw ∈DTN are considered [3]. The neuronal responses of the �cw ; �ccw

cells are correlated with both head direction �(t) and angular velocity !(t). An in-
terneuron j∈ �cw with preferred direction �j receives excitatory aHerents from all
HD cells i∈LMN. The weights of these connections are de;ned by Eq. (1) (i.e.,
gaussian-distributed matching projections). The interneuron j∈ �cw sends inhibitory ef-
ferents to all HD cells i∈LMN by means of a gaussian weight distribution centered
at �i =�j −
, with 
=50◦, (i.e., gaussian-distributed leftward oHset projections). Sim-
ilarly, each �ccw interneuron receives gaussian-distributed matching inputs from LMN
and sends gaussian-distributed rightward oHset inhibition to LMN. The activity of �cw

and �ccw formal neurons is linearly modulated by the amplitude of the angular ve-
locity |!| for !¿ 0 and !¡ 0, respectively. Therefore, during clockwise head turns
for instance, �cw cells inhibit the left side of the LMN hill of activity encoding the
current direction � (i.e., introduce an asymmetry within the recurrent coupling between
HD cells [3,12]) and yield a clockwise shift I� proportional to |!|. At any time t,
the direction representation �(t) encoded by the LMN ensemble activity is transmitted
to the other subnetworks of the system, via the LMN–ADN–PSC excitatory pathway
(Fig. 1(a)).

2.2. Neuron and synapse model

The formal description of neurons and synapses of the model is taken from Brunel
and Wang [4]. Both HD cells and interneurons are leaky integrate-and-;re neurons.
Synaptic excitation is mediated by NMDA and AMPA formal receptors, whereas synap-
tic inhibition is mediated by GABA receptors. The rationale behind using two diHerent
excitatory receptors is the following: AMPA synapses are rapidly activated and gen-
erate fast evoked responses of postsynaptic neurons. However, their short time decay
(�decay = 2 ms) does not permit an appropriate stabilization of the network activity. On
the other hand, the larger time course of the NMDA receptors (�decay = 100 ms) is
suitable for the stability issue.

2.3. Population vector coding

A population vector scheme [8] is employed to reconstruct the ongoing ani-
mal’s heading �(t) from the gaussian-shaped ensemble activity pro;le of formal
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HD cells

�(t) = arctan

(∑NE
i sin(�i)
(t − ti)∑NE
i cos(�i)
(t − ti)

)
; (2)

where the function 
(t − ti) is equal to 1 if the neuron i ;red at time t, 0 otherwise.

3. Results

This paper focuses on the eHect of static visual stimulation upon the intrinsic dy-
namics of the HD system. An external excitatory input ṽ is applied to the pool of
HD cells in the PSC, which propagates this information to the LMN–DTN attractor
network (eventually yielding a change of the attractor state) as well as to ADN. We
take ṽ as a gaussian signal with ;xed width �v = 15◦, variable amplitude Av ∈ [0; 1]
(corresponding to the intensity of the visual stimulation), and variable mean �v = �v
(corresponding to the absolute direction of the polarizing cue).

3.1. Emergence and stability of an attractor state

The rastergram of Fig. 1(b) shows the spike activity of the NE ADN cells over time.
A polarizing stimulus ṽ centered at �v = 90◦ and of normalized amplitude Av = 0:2 is
applied during the ;rst 50 ms. This establishes a stable attractor state corresponding
to an ensemble activity pro;le in which the subpopulation of ADN neurons having
preferred directions close to �v discharges tonically, whereas the others exhibit a very
low baseline frequency. Since an attractor state would eventually emerge from random
noise, a stimulus of weak intensity Av is suMcient to polarize the system around �v.
The barycenter of the ensemble ;ring pattern, computed by applying Eq. (2) and av-
eraging over It = 2 s, is about N� = 85◦. After stimulus removal (506 t6 2000 ms)
the self-sustained attractor state persists over time providing a stable directional coding
(the head angular velocity ! is zero). This corresponds to the situation in which the
head of the animal is immobile and oriented in a given direction �v and all electrophys-
iologically recorded HD cells with �i � �v continue to discharge tonically. Fig. 1(c)
shows the mean ;ring rate of formal ADN cells as a function of the head direction �.
The mean peak ;ring rate is about 40 spikes=s and the width of the hill of activity is
about 100◦. These values are consistent with the mean peak ;ring rate and the mean
width of the tuning curves of HD cells in the rat ADN [11].

3.2. Brief update latencies following reorienting visual stimuli

Fig. 2(a) shows the response of the system to a reoriented visual landmark stimulus.
At time t1 = 500 ms, an external stimulus ṽ1 is applied to the system (e.g., moving
from dark to light conditions) with a 90◦ oHset, i.e. �v1 = �v + 90◦. This triggers
a 90◦ update of all preferred directions, which reorients the HD system according
to the directional reference frame anchored to ṽ1. As a consequence, the attractor
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Fig. 2. (a) Raster plot showing the response of the HD system to a 90◦ reorienting visual stimulus applied at
time t1 = 500 ms. All preferred directions are updated and the attractor network settles to a new stable state
abruptly (jump). (b) Response of the HD system to a 40◦ reorienting stimulus applied at time t1 = 500 ms.
The HD cells shift their preferred directions towards the new attractor state progressively.

network settles to a new stable state rapidly. The intensity of the applied stimulus is
Av1 = 1.

Let It∗ be the time necessary for the attractor dynamics to update its state. To
estimate It∗ quantitatively we apply the same technique employed by Zugaro et al.
[13] to measure the update response of HD cells in ADN. For the model, the resulting
update latency is It∗ =40±10 ms. This is consistent with the update latency observed
experimentally (80±10 ms) given that the model does not take into account the trans-
mission delay necessary for the visual signals to reach HD cells in ADN. We are not
aware of any experimental data reporting this retino-thalamic transmission time, how-
ever, Galambos et al. [7] showed that about 20–30 ms are already necessary for the
visual stimulation of the retina to evoke ;eld potentials in the primary visual cortex.

3.3. State transition dynamics: abrupt jump or progressive shift?

Whether rat HD cells respond to visual reorientation by changing their preferred
directions abruptly or in a gradual progressive manner, is an open question [11,13].
The ‘abrupt versus progressive update’ issue is also relevant for the theoretical study of
state transition dynamics in associative memories [6] and in cortical working-memory
models [5].

Fig. 2(a) suggests that an abrupt jump occurs when a 90◦ reorienting visual cue
polarizes the HD system. But it is not clear whether this can be generalized to other
magnitudes of shifts. For a ;xed width of the gaussian-shaped activity pro;le, how
does the magnitude of the reorienting oHset I� inOuence the state transition dynamics
of the system? We run a series of simulations in which the same external stimulus ṽ1
(Av1 =1) is applied to the HD system at time t1 =500 ms. Across trials, the reorienting
oHset I�=�v1 −�v (with �v=90◦) is varied within [0◦; 180◦] by steps of 1◦. Fig. 2(b)
shows an example of the state transition for I� = 40◦. The HD cells respond to the
reorienting event by progressively shifting their preferred directions towards the new
attractor state. To discriminate between state transitions of the type shown in Fig. 2(a)
(jump) and those of the type in Fig. 2(b) (shift), we take the instantaneous standard
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deviation �(t)

�(t) =

(∑NE
i [|�i − �(t)|
(t − ti)]2∑NE

i 
(t − ti)

)1=2

; (3)

of the ensemble HD cell activity around the center of mass �(t) (Eq. (2)). We sample
all �(t) values within the interval t16 t6 t1 + 200 ms and take the mean deviation
Nh relative to the baseline. Let I�∗ be the critical oHset above which the reorienting
visual cue triggers a jump rather than a progressive shift. The function Nh(I�) is ap-
proximately constant for 06I�6I�∗ and quasi-linear after. Our results show that
I�∗ (computed by applying the least-squares error method) is equal to 60 ± 5◦.

4. Discussion

In contrast to earlier works that use rate code formal neurons to model HD cells,
this paper describes a spiking neuron model and focuses on the temporal aspects of
the state transition dynamics following reorienting visual stimulation. First, the model
reproduces the very short update latencies observed experimentally [13]. Second, the
model predicts that the state transition dynamics of the HD system is a function of the
magnitude of the angle I� of the visual reorientation and suggests that a progressive
shift of the preferred directions of HD cells would occur for I�6 60◦, whereas an
abrupt jump would take place for larger oHsets [10].
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