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We present a neurorobotic framework to investigate tactile information processing at the early stages of
the somatosensory pathway. We focus on spatiotemporal coding of first and second order responses to
Braille stimulation, which offers a suitable protocol to investigate the neural bases of fine touch discrim-
ination. First, we model Slow Adaptive type I fingertip mechanoreceptor responses to Braille characters
sensed both statically and dynamically. We employ a network of spiking neurones to transduce analogue
skin deformations into primary spike trains. Then, we model second order neurones in the cuneate
nucleus (CN) of the brainstem to study how mechanoreceptor responses are possibly processed prior
to their transmission to downstream central areas. In the model, the connectivity layout of mechanore-
ceptor-to-cuneate projections produces a sparse CN code. To characterise the reliability of neurotrans-
mission we employ an information theoretical measure accounting for the metrical properties of
spiking signals. Our results show that perfect discrimination of primary and secondary responses to a
set of 26 Braille characters is achieved within 100 and 500 ms of stimulus onset, in static and dynamic
conditions, respectively. Furthermore, clusters of responses to different stimuli are better separable after
the CN processing. This finding holds for both statically and dynamically delivered stimuli. In the pre-
sented system, when sliding the artificial fingertip over a Braille line, a speed of 40 — 50 mm/s is optimal
in terms of rapid and reliable character discrimination. This result is coherent with psychophysical obser-

vations reporting average reading speeds of 30 — 40 + 5 mm/s adopted by expert Braille readers.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Fine touch discrimination is mediated by rapid and reliable re-
sponses to stimuli sensed by fingertip mechanoreceptors (Johansson
and Birznieks, 2004). Even simple object manipulation requires the
ability to convey optimal accounts of tactile percepts to the central
nervous system in order to adopt closed-loop control policies. More
specifically, peripheral encoding/decoding mechanisms must pro-
duce faithful spatiotemporal representations of sensed stimuli and
all subsequent stages of the ascending somatosensory pathway
must transmit these codes to downstream structures as efficiently
as possible.

Microneurography studies in humans demonstrated the preci-
sion and rapidity of primary afferent neurones (e.g. fingertip
mechanoreceptors) in encoding fine tactile stimuli into perfectly
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discriminable spike train patterns (Johansson and Birznieks, 2004).
Mechanoreceptors innervate the epidermis and discharge according
to mechanical indentations of the fingertip skin. The spike latencies
of mechanoreceptor responses convey information about contact
parameters fast enough to account for the use of tactile signals in
natural manipulation (Johansson and Birznieks, 2004; Johansson
and Flanagan, 2009). Primary afferent signals are processed by sec-
ond order neurones in the cuneate nucleus (CN) of the brainstem,
which constitutes the main synaptic relay along the somatosensory
pathway from the fingertip to the central nervous system. The func-
tional link between first and second order neurones (i.e. mechanore-
ceptors and cuneate cells) has not been thoroughly investigated, and
experimental and computational findings on how information is
processed along this pathway are still lacking.

We propose a neurorobotic framework to study neural coding at
the level of first and second order tactile afferents. The presented ap-
proach arises from a larger study on haptic perception, in which a ro-
botic setup was used to investigate fine touch discrimination during
Braille reading tasks (Fig. 1A and B). Here, we simulate skin indenta-
tion protocols in which Braille-like tactile stimuli are delivered stat-
ically and dynamically to an artificial touch sensor (Fig. 1C). We
model deformation analogue values through a simulator mimicking
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Fig. 1. Overview of the robotic setup and entire encoding/decoding pathway. (A) Braille alphabet. (B) The artificial fingertip mounted on a robotic hand/arm setup (© Institute of
Robotics and Mechatronics, German Aerospace Center). (C) From left to right: we employ Braille-characters as tactile stimuli to indent a capacitive artificial touch sensor. The
analogue responses provided by the touch sensor drive a network of Leaky-Integrate-and-Fire (LIF) neurones (Chacron et al., 2003) converting analogue signals into spiking
activity and mimicking fingertip mechanoreceptors. The population of LIF neurones projects onto a network of Spike-Response-Model (SRM) units (Gerstner and Kistler,

2002) implementing second order cuneate nucleus (CN) cells of the brainstem.

skin indentation following orthogonal forces exertion. These ana-
logue signals form the inputs to a network of leaky-integrate-and-
fire neurones (LIF). The latter performs an analogue-to-spike con-
version aiming at reproducing the activity of Slow Adapting type I
(SA-I) mechanoreceptors in terms of both spiking discharge and
receptive fields (see Johansson and Flanagan, 2009, for a recent re-
view). The population of LIF neurones (i.e. simulated primary affer-
ents) projects onto a network of second order units modelling CN
neurones. We employ the Spike Response Model (SRM) (Gerstner
and Kistler, 2002) to capture the stochastic nature of single cuneate
responses (unpublished data by H. Jorntell). Drawing inspiration
from our recent theoretical analysis of human microneurography
recordings (Brasselet et al., 2011), we use a metrical information
measure to estimate the amount of information transmitted by first
and second order neurones about tactile stimulation. The same
information measure quantifies stimulus separability at both stages
of the considered pathway. The presented system succeeds in recon-
structing both statically and dynamically delivered Braille-like stim-
uli rapidly and reliably. Also, the CN sparse re-encoding of primary
afferent signals facilitates downstream discrimination of tactile

stimuli and minimises destructive interference between similar per-
cepts sensed by the artificial fingertip.

2. Material and methods

Fig. 1 shows the robotic setup used for the Braille scanning task
and illustrates an overview of the considered encoding/decoding
pathway. We adopt different experimental protocols in order to
characterise neural coding at each processing stage (i.e. upstream
and downstream from the cuneate nucleus network) and investi-
gate fine touch discrimination. For the static stimulation protocols,
we employ a set of 26 different probes reproducing a scaled ver-
sion (1:1.67) of all Braille characters and we simulate orthogonal
indentation on the fingertip skin. Following an experimental proto-
col used for microneurography recordings in humans (Johansson
and Birznieks, 2004), we take a protraction phase of force applica-
tion of 125 ms, a plateau phase of 250 ms, and a retraction phase of
125 ms. For the dynamic stimulation protocols, we rub the same
probe set of Braille-characters over the simulated fingertip at dif-
ferent constant velocities, from 5 to 90 mm/s.
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2.1. The artificial touch sensor

First, we employed an artificial skin prototype® (Cannata et al.,
2008; Bologna et al., 2010) to collect and characterise a dataset of
analogue responses to Braille-character tactile indentations. The en-
tire artificial fingertip has a sensitive surface of approximately
18 x 23 mm. It consists of 24 capacitive square sensors disposed
according to a rectangular grid layout. The dimension of each sensor
is approximately of 3 mm and the inter-centre distance is 4 mm
(Fig. 1C). The array is covered by a 2.5 mm thick neoprene layer in
order to modulate the pressure exerted on the sensors. The higher
the indentation of a conductive material on the neoprene, the stron-
ger the response of the touch sensors. The response strength of each
sensor ranges between 0 and 189 femtoFarads (fF). The acquisition
frequency of the capacitive sensor is 20 Hz.

Second, we developed a simulator capable of reproducing the
responses of the artificial fingertip, which allowed us to achieve a
greater flexibility in data generation and higher acquisition fre-
quencies (e.g. 1000 Hz). A previous study on the sensory device
(Bologna et al., 2010) shows that a Gaussian kernel can fit its re-
sponse. In Braille reading experiments, the touch sensor outputs
varied between 0 and 60 fF and its receptive fields up to a
1.6 mm radius (depending on stimulation pattern). Therefore, we
model the touch sensor response by means of a Gaussian kernel
of amplitude 55 fF and standard deviation 1.6 mm. Additionally,
in order to better reproduce the output variability, we add a white
noise to the amplitude of the response (2.5 fF) and to its standard
deviation (0.1 mm). Furthermore, we model the position error of
the experimental setup by adding a Gaussian noise centred on
the position of each stimulus (standard deviation 0.1 mm).

2.2. Modelling primary afferent responses: analogue-to-spike
transduction

We implement a network of leaky integrate-and-fire (LIF) neu-
rones (Lapicque, 1907; Chacron et al., 2003) to convert analogue
touch sensor outputs into spike train patterns (Fig. 1C). We map
the capacitance values provided by the touch sensor (proportional
to probe indentations) into current intensities I(t) driving the LIF
neurones by applying a multiplicative gain factor of —390 pA/fF
(determined by comparing output LIF spike trains against recorded
mechanoreceptor responses, Johansson and Birznieks, 2004).

The dynamics of the membrane potential V(t) of each LIF neuron
is:

dv(t)
dt
where C= 0.5 nF denotes the membrane capacitance, g =25 nS the
passive conductance, Vjeq = —70 mV the resting membrane poten-
tial, and I(t) the total synaptic input of a neurone. The membrane
time constant is then 7 = C/g = 20 ms. Whenever the membrane po-
tential V(t) reaches the threshold Vg, = —50 mV the LIF neurone
emits an action potential. Then, its membrane potential is reset to
Vieser = —100 mV and the dynamics of V(t) is frozen during a refrac-
tory period Ater=2 ms. We also use a “threshold fatigue” (Chacron
et al., 2003) to model the phenomenon of “habituation”. It consists
in increasing the threshold Vi, by a value Ay, each time the neu-
rone discharges, making it harder for the neurone to spike again
(i.e. preventing it from responding highly tonically even in the pres-
ence of strong inputs). In the absence of spikes, the threshold de-
creases exponentially back to its resting value Ve,

dvthr(t) _ Vthr(t) — VrestThr
dt T Tthr (2)

c ==& (V() = View) — I(¢) (1)

2 Developed at the Italian Institute of Technology (IIT), Genoa, Italy.

with T = 100 mS, Viesernr = =50 mV and Ag,r = 50 mV. We integrate
Egs. (1) and (2) using Runge-Kutta 2 and a timestep of 1 ms.

We consider networks of 6 and 12 LIF neurones, following the
number of stimulated capacitive sensors (Fig. 2A), for the static
and dynamic stimulation protocols, respectively. Fig. 2C and D
show examples of mechanoreceptor spiking activity for both
protocols.

2.3. Modelling second order neurones in the cuneate nucleus

We model single cuneate responses by means of the spike-re-
sponse model (SRM) (Gerstner and Kistler, 2002) (see Brasselet
etal., 2009, for a previous use of the model). We include a noise mod-
el (i.e. escape noise) that follows a stochastic process, so providing a
linear probabilistic neuronal model. Thanks to its properties, the
adopted SRM permits a higher transparency and controllability of
all free parameters (e.g. synaptic integration time constant, ampli-
tude and shape of excitatory post-synaptic potential).

An input spike arrival at time t induces a membrane potential
depolarisation AV(t) described by:

AV(t) x VEtexp(—t/T) 3)

where the parameter 7 = 3 ms determines the decay time constant
of the EPSP (excitatory postsynaptic potential). If several afferent
spikes excite the neurone within a short time window, then the
EPSPs adds linearly:

V(t) =V, + Zw,-AV(t - f{) 4)
ij

where i denotes presynaptic neurones, j indexes the spikes emitted
by a presynaptic neurone i at times tf, and V, = =70 mV is the resting
potential. The term w; indicates the synaptic weight of the projec-
tion from the presynaptic unit i, defined as:

w=W-w! )

with factor W determining the upper bound of the synaptic efficacy,
and w?'l being constrained within the range [0,1]. We use W=1 in
our simulations. At each time step, a function g(t) computes the
instantaneous firing rate of the cell according to:

g(t) =rolog <1 + exp (%)) (6)

where the constants ro=0.01 Hz, Vo=-66 mV, Vs=1mV are the
instantaneous firing rate, the probabilistic threshold potential, and
a gain factor, respectively. A function A(t) determines the refracto-
riness property of the neurone:

(t—F— Taps)?

A(t) = -
‘[’.?el + (t —-t- Tabs)z

H(t —E — Tabs) )

where 74, =3 ms and 7,,;=1 ms denote the absolute and relative
refractory periods, respectively, ¢ the time of the last spike emitted,
and H the Heaviside function. Finally, the functions g(t) and A(t) al-
low the probability of firing p(t) to be computed:

p(t) = 1 —exp(-g(t)A(t)) 8)

We implement the synaptic connections between mechanorecep-
tors and CN neurones so as to generate the receptive fields shown
in Fig. 2B. Each CN neurone receives non-plastic inputs from either
one or a group of two/three adjacent mechanoreceptors depending
on the stimulation protocol (see the caption of Fig. 2 for details). The
dimension and shape of the receptive fields and synaptic connec-
tion strength allow topographical information to be maintained at
the level of the second order output space. Also, thanks to the
adopted connectivity layout, CN neurones collecting signals from
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Fig. 2. Network connectivity and examples of spike pattern responses. (A) Touch sensor groups active during static (left) and dynamic (right) stimulation protocols. (B) LIF
neurones modelling mechanoreceptor activity fulfil a topological mapping of fingertip regions (left). CN cell receptive fields are built so to collect activity of either a single cell
or all possible pairs of adjacent mechanoreceptors, for the static stimulation protocol (right). Connectivity strength is set to 1. The same receptive fields are used in the
dynamic protocol scenario, where CN cells responding to fingertip regions populated by three adjacent mechanoreceptors are also simulated (synaptic strength is either 1 or
0.7). (C) Example of sensor responses to a statically delivered stimulus “y” (bottom), mechanoreceptor activity during the entire stimulation period (centre) and
corresponding CN encoding of first afferent output (top). Given to the aforementioned topographical mapping, neurone indices shown in the central plot correspond to sensor
indices indicated in panel (A) (left) and in the bottom plot. Differently, no topographical mapping is present for cuneate cells, so we omitted any indexing for the sake of
clarity. (D) same as (C) for a dynamically delivered stimulation (the same stimulus as (C) is used). Note how the temporal order of activation of the sensors (and neurones)

depends on the character scanning direction (cf. panel (A)).

large receptive fields mirror both single primary neurone activation
and multiple co-activations, so enriching the population spiking
dynamics. Fig. 2C and D provide examples of touch sensor
responses and corresponding mechanoreceptor and cuneate activi-
ties. We use populations of 17 and 49 neurones to simulate cuneate
networks for static and dynamic stimulation, respectively.

2.4. Assessing neurotransmission reliability: metrical information
analysis

Shannon mutual information (Shannon, 1948; Rieke et al.,
1997) measures the interdependence between neural responses
r € R and stimuli s € S, treated as stochastic variables:
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5= % Ypirs)log 50 )

where p(s) and p(r) are the marginal probabilities of stimulus and
response, respectively, and p(r,s) their joint probability.

In order to decode neural activities and quantify fine touch discrim-
ination, we applied the recently defined metrical mutual information
I*(R; S) (Brasselet et al., 2011). This information measure takes into ac-
count the metrical properties of the spike train space (Victor and Pur-
pura, 1996; Schreiber et al., 2003; Van Rossum, 2001) and it has been
proven to be suitable to decode the responses of human mechanore-
ceptors obtained via microneurography recordings (Brasselet et al.,
2009, 2011). The definition of I"(R;S) relies on a similarity function
based on the distance between spike train responses elicited by the
same stimulus and by different stimuli. Here, we use the Victor-Pur-
pura (VP) spike train metrics (Victor and Purpura, 1996) to compute
the distance between two responses 1,7’ € R, i.e. Dyp(r,1’). At each time
point, we compute the distances between all spike trains up to that
time point to assess metrical information and entropy over time (see
below). In order to extend this metrics for population coding, we
simply sum individual spike train distances to obtain the distance
between two populations of spike trains.

The metrical mutual information is the difference between mar-
ginal and conditional metrical entropies (Brasselet et al., 2011):

I'(R;S) = H'(R) — H'(R|S) (10)

The marginal entropy H*(r) is:

(r|r")
Z R logz R (11)

reR r'eR

where (r|r') is the similarity measure between two population re-
sponses r and r’ based on the spike train distance Dyp(r,1'); |R| is
the cardinal of the response space. The metrical conditional entropy
H*(R|S) is defined as:

H'(RIS) = p(s)H' (RIs) (12)
sesS
I’T‘
—- 393 ey (13)
seS reRs ' €Rg

Here, we simply take the similarity measure (r|r') as
(rr") = H(Deritic — Dyp(r, 1)) (14)

where the critical distance D¢ is the cutoff parameter, and 7 the
Heaviside step function. According to Eq. (14), as long as
Dyp(r,1') < Deriic the responses r,1r" are considered as identical, other-
wise they are considered as different. As reported previously (Brass-
elet et al., 2011), we set the optimal parameter Di;c by considering
two sets of Dyp(r,1") distances:

o the distances between the responses elicited by the same stim-
ulus (named intrastimulus distances);

o the distances between the responses elicited by different stim-
uli (named interstimulus distances).

The optimality condition corresponds to maximum I*(R;S) and
zero H*(R|S) and it occurs when the maximum intrastimulus dis-
tance—i.e. the size of the largest cluster of responses—becomes
smaller than the minimum interstimulus distance—the smallest
distance between clusters of responses (Brasselet et al., 2011). In
the case of neurotransmission, the relationship between intra-
and interstimulus distance distributions tends to evolve over time
as the input spike waves across multiple afferents flow in the read-
out system. Thus, the optimality condition is met when the distri-
butions of intra- and interstimulus distances stop overlapping. The
critical parameter Dtic is then taken as the maximal intrastimulus

distance at the time when it becomes smaller than the minimum
interstimulus distance. The time at which D can be determined
indicates when perfect input discrimination is achieved.

3. Results
3.1. Characterisation of mechanoreceptor responses

Fig. 3 compares some characteristics of simulated and human
mechanoreceptor responses (Phillips et al., 1990; Johansson and Bir-
znieks, 2004) when applying Braille-character probes to indent the
fingertip skin. Fig. 3A focuses on receptive fields and shows some
examples of Fast Adaptive type I (FA-I), Slow Adaptive I (SA-I), and
simulated mechanoreceptor recordings upon stimulation with Braille
characters. Both FA-I and SA-I primary afferents show a topological
mapping (i.e. their activity correlates with the area of stimulation),
demonstrating their role in encoding spatial discontinuities (Johans-
son and Flanagan, 2009). There is no clear experimental evidence on
whether SA-I or FA-I mechanoreceptors primarily carry the informa-
tion needed for Braille character recognition (Phillips et al., 1990).
Nonetheless, the receptive fields of SA-I afferents seem to reproduce
Braille spatial patterns with higher accuracy than FA-I (see Fig. 3A,
top). Our simulated primary afferent responses exhibit receptive
fields qualitatively similar to those of real SA-I units, in terms of
shape, dimensions and signal-to-noise ratio (Fig. 3A, bottom).

Fig. 3B compares the first spike jitter of model primary re-
sponses against that of their biological counterparts (SA-I units).
The two distributions of Fig. 3B appear to be statistically equivalent
(Mann-Whitney U test P>0.11; Kolmogorov-Smirnov test
P> 0.076) in terms of both median and shape, despite a time lag
of about 2 ms. Thus, modelled mechanoreceptors present the same
variability in spike latencies as SA-I afferents, but on a larger time
scale. We then compare the inter-spike interval (ISI) distributions
(Fig. 3C) and find that spike trains of model neurones lack the ISI
variability of those recorded in humans (although a Mann-Whit-
ney U test shows that both distribution medians are equivalent,
P > 0.16). The difference in ISI variability may be due to the visco-
elastic properties and more complex dynamics of the human skin
as compared to the artificial finger.

3.2. Information content of primary afferent responses

We perform an information theoretical analysis to decode sim-
ulated first order responses to 26 distinct Braille characters sensed
both statically and dynamically (Figs. 4 and 5, respectively). We fo-
cus on the evolution of information over time and quantify how
rapidly perfect discrimination of all Braille stimuli can be achieved
after stimulus onset.

3.3. Decoding primary afferent responses to static Braille stimuli

Fig. 4A top illustrates the evolution of maximal and minimal in-
ter- and maximal intrastimulus distances over time (continuous
and dashed lines, respectively) upon static indentation of Braille
stimuli. Within 100 ms of the stimulus onset the maximum intra-
stimulus distance becomes smaller than the minimum interstimu-
lus distance so satisfying the condition for an errorless stimulus
reconstruction—i.e. maximal metrical information I*(R;S) and zero
conditional entropy H*(R|S), as shown in Fig. 4B. Consistent to pre-
vious decoding analysis on real primary afferent recordings
(Johansson and Birznieks, 2004), such a fast and complete discrim-
ination occurs before the end of the indentation protraction phase
(Fig. 4A, centre), which corresponds to the period of strongest and
best timed spiking responses of simulated mechanoreceptors (see
the sample PSTH of Fig. 4A, bottom).
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Fig. 3. Characterisation of mechanoreceptor responses. (A) Top: Spatial event plots of human mechanoreceptor responses to scanned Braille characters ‘a’ to ‘r’ (top, adapted
from Phillips et al., 1990). Bottom: Zoomed in sections comparing the receptive field of three SA-I mechanoreceptors against those of their simulated counterparts. (B)
Distribution of standard deviations (SD) of first-spike latencies for both SA-I (left) and simulated (right) mechanoreceptor responses to comparable stimuli. (C) Distribution of
inter-spike intervals (ISIs) for both SA-I (left) and simulated (right) mechanoreceptor responses. In (B) and (C), the recorded distributions are reconstructed from data by
Johansson and Birznieks (2004). In both cases, data are pooled across different stimulus directions and afferents.

Fig. 4C reports two examples of matrices of spike train distances
between simulated mechanoreceptor responses before (left) and
after (right) the occurrence of the perfect discrimination condition
(i.e. at t =~ 100 ms). For t < 100 ms (left matrix) responses to differ-
ent stimuli can have relatively small distances, which produces
interferences impairing the decoding process. By contrast, for

t > 100 ms (right matrix) all the initially overlapping contexts be-
come well separated, removing all interferences across inputs
and leading to 100% accuracy in the discrimination process. Note
the different colormap scales used to represent spike train dis-
tances Dyp before and after the occurrence of the optimality
condition.
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Fig. 4. Decoding analysis of primary afferent responses to static Braille stimuli. (A) Top: Evolution of maximal and minimal interstimulus and maximal intrastimulus distance
over time (continuous and dashed curves respectively) on a semilogarithmic scale. The minimal intrastimulus distance is approximately zero during the entire stimulus
duration and has not been reported. Twenty repetitions per stimulus are used. Perfect discrimination—occurring when the maximum intrastimulus distance becomes smaller
than the minimum interstimulus distance—is achieved within about 100 ms of stimulus onset. The critical distance used for computing the metrical information and entropy
is indicated by D.i. Centre: Time course of the stimulus indentation force shows that the perfect discrimination is reached well before the end of the protraction phase
(t <125 ms). Bottom: The Post Stimulus Time Histogram (PSTH) reveals a stronger activity during the protraction phase as observed for human SA-I type mechanoreceptors
(Johansson and Flanagan, 2009). (B) Top: Metrical information (grey circles: data; continuous black line: sigmoidal fit) converges to its maximal value after about 100 ms,
while the metrical conditional entropy (dashed black line) remains equal to zero. Bottom: information variability, measured as mean standard error (s.e.m), over time. (C)
Distances between mechanoreceptor responses before (left matrix) and after (right matrix) the perfect discrimination condition is reached. Twenty repetitions for each
character are used and distances computed between all of the 520 spike train pairs. Each line shows the distances between a single response to a stimulus and all other
responses. Intrastimulus distances are grouped into small squares (20-sample side) along the diagonal and are remarkably smaller than the others (i.e. interstimulus
distances) after optimal discrimination (right matrix).

3.4. Decoding primary afferent responses to dynamic Braille stimuli

In a second information theoretical analysis we consider simu-
lated data obtained with dynamically delivered stimuli. As the fin-
gertip scans a Braille character at a constant velocity of 15 mm/s,
skin deformations generated by dot movements supply simulated
mechanoreceptors with analogue spatiotemporal patterns chang-
ing over time. As expected, mechanoreceptors’ spike train re-

sponses reflect these displacement patterns rather faithfully (see
example of Fig. 2D).

Again, we investigate how maximal and minimal intra- and
interstimulus distances evolve over time. Fig. 5A shows that
the condition of perfect discrimination of 26 Braille inputs—
dynamically delivered to the fingertip—is reached after about
700 ms from stimulus onset. As predicted by metrical informa-
tion theory, this condition corresponds to maximum information
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Fig. 5. Decoding analysis of primary afferent responses to dynamic Braille stimuli. (A) Evolution of maximal and minimal interstimulus and maximal intrastimulus distance over
time (continuous and dashed curves respectively) on a semilogarithmic scale. The minimal intrastimulus distance is approximately zero during the entire stimulus duration
and has not been reported. The critical distance used for computing the metrical information and entropy is indicated by D:c. Sixty repetitions per stimulus are used. Perfect
discrimination occurs after 700 ms from stimulus onset. Note that at the end of the stimulus application the minimum interstimulus distance becomes smaller than the
maximum intrastimulus distance, meaning that interferences between similar stimuli impair the discrimination process. (B) Top: The time course of information (grey
circles: data; continuous black line: sliding window smoothing) and of conditional entropy (dashed black line) confirms that perfect discrimination of all 26 Braille characters
is achieved at time t ~ 700 ms. Bottom: information variability, measured as mean standard error (s.e.m), over time. (C) Matrices of response distances before (left) and after

(right) perfect discrimination (see Fig. 4C legend for details on matrix entry values).

and zero conditional entropy (Fig. 5B). As expected, the metrical
information curve (black line) exhibits a plateau starting at
around 400 ms and lasting for about 120 ms. This corresponds
to the stimulation phase during which the first column of Braille
dots enters in contact with the fingertip while the second does
not stimulate any sensor yet. The information value at plateau
is about half of the total amount of information transmitted
(Fig. 5B).

As for the static indentation scenario, the distance matrices be-
tween all mechanoreceptor responses (Fig. 5C) mirror the fulfil-
ment of the optimality condition. In fact, while clusters of
responses to different stimuli overlap at the beginning of the stim-
ulation (left matrix), they are completely apart once the perfect
context separation is achieved (right matrix). (Again, note the dif-
ferent colormap scales).

3.5. Information content of second order neurone responses

We then investigate how the processing mediated by the cune-
ate nucleus (CN) network can impact fine touch discrimination. We
focus on both the time necessary to achieve complete discrimina-
tion and the efficiency in context separation downstream of the
CN.

3.6. Decoding second order responses to static Braille stimuli

The metrical information analysis of CN response patterns
elicited by static tactile stimulation shows that perfect discrimina-
tion of all Braille stimuli occurs approximately within 100 ms of
stimulus onset (Fig. 6A) as for the primary afferent level (Fig. 4B).
This result suggests that the chosen mechanoreceptor-to-CN
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connectivity layout allows first order encoding efficacy to be main-
tained after neural processing at the CN stage. Again, as reported in
Fig. 6A, the optimality condition corresponds to maximal informa-
tion (continuous black line) and nil conditional entropy (dashed
black line). The two distance matrices of Fig. 6C show qualitatively
that input context separability can indeed be achieved significantly
better after 100 ms of stimulus onset. (Again, note the different
scales of the Dyp colormaps). For sake of comparison between first
and second order encoding efficacy, we do not take into account
the conduction delay necessary for peripheral action potentials to
propagate along the median nerve and reach the CN—the mean
conduction velocity along the median nerve is about 60 m/s (Val-
Ibo and Johansson, 1984).

To measure context separability before and after processing at
the CN stage we quantify the average separation between intrasti-
mulus and interstimulus distance distributions at the end of skin
indentation (i.e. after 500 ms of stimulus onset). The inset of
Fig. 6B depicts two examples of intra- and interstimulus distance
distributions upstream (top) and downstream (bottom) of the
CN. The histograms of Fig. 6B quantifies the mean separation ¢ be-
tween the two distributions before and after the CN. This result
suggests that the overall distances between spike response pat-
terns increase significantly (Mann-Whitney U test, P<0.0001)
downstream of the CN, augmenting the separability of whichever
pair of responses belonging to different clusters.
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3.7. Context separation of dynamic Braille stimuli mediated by CN
responses

Given the spatial arrangement of Braille dots and the homoge-
neous structure of the artificial touch sensor, different characters
may lead to exactly the same mechanoreceptor responses, in terms
of spike count, when rubbed over the fingertip. In fact, the scan-
ning of symmetrical Braille letters (‘e’ and ‘i’, ‘d’ and ‘f, ‘h’ and ‘j’,
‘" and ‘w’, see Fig. 1A) activates the same subgroup of fingertip
sensors for the same amount of time. As a consequence, although
an early correct discrimination occurs, the interference between
those Braille patterns increases over time, which finally produces
the same activity of first order (LIF) neurones. Here, we investigate
whether the mapping of primary afferent signals onto a higher
dimensional space operated by the model CN might be suitable
to avoid these interferences. We perform a Principal Component
Analysis (PCA) to visualise the separability of first and second order
response clusters over time. Fig. 7 shows the results obtained by
projecting the clusters of responses to letters ‘e’ and ‘i’ onto the
space defined by the first two principal components. In the case
of first order processing (Fig. 7A), patterns ‘e’ and ‘i’ are well sepa-
rated at the beginning of the trial (¢t = 300 ms) due to the activation
of different mechanoreceptors. However, as the fingertip proceeds
over the probe, the two signals become less separated and finally
overlap at the end of the trial (t = 1500 ms). This is confirmed by
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Fig. 6. Decoding analysis of second order responses to static Braille stimuli. (A) Perfect discrimination condition (i.e. I*(R;S) = 100% and H*(R|S) = 0) is reached after ~ 100 ms
from stimulus onset. (B) Average separation (J) between intrastimulus and interstimulus distance distributions at the end of skin indentation (i.e. after 500 ms of stimulus
onset). The separation is significantly larger downstream of the CN than at the level of mechanoreceptor outputs (Mann-Whitney U test, P < 0.0001). The inset shows an
example of intra- and interstimulus distance distributions for mechanoreceptor (top) and CN (bottom) responses. (C) Distance matrices before (left) and after (right) the
perfect discrimination condition is reached (see Fig. 4C legend for details on matrix entry values).
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the decrease in information observed at the end of the scanning
period shown in Fig. 5B. In fact, the metrical information value falls
to about 4.219 which indicates that the decoder is able to discrim-
inate at most 18 characters out of 26—i.e. the eight symmetric
characters cannot be recognised anymore.

The same analysis on CN responses (Fig. 7B) shows that the ini-
tial distance between the two clusters augments with time provid-
ing an even better separation at the end of the trial. The
mechanoreceptor-to-CN mapping is at the basis of the observed
discrimination improvement. In fact, the chosen connectivity lay-
out makes specific CN neurones respond to different mechanore-
ceptor co-activations. Hence, the following sparsification of the
code guarantees a correct discrimination even at the end of the
trial, with the n-dimensional CN response clusters becoming fur-
ther apart.

3.8. Tactile discrimination efficacy as a function of Braille scanning
velocity

We then compute, at the level of CN responses, the activity
information content and discrimination time (i.e. time to con-
verge to maximal information) as a function of 16 scanning
velocities in the range 5 — 90 mmy/s. Fig. 8A shows that for val-
ues between 5 — 50 mmy/s, the time necessary to achieve maxi-
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Fig. 7. Context separation of dynamic Braille stimuli mediated by cuneate responses.
Principal component analysis (PCA) on responses to stimuli ‘e’ and ‘i’ upstream (A)
and downstream (B) of the CN. PCA is applied to the matrices of individual neurone
responses computed in terms of spike count at different times. At each considered
time point, the entire spike trains up to that time point are taken into account.
Clusters of responses projected on the two principal component axes have
comparable distances at the beginning of the stimulation at both mechanoreceptor
and CN neurone output (note that x-axis and y-axis scales are different).
Nonetheless, the separation between clusters decreases over time for primary
afferent responses (indicating higher interferences), whereas it increases at the
level of second order neurones (denoting a better separability).

mum discrimination decreases exponentially. Within the same
speed range, the information remains constant at its maximum
value (indicating perfect discrimination of all Braille characters).
For higher reading velocities, recognition time stabilises between
400 and 500 ms, but a significant reduction in information con-
tent occurs, making a complete stimulus discrimination impossi-
ble. These results show the existence of a trade-off between
scanning speed and discrimination capabilities, with an optimal
velocity range for single Braille character recognition of
40 — 50 mm/s (see also Fig. 8B).

4. Discussion

Human microneurography studies have described the stimu-
lus-response dynamics of fingertip mechanoreceptors and their
electrophysiological properties under manifold stimulation con-
ditions (Phillips et al., 1990, 1992; Johansson and Flanagan,
2009). These works showed that primary afferents are character-
ised by low variability in the response latency and highly infor-
mative spatiotemporal population activity. They also suggested
that these properties allow a complete discrimination of a rich
repertoire of different stimuli to be performed as soon as the
first afferent spike wave is emitted (Johansson and Birznieks,
2004). Downstream from fingertip mechanoreceptors, second or-
der neurones in the cuneate nucleus (CN) of the brainstem might
be in charge of an efficient decoding and re-encoding of tactile
signals. It has been proposed that the divergence/convergence
ratio of the projections from primary afferents to CN neurones
(Jones, 2000), together with the variability in afferent conduction
velocity, can be relevant to the decoding of a large number of

5

2500

>

! —— max info
— — —max info time

{ 2000
a5l

1 1500

maximum information (bits)
N
maximum information time (ms)

\ 1 1000
\
\
\
3.5¢ \
Seool 4 500
3 ‘ ‘ ‘ ‘ 0
0 20 40 60 80 100
speed (mm/s)
B 5 90
80
) ’
8 45 /' 1 1°
.5 60 &
= @
E 50 £
o 4 i £
S 40 3
g 30 ?%)'
E
é 3.5 R 20
10
3 ‘ ‘ ‘ ‘ 0
0 500 1000 1500 2000 2500

maximum information time (ms)
Fig. 8. Tactile discrimination efficacy as a function of Braille scanning velocity. (A)
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stimuli and the conversion from temporal to spatial information
by means of coincidence detection mechanisms (Johansson and
Flanagan, 2009). Nonetheless, theoretical models exploring the
role of second order CN neurones are still lacking and no
hypothesis has been proposed concerning a CN role different
from that of a synaptic relay (Canedo et al., 2000; Sanchez
et al., 2003).

In this study we combine a neurorobotic approach—imple-
menting first and second order tactile signal processing—with a
metrical information theoretical analysis—based on distances in
the spike train space—to study neural coding at the early stages
of the haptic ascending pathway. We put forth the hypothesis
that, in our system, CN neurones could perform a better stimulus
separation than primary afferents. To test this hypothesis, we
structure the network connectivity so that each CN cell responds
according to a specific receptive field. We use the full set of
Braille-alphabet letters to stimulate an artificial touch sensor
both statically and dynamically. Our results demonstrate that,
similar to primary afferents, the model CN activity allows a
downstream decoder to perform a complete and fast input dis-
crimination. Also, clusters of responses to different stimuli are
more separable downstream from the CN than upstream. In
the model, CN receptive fields work as a family of kernel func-
tions projecting primary spike trains onto a higher dimensional
space in which response clusters become farther apart. Further-
more, a principal component analysis shows that the context
separation mediated by the CN under a dynamical stimulation
scenario guarantees a better discrimination of input patterns cre-
ating response interferences at the level of primary afferents.

To explore the limits of the presented neurorobotic system with
respect to character discrimination, we test its performance by
scanning single Braille letters at different translational velocities.
We find that a trade-off exists between discrimination capabilities
and scanning speed. The optimal performance-velocity compro-
mise occurs at around 40 to 50 mm/s. Provided that simulated
Braille characters and mechanoreceptors are scaled up (1:1.67)
with respect to real ones, our results are coherent with those
observed on human Braille reading experiments (Mousty, 1985;
Millar, 1997; Hughes et al., 2010) and with data from the literature
suggesting that the average speed for an expert blind reader is
around 30 — 40 = 5 mm/s (Hughes et al., 2010).

We will further investigate the neural coding issues addressed
in this paper in order to better explore the role of (i) different types
of CN receptive fields (i.e. kernel functions sampling the mechano-
receptor activity space), and (ii) possible spike-timing-dependent
plasticity (STDP) mechanisms (Bi and Poo, 1999) to obtain optimal
mechanoreceptor-to-CN synaptic weight distributions in a more
biologically plausible manner. Also, we are currently implementing
a closed-loop architecture—involving mechanoreceptors, CN neu-
rones, a high level classification process and a cerebellar low-level
controller—to study sensorimotor control in fine touch discrimina-
tion tasks (e.g. Braille reading).
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