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Chapter 1

General Introduction

The main research topic of this dissertation is the spatial memory function. Similar to
other high-level brain functions, spatial memory calls upon parallel processes medi-
ated by multiple neural substrates that interact, either cooperatively or competitively, to
promote appropriate spatial learning and goal-oriented behaviour.

As a consequence, studying spatial memory requires/permits to investigate nu-
merous brain functions including: (i) neural information processing (e.g., informa-
tion storage and transmission at synapses; rate-based versus spike-time neural cod-
ing); (i) multimodal sensory processing and integration (e.g., extraction of low-
dimensional representations from high-dimensional sensory flows; combination of mul-
timodal signals into unified perceptual representations); (i:i) procedural-like memory
(e.g., acquisition of low-level sensory-motor couplings; fine tuning of coordinate move-
ments according to the ongoing sensory context); (iv) declarative-like memory (e.g.,
elaboration of abstract representations of the spatio-temporal relationships between
spatial events); (v) action selection (e.g., reward-dependent navigation planning; dy-
namical weighing of multiple concurrent strategies).

Besides such a broad functional manifold, understanding spatial cognition requires
a vertical cross-linking of different description levels including: (i) the molecular level
(e.g., dynamics of gene expression in normal and mutant organisms; dynamics of the
molecular influx through receptor channels; neuropharmacological modulation of neu-
ral states); (ii) the synaptic level (e.g., mechanisms regulating the presynaptic neu-
rotransmitter release; biophysics of the transduction of presynaptic spikes into analog
postsynaptic potentials; activity-dependent synaptic plasticity providing the basis for
spatial learning and memory); (uii) the cellular level (e.g., electrophysiological prop-
erties of single neurons such as selective discharge in relation to spatial correlates;
mechanisms regulating the intrinsic electroresponsiveness of nerve cells; temporal dy-
namics of the emitted spike trains); (iv) the local network level (e.g., mechanisms
underlying the emergence of neural population states; population activity dynamics
for encoding, storage, and retrieval of spatial information); (v) the system level (e.g.,
anatomo-functional interactions of multiple brain structures mediating spatial learning
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2 CHAPTER 1. General Introduction

functions); (vi) the behavioural level (e.g., adaptive motor skills; learning mechanisms
promoting flexible solutions to solve complex navigation tasks; phylogenetic compar-
isons and ontogenetic development of spatial learning capabilities).

Integrative neuroscience provides a suitable framework to study wide hori-
zontal sub-function spectra as well as vertical links across different descriptive
levels. This cross-disciplinary approach brings together experimental neuroscience
(e.g., molecular biology, neurophysiology, neuroanatomy, neurology, psychology), the-
oretical neuroscience (e.g., physics, mathematics), and neuroengineering (e.g., heu-
roinformatics, neurorobotics). For instance, biologically plausible models and their
validation in real experimental conditions may help to explore potential connections
between findings on the neuronal level (e.g., single-cell discharge patterns) and ob-
servations on the behavioural level (e.g., animal’'s action selection policy). Indeed,
theoretical models can permit a scale up to large neural populations, organise them
in subsystems, and test hypotheses about their anatomo-functional interactions to pro-
duce complex behaviour. Therefore, theoretical neuroscience may provide a unique
vantage point from which to derive predictions that can then be tested in innovative
experiments with animals.

This dissertation presents an integrative neuroscience approach that attempts to
unravel the overall spatial memory function by combining electrophysiological studies,
behavioural experiments, theoretical modelling, and robotics.

1.1 Roadmap of this dissertation

The main body of this dissertation is organised in five chapters that describe my re-
search line in chronological order. Each chapter begins with a short Preface that out-
lines the content of the chapter and provides some elements related to the working
context (e.g., host institution and laboratory, mentor, collaborations, supervised stu-
dents). Notice that, thanks to collaborations as well as student supervisions, all the
projects depicted in this dissertation are still ongoing (parallel) works.

Chapter 2, titled “Spatial Cognition and Multimodal Sensory Integration”, introduces
the spatial memory function and discusses some background issues that are
useful to understand the overall problem (e.g., the representation of spatial infor-
mation via allocentric and egocentric reference frames). The chapter also reviews
some electrophysiological, pharmacological, and behavioural findings about the
neural bases of spatial cognition (e.g., hippocampal place and head direction
cells), and it focuses on the importance of multimodal sensory integration for ro-
bust spatial learning.

Chapter 3, titled “Spatial Learning and Navigation in Neuromimetic Systems”, de-
scribes a neuromimetic computational model for the elaboration of spatial rep-
resentations (i.e., cognitive maps) and their use for goal-oriented navigation. The
model attempts to capture some of the mechanisms underlying the location- and



direction-selective activity of hippocampal place and head direction cells, respec-
tively. Population coding and multimodal sensory integration (mediated by Heb-
bian relational learning) are two major components of the model. The latter was
validated through a series of robotic experiments in which a mobile robot had
to learn some navigation tasks under experimental conditions similar to those
employed for rat spatial learning experiments.

Chapter 4, titled “Head Direction Cells: Electrophysiological Recordings and Theo-
retical Modelling”, outlines the electrophysiological work done to study the in-
terrelation between visual and inertial signals and their relative influence upon
the direction-selective discharge of thalamic head direction (HD) cells. The pre-
sented findings reveal some new aspects of the visually-driven update of HD
cell activity, determined by both static and dynamic visual cues (e.g., optic field
flow). The second part of the chapter depicts a theoretical study (done in parallel
to the experiments) that focuses on the generation and maintenance of the HD
representation. The theoretical results (both analytical and numerical) permitted
to reproduce some of our experimental data and provided some experimentally
testable predictions.

Chapter 5, titled “Motor Behaviour Adaptation for Optimal Goal-oriented Navigation”,
presents a behavioural study focusing on the role of the cerebellum in spatial nav-
igation. The work investigated the contribution of cerebellar long-term plasticity
(in particular long-term depression, LTD, at the parallel fibre-Purkinje cell, PF-PC,
synapses) to the procedural component of navigation. A mutant mouse model
(namely L7-PKCI, having a specific LTD deficit at the PF-PC synapses) was em-
ployed for this study. The second part of the chapter describes an automated
analysis tool that was developed to assess the navigation skills of mice solving
a spatial learning task. This tool pays a particular attention to the characterisa-
tion of the trajectory patterns, which are likely to inform us about procedural-like
abilities of the subjects.

Chapter 6, titled “Exploring the Neural Code via Information Theory”, presents a proj-
ect aiming at quantifying the information transfer properties of single neurons.
The study focused on the cerebellar granule cells (GCs), whose characteristics
(e.g., the fact they receive, on average, only four afferents) are suitable for per-
forming an information theoretic analysis exploring the input-output neural space
extensively. Both experimental (i.e., single-cell patch clamp recordings) and com-
putational (i.e., an Hodgkin-Huxley-like GC model) investigations were done to
measure how long-term synaptic plasticity affects information transmission, and
to characterise the spike train features (e.g., spike time correlations across the
neuron’s afferents) that most contribute to the overall information transfer.
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Chapter 2

Spatial Cognition and
Multimodal Sensory Integration

Preface. This chapter reviews some basic concepts relevant to the understanding of the spa-
tial learning problem (e.g., allothetic vs idiothetic signals, allocentric vs egocentric represen-
tations), and it outlines some behavioural, electrophysiological, and pharmacological findings
that shed light on the nature of the neural mechanisms underlying the spatial memory function
in animals. Special emphasis is given to the importance of multisensory integration for robust
spatial learning. This chapter provides a suitable introduction to Chapters (3,4, and 5 titled, re-
spectively, “Spatial Learning and Navigation in Neuromimetic Systems”, “Head Direction Cells:
Electrophysiological Recordings and Theoretical Modelling”, and “Motor Behaviour Adaptation
for Optimal Goal-oriented Navigation”. The content of the present chapter has been adapted
from Arleo and Rondi-Reig (2005).

2.1 Spatial memories rely upon idiothetic and
allothetic signals

Spatial cognition involves the ability of a navigating agent (be it an animal or an au-
tonomous artifact) to acquire spatial knowledge (e.g., spatio-temporal relations among
environmental cues or events), organise it properly, and employ it to adapt its motor
behaviour to the specific context (e.g., performing flexible goal-oriented navigation).

At the sensory level, different perceptual modalities provide the navigator with
a manifold description of the currently experienced spatial context. The integra-
tion of these multimodal signals (that are processed by interrelated brain regions) into
a coherent representation is at the core of spatial cognition. The variety of sensory
modalities conveying spatial information can be separated into two main categories,
namely idiothetic and allothetic cues. Idiothetic stimuli are self-motion related sig-
nals and include vestibular (inertial), kinesthetic (e.g., information from muscle and joint
receptors), motor command efferent copies, and sensory flow information (e.g., optic
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Figure 2.1: Encoding spatial information within a reference frame. (a) The circular object provides
an allothetic (visual) spatial cue to the navigator (rat). The latter can represent the spatial position of
the external cue within the egocentric reference frame X-Y (centered on its head), that is estimate the
distance p between its head and the object, as well as the angle 6 between its heading and the direction
to the object. Alternatively, the rat can encode the same spatial information within the allocentric
coordinate system X’-Y’ (centered on the bottom-left corner of the experimental environment), that is
estimate the distance p’ and the angle ¢’. (b) In this example, the navigator can employ idiothetic
information (e.g., vestibular signals) to represent the change of its motion direction within an egocentric
reference frame, that is 7”1 turned to my left”. Alternatively, it can refer to the allocentric directional
system based on the geomagnetic north, that is "I turned eastward”. (Taken from Arleo and Rondi-Reig
2005)

field flow signals informing the navigator about its own movements). Allothetic sig-
nals provide information about the external environment and include visual (e.g., envi-
ronmental landmarks), olfactory, auditory, and somatosensory (e.g., tactile or texture)
cues. Learning spatial memories requires the extraction of coherent information
from such a redundant and multidimensional sensory input space. This learn-
ing process implies, for instance, maintaining idiothetic and allothetic cues congruent
(e.g., minimisation of interferences or conflicts) both during the exploration of a novel
environment and across subsequent visits to a familiar environment.

A given sensory modality is labelled as allothetic or idiothetic to characterise the
type of information it conveys. On the other hand, if we want to characterise the way
this information is represented by the navigator, we need to introduce the concept of
reference coordinate system (or simply reference frame). This system defines the
framework in which spatial information (e.g., the position of an object) can be
represented relative to an origin point. Depending on the anchorage of the origin of
the reference coordinate system, the same information can be encoded egocentrically
or allocentrically. If the reference frame is centred on the subject (e.g., on a body part
such as the head) the representation is said egocentric. If the origin of the frame-



work is a fixed point of the environment (e.g., a corner of the room) the representation
is called allocentric. As shown in Fig. 2.1a, the same allothetic spatial information
(e.g., the position of a visual cue in the environment) can be represented either ego-
centrically (e.g., relative to the body of the navigator) or allocentrically (e.g., relative
the room corner). Similarly, as shown in Fig. 2.1b, idiothetic signals (e.g., vestibular
information) can be employed to describe self-motion either egocentrically or relative
to an allocentric reference frame. Egocentric coding is simple to build but it varies as
the navigator moves in the environment (because the reference frame translates and
rotates as the subject moves). Allocentric coding requires more complex processing
(e.g., to relate the visual cue position to the world-centred origin), but it is invariant with
respect to the subject’s position and orientation in the environment. One factor of the
complex multisensory integration process is that different sensory modalities are en-
coded within different reference frames. Thus, in order to combine different sensory
modalities, a navigating system has to integrate different representations into a
unified spatial framework.

Animals employ both idiothetic and allothetic cues to maintain memory traces of the
spatial components (e.g., their body position and orientation) of experienced events.
For instance, they are capable of estimating their current location relative to a start-
ing point (i.e., homing vector) by integrating linear and angular self-motion signals
over time (Figs. 2.2a,b). This process, termed path integration or dead reckoning
(Mittelstaedt and Mittelstaedt 1980; Etienne and Jeffery 2004), relies upon idiothetic
cues like vestibular and kinesthetic signals, motor command efferent copies, and sen-
sory (e.g., optic) flow information. On the other hand, self-localisation can occur solely
on the basis of allothetic cues like vision, auditory, olfactory, and tactile signals. Indeed,
locations can be characterised by specific allothetic sensory patterns (e.g., configura-
tions of visual cues), such that memorising these sensory patterns can enable a subject
to recognise familiar places.

Idiothetic and allothetic spatial information have complementary strengths
and weaknesses. Since path integration does not depend on external references, it
allows a subject to self-localise in an unfamiliar environment from its very first exploring
excursion (Etienne and Jeffery 2004). Also, path integration is a basic mechanism
suitable for all types of environments (i.e., with or without external cues) and navigators
(e.g., agents that can not exploit their interaction with the external world effectively). A
limitation of path integration is its vulnerability to cumulative drift over time. Indeed, the
idiothetic-based dynamics, consisting of integrating translational and rotational signals
over time, is prone to systematic as well as non-systematic errors that quickly disrupt
the position estimate (Mittelstaedt and Mittelstaedt 1982; Etienne et al. 1998).

Allothetic spatial information permits the formation of local sensory views directly
suitable for self-localisation (McNaughton et al. 1991). Also, if the spatial configuration
of the environmental cues (e.g., distal landmark arrays) remains fairly stable over time,
the position assessment process is not affected by cumulative errors. However, allo-
thetic (e.qg., visual) cues are not always available to the navigator (e.g., in darkness con-
ditions). Additionally, since self-localisation based on allothetic cues involves sensory
pattern recognition, perceptual aliasing phenomena may occur, that is distinct areas
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Figure 2.2: Homing behaviour based on path integration (PI). (a) Difference between path reversal
(i.e., inverting the sequence of movements performed from a starting point A to a current location B), and
path integration (i.e., integrating translations and rotations over time to generate a homing vector leading
the animal directly to the departure point A). The solid line represents the outward journey; the dotted
line indicates the return journey based on path reversal; the dashed line is the homing vector obtained by
path integration. Adapted from Etienne et al. (1998). (b) Two examples of homing behaviour performed
by two hamsters. After having been guided by a bait from the nest location A to points B and C (solid
lines), the two animals returned home following direct trajectories (dashed lines). The experiment was
performed in the dark in a circular arena of 2m of diameter. Adapted from Etienne et al. (1998). (c)
Hamsters’ homing behaviour in conflict situations. During training (left), a distal spotlight (asterisk)
provided a stable landmark to the animal performing hoarding excursions to a feeder. In probe trials,
the spotlight was rotated by either 90° (centre) or 180° (right). Animals were guided from the nest to
the feeder in darkness conditions, then the spotlight was turned on, which created a conflict between
self-motion (continuous gray arrows) and visual (dashed gray arrows) information. Large arrows indicate
the homing vectors followed by the animals and show that in the case of 90° conflicts the visual landmark
signal tended to dominate over self-motion, whereas for a 180° mismatch the path integration component
became predominant. Adapted from Etienne and Jeffery (2004). (Taken from Arleo and Rondi-Reig
2005)



of the environment may be characterised by equivalent local patterns. For instance,
visual sensory aliasing can lead to singularities (i.e., ambiguous state representations)
in a purely vision-based space coding (Sharp et al. 1990).

Therefore, neither idiothetic nor allothetic cues are sufficient by themselves to es-
tablish reliable spatial memories. One solution is to combine allothetic and self-
motion signals into a unified representation (e.g., O’'Keefe and Nadel 1978; Jeffery
and O’Keefe 1999; Redish 1999; Arleo and Gerstner 2000b). The combination of allo-
thetic and idiothetic information may yield a mutual benefit in the sense that idiothetic
cues may compensate for perceptual aliasing (e.g., discriminate between two locations
in a visually symmetrical environment) and, conversely, environmental landmarks may
be used to occasionally reset the integrator of self-motion signals. Idiothetic information
might provide the spatial framework suitable for ‘grounding’ the knowledge gathered by
a navigating animal (McNaughton et al. 1991; Knierim et al. 1995a). According to this
hypothesis, allothetic local views might be tied onto this framework as the exploration
of a novel environment proceeds.

But how is this idiothetic-allothetic coupling established and maintained con-
sistent over time? How are the conflicts between self-motion and landmark cues
solved? Ethologists have largely investigated the interaction between path integra-
tion and landmark cues for spatial navigation (Etienne and Jeffery 2004). Numerous
behavioural studies involved homing tasks in which animals had to perform hoarding
excursions and then return home with the collected food. One method to distinguish
the idiothetic and allothetic determinants of the animals’ homing behaviour consists of
setting a conflict between environmental (proximal or distal) landmarks and self-motion
cues. Then, observing the homing vector makes it possible to assess the relative influ-
ence of allothetic and idiothetic information. Etienne et al. (1990) examined the hom-
ing behaviour of golden hamsters during hoarding trips within a circular open arena
(Fig.2.2c). During training, a stable distal spotlight provided a unique visual landmark
on an otherwise dark background. Other allothetic cues (e.g., tactile and olfactory stim-
uli) were masked. In probe trials, hamsters were guided in the dark from the nest (a
box located at a fixed peripheral position) toward a feeding location at the centre of
the arena. During the uptake of food, visual and self-motion information were set in
conflict by rotating the spotlight (either by 90° or 180° relative to its standard position)
and turning it on. The authors reported that animals tended to return home following
compromise homing vectors whose visual component dominated over the self-motion
component in the case of 90° conflicts (Fig. 2.2c, centre). By contrast, when the di-
vergence between the two types of information was further increased (i.e., 180°) the
path integration component became predominant (Fig. 2.2c, right). In another series of
experiments, Etienne et al. (2000) tested the realignment of the path integrator relative
to distal landmarks. The arena and the peripheral home base were both rotated before
each hoarding excursion. Then, in the darkness, the hamsters were guided from the
rotated nest toward a feeding location along a two-leg (L-shaped) journey. Under this
condition, the subjects mainly relied on their internally generated homing vector and
returned to the new rotated home base. By contrast, if the environmental lights were
briefly turned on at the end of the first outward leg and then switched off again, the
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animals tended to return to the original un-rotated home location, suggesting that a
reset of the path integrator had occurred on the basis of the (unchanged) visual cues.

2.2 The neural bases of spatial learning

In addition to behavioural studies, an extensive body of electrophysiological work has
been done to investigate the neural bases of animals’ spatial learning capabilities. Ex-
tracellular single-neuron recordings have largely focused on the properties of pyramidal
neurons in the hippocampal formation. This limbic region has been thought to mediate
spatial memory functions ever since location-sensitive cells (Fig. 2.3a) in the hippocam-
pus of freely moving rats were found (O’Keefe and Dostrovsky 1971). These neurons,
termed hippocampal place (HP) cells, are likely to provide a spatial representa-
tion in allocentric (i.e., world centred) coordinates, thus providing a ‘cognitive map’
to support flexible navigation (e.g., O’Keefe and Nadel 1978; Leonard and McNaughton
1990; Poucet 1993; Jaffard and Meunier 1993; McNaughton et al. 1996; Burgess and
O’Keefe 1996; Redish 1999; Lenck-Santini et al. 2001; Fyhn et al. 2004; Hafting et al.
2005). Furthermore, since the spatially selective responses of HP neurons might result
from the projection of contextual (relational) memories onto the two-dimensional loco-
motion space of the animal, a role for the hippocampal formation in a larger class of
memories, namely episodic memory, has been suggested (e.g., Burgess et al. 2002;
Fortin et al. 2002).

The hippocampal formation is well suited for subserving the integration of
multimodal spatial information into a unified representation. It receives afferents
from numerous subcortical regions (e.g., brainstem, amygdala, septum) via the fornix
fibre bundle, and it is the recipient of highly processed sensory-motor signals conveyed
by neocortical areas mainly via the entorhinal cortex (Witter 1993). Among the neo-
cortices projecting onto the hippocampus, the parietal lobe seems, for example, to be
involved in spatial cognition (Burgess et al. 1999; Save and Poucet 2000). Inputs from
sensory receptors and motor effectors, likely to be encoded within different egocentric
frameworks, reach the parietal lobe from sensory cortices like visual, sensory-motor,
and somatosensory areas. Then, these multiple egocentric representations converge
from the parietal cortex onto the hippocampal formation in which they might be trans-
lated into an allocentric spatial reference frame. According to this theory, the parietal
cortex and the hippocampus might cooperate by promoting the egocentric and allocen-
tric components of a navigation task, respectively (Burgess et al. 1999).

Binding of multiple egocentric representations into a unified allocentric frame-
work may occur via correlational learning. According to Hebb’s postulate (1949), it
is now admitted that correlated spiking of pre- and post-synaptic neurons can result in
strengthening or weakening of synapses, depending on the temporal order of spiking.
The activity-dependent long-term synaptic plasticity in the hippocampus constitutes a
mechanism suitable for this type of learning (Morris and Frey 1999). Both pharma-
cological and genetic approaches have shown that hippocampal NMDA (N-methy-
D-Aspartate) receptors are required for the induction of hippocampal long-term
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Figure 2.3: (a) Sample of receptive field of a place cell recorded from the rat hippocampus. The
plots show the mean discharge of the neuron (blue and yellow denote peak and baseline firing rates,
respectively) as a function of the animal position within the environment (a cylindrical arena with a cue
card attached to inner wall). The location-selective response of the cell is controlled by the cue card in
that rotating the card by 90° induces an equivalent rotation of the receptive field. Adapted from Muller
and Kubie (1987). (b) Sample of tuning curve of a head direction cell recorded in the rat anterodorsal
thalamic nucleus. The polar plots indicate that the cell has a unique ‘preferred’ direction and that the
response of the cell is controlled by the visual landmark. Data by Arleo and Wiener. (c) Interrelation
between visual and self-motion cues in controlling place (left) and head direction (right) cells. Plots
indicate the angular deviations of the responses of place and head direction cells relative to the visual
landmark in the case of small (45°) and large (135° — 180°) conflicts, and for fast and slow induction
of the conflict. The angular deviation of 0°, indicating the absolute control of the visual landmark over
the cells’ response, is plotted at the 12 : 00 position. Dots indicate individual trials, whereas arrows are
averages over all trials. Adapted from Knierim et al. (1998). (Taken from Arleo and Rondi-Reig 2005)
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potentiation (LTP), a temporally correlational learning process that can be under-
stood in terms of Hebbian synaptic modification (Collingridge et al. 1983; Morris
et al. 1986; Tsien et al. 1996). NMDA-mediated plasticity in the recurrent connec-
tions of the CA3 hippocampal region is crucial for the rapid encoding of novel experi-
ences (Lee and Kesner 2002). CA3-NR1-knockout mice are deficient in acquiring novel
place/reward information, and CA1 HP cells in these animals are significantly impaired
when recorded in a novel environment (e.g., Nakazawa et al. 2002).

Complementing the allocentric place responses of hippocampal neurons, head di-
rection (HD) cells provide an allocentric representation of the orientation of the
animal (Ranck 1984; Wiener and Taube 2005). The discharge of these neurons is
highly correlated with the direction of the head of the animal in the azimuthal plane,
regardless of the orientation of the head relative to the body, of the animal’s ongoing
behaviour and of its spatial location (see Taube 1998, for a review). Each HD cell is
selective for one specific ‘preferred’ direction (Fig. 2.3b), and the preferred directions
of a population of HD cells tend to be evenly distributed over 360°. Direction-sensitive
neurons have been found in numerous brain regions centred on the limbic system,
including postsubiculum (Ranck 1984; Taube et al. 1990a), anterodorsal thalamic nu-
cleus (Blair and Sharp 1995; Taube 1995), lateral mammillary nucleus (Stackman and
Taube 1998), retrosplenial cortex (Chen et al. 1994), and dorsal tegmental nucleus
(Sharp et al. 2001). Similar to the HP cell system, the HD circuit receives multimodal
afferent information, including angular self-motion signals from the medial vestibular
nucleus and visual inputs from neocortical areas (e.g., parietal cortex).

2.3 Allothetic vs idiothetic control of head direction
and hippocampal place cell activity

The discharge of HP and HD cells is determined by the interaction between allothetic
and idiothetic cues. Several studies have attempted to identify the nature of the signals
relevant for the establishment and maintenance of their firing properties (see Best et al.
2001 for a review).

The responses of HP and HD cells are anchored to visual landmarks of the
environment (e.g., O'Keefe and Conway 1978; Muller and Kubie 1987; O’Keefe and
Speakman 1987; Taube et al. 1990b; Bostock et al. 1991; Knierim et al. 1998; Zugaro
et al. 2003). A classical experimental apparatus employed to record HP and HD cells
consists of a black cylindrical arena in which the rat freely moves while searching for
chocolate pellets. The high walls of the cylinder prevent the animal from seeing out-
side the arena. A large white card, attached to the inner wall of the otherwise black
cylinder, is used as a unique salient visual cue. Data show that rotating the white card
causes an equal rotation of the receptive fields of HP and HD cells (Fig. 2.3a,b). More
generally, experimental findings indicate that distal (background) visual cues tend
to dominate over proximal (foreground) visual cues in controlling HP (Cressant
et al. 1997) and HD cells (Zugaro et al. 2001; Zugaro & Arleo et al. 2004). The
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dominance of background cues may be due to the fact that they provide more stable
references than proximal landmarks as the animal moves around. Consistent with this
hypothesis, the more stable an animal perceives an allothetic cue to be, the higher
its influence upon HP and HD cell dynamics (Biegler and Morris 1993; Knierim et al.
1995hb; Jeffery 1998).

Despite their dependence on exteroceptive signals, both HP and HD cells can main-
tain stable location and direction tunings for several minutes in the absence of environ-
mental landmarks (Muller and Kubie 1987; Quirk et al. 1990; Chen et al. 1994; Markus
et al. 1994), which suggests an important role for idiothetic cues. HP and HD
cells continue to discharge when the animal moves about in complete darkness (see
Wiener and Arleo 2003 for a review on persistent activity in limbic neurons). Also, the
location-selective responses of HP cells can develop in blind animals exploring a novel
environment (Hill and Best 1981). Save et al. (1998) studied the HP cell activity in
blind rats and found receptive fields and response specifics (e.g., spike parameters)
very similar to those recorded from sighted rats. The only major difference concerned
the mean peak firing rates that were prominently lower in HP cells from blind animals.
Vestibular information seems to be important for maintaining the selectivity properties
of HP and HD cells (Stackman and Taube 1997). Also, motor signals influence the dy-
namics of both types of cells, since HP and HD neurons exhibit a dramatic attenuation
of their responses if the animal is tightly restrained (Foster et al. 1989; Taube 1995).

Recently, electrophysiological studies of HP and HD neurons have focused on the
interaction between idiothetic and allothetic cues and their relative importance under
different experimental conditions. Knierim et al. (1998) made self-motion and visual
cues incongruent (by rotating the animal and a salient familiar landmark relative to
each other) and recorded both HP and HD cells before and after the onset of the con-
flict (Fig.2.3c). For small angular mismatches (45°) between idiothetic and landmark
information, the responses of HP and HD cells remained anchored to the visual stim-
ulus. When larger discrepancies (180°) were induced by slow continuous rotations,
the landmark still controlled the cell responses. By contrast, for sudden large (180°)
rotations, either HP and HD cells followed the landmark, or self-motion cues predom-
inated, or a reorganisation (remapping) of HP fields occurred. Jeffery and O’Keefe
(1999) further examined HP cell responses in the presence of 180° conflicts and found
that the ability of visual cues to dominate self-motion signals might depend on the ‘con-
fidence’ of the idiothetic information. When animals were prevented from visual update
for about three minutes while the conflict was introduced, the visual landmark tended
to predominate. Conversely, when animals underwent visual isolation during only 30 s,
a marked attenuation of the visual control was observed.

Finally, HD cells maintain their directional coding even after the removal of land-
marks, but their preferred directions may drift over time (Taube 1998). When landmarks
are put back to its standard position, HD cells tend to realign their preferred directions
with the external reference (Goodridge et al. 1998). However, this resetting does not
always occur during subsequent light-dark-light recording phases (Knierim et al. 1998).
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Chapter 3

Spatial Learning and Navigation in
Neuromimetic Systems

Preface. | began to study the mechanisms underlying the spatial learning capabilities of ani-
mals during my stay at the Laboratory of Computational Neuroscience at the Ecole Polytech-
nigue Fédérale de Lausanne, EPFL, (Ph.D. studentship 1997-2000). Under the supervision of
W. Gerstner, | developed a model belonging to the class of computational approaches termed
neuromimetic, in the sense their main principles take inspiration from behavioural, anatomo-
functional, and neurophysiological findings. The model focused on the properties of hippocam-
pal place (HP) cells and head direction (HD) cells, and addressed two overall issues: (i) How
can animals establish stable allocentric spatial representations based on locally available mul-
tisensory inputs? (i:) How can HP and HD cells serve as a basis for goal-oriented navigation?
The spatial learning model was validated on a mobile robot by adopting experimental proto-
cols similar to those employed for rat experiments. These robotic experiments showed that as
long as the system was capable of combining allothetic and idiothetic cues to drive HP and HD
cells, the generated space code was stable over time, and goal-oriented navigation could be
performed in a straightforward manner based on a reward-dependent learning scheme.

From 2001 onwards, the model has been extended and improved thanks to the collaboration
with: (i) J.-A. Meyer and A. Guillot of the Animatlab (University Paris VI) who allowed me to
co-supervise several student projects (including an ongoing Ph.D. work, see d’Erfurth et al.
2005), and who employed the above spatial learning system as a module for their ICEAbot
navigation system (EU Integrated Project funded for the period 2006-2010); (i) W. Gerstner
(Laboratory of Computational Neuroscience, EPFL) who used the original model as a basis for
three Ph.D. projects (Strosslin et al. 2002; Chavarriaga and Gerstner 2004; Chavarriaga et al.
2005; Strosslin et al. 2005; Sheynikhovich et al. 2005).

This chapter reviews the main model features and presents some relevant results. The
reader is referred to the reprints of Arleo and Gerstner (2000b), Arleo and Gerstner (2001), and
Arleo et al. (2004) in Appendix C for further details.
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3.1 Binding of allothetic and idiothetic information for
robust spatial learning

The perspective of emulating the spatial navigation capabilities of animals has given
rise to a large number of bio-inspired (or neuromimetic) spatial learning models (see
reviews in Arleo 2000; Arleo and Gerstner 2005). A few of these computational models
were validated by means of robotic platforms (e.g., Burgess et al. 1994; Schoélkopf and
Mallot 1995; Trullier and Meyer 2000; Gaussier et al. 2002). These control architec-
tures relied solely on vision to elaborate space representations allowing the robot (often
referred to as ‘animat’) to self-localize. The model outlined here provides an example
of spatial learning system stressing the importance of integrating allothetic cues (vi-
sual landmarks) and idiothetic (self-motion related) signals (Arleo and Gerstner 2000b;
Arleo and Gerstner 2001; Arleo et al. 2004). In the model, these two sensory streams
were combined by means of unsupervised Hebbian learning to generate stable head
direction (HD) and hippocampal place (HP) cell representations (Fig./3.1). Then, goal-
oriented navigation was obtained via a reinforcement learning scheme that mapped
places onto allocentric local actions based on reward-dependent signals.

3.1.1 Modelling head direction cells

The circuitry of the HD cell model (Fig. [3.1) involved the postsubiculum (PoSC), the
anterodorsal nucleus (ADN) of the thalamus, the lateral mammillary nucleus (LMN),
and the dorsal tegmental nucleus (DTN). Each anatomical region was modelled by a
population of formal spiking neurons with evenly distributed preferred directions relative
to an absolute directional reference (Degris et al. 2004).

In the model, the dynamics of the HD system was primarily determined by
the integration of angular velocity signals that permitted to maintain an estimate
of the animat heading over time. The formal DTN and LMN populations constituted a
distributed attractor-integrator network (Amari 1977; Ermentrout 1998) to bear, at
any time, a stable directional state corresponding to a gaussian-shaped activity profile
in which a subpopulation of LMN units with preferred directions discharged tonically,
whereas the others exhibited a very low baseline frequency (Fig. [3.2). This attrac-
tor state persisted in the absence of any sensory input (e.g., when the animat was
immobile in darkness). The angular velocity signal entering the circuit via DTN was in-
tegrated over time through the DTN-LMN interaction. This yielded a shift of the activity
profile over the continuous attractor state space and provided an ongoing neural trace
of the animat’s orientation. The direction representation encoded by the LMN ensem-
ble activity was transmitted to the PoSC via the ADN network. In the model, the PoSC
constituted the output interface of the HD system. In order to reconstruct the robot’s
current heading, a population vector decoding scheme was applied (Georgopoulos
et al. 1986). That is, the direction was estimated by taking the centre of mass of the
PoSC activity profile.

The integration of the angular velocity signal was affected by a cumulative error
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Figure 3.1:  Overview of the spatial learning model. The system processed idiothetic and allothetic
sensory inputs in parallel. The spatial information extracted from these two processing streams was
combined by means of LTP-LTD Hebbian learning to generate place and directional coding. Goal-oriented
navigation was achieved by mapping places onto allocentric locomotor actions by means of reward-based
learning. The HD model (blue module) included the postsubiculum (PoSC), the anterodorsal thalamic
nucleus (ADN), the lateral mammillary nucleus (LMN), and the dorsal tegmental nucleus (DTN). Arrows
and circles indicate excitatory and inhibitory projections, respectively. Head angular velocity signals
entering the system via the DTN and were integrated over time by the DTN-LMN attractor-integrator
network. Visual signals entered the system via a population of formal units (VIS) encoding the agent’s
egocentric bearing relative to a visual landmark. In the hippocampal place cell model (green module),
the visual pathway included a set of Gabor filters for image processing, a network of formal cells (VC)
to encode views, and a population of vision-based place cells (ViPC). The idiothetic pathway included
the path integrator and a network of units (PiPC) encoding locations based on self-motion signals only.
ViPC and PiPC were combined to form a stable space representation in the CA3-CA1 layer of the model.
(Adapted from |Arleo and Gerstner 2005)
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Figure 3.2: A sample of population activity pattern in the LMN layer of the model. Each cell has a
specific preferred direction and the set of all preferred directions covers the 360° uniformly. In the figure,
each formal cell is represented by a black circle and the whole population forms a ring in the x-y plane.
The mean firing rate of each formal HD cell is proportional to the height of the vertical bar below the
black circle. (Taken from |Arleo and Gerstner 2001)

which could rapidly disrupt the HD coding. The gray area in Fig. 3.3a shows the mean
deviation between the animat’s actual heading and the direction estimated by the HD
system over time. Static visual information was employed to modify the intrinsic
dynamics of the system in order to (i) prevent the angular velocity integrator from
cumulative error, and (ii) polarise the directional representation whenever the
animat entered a familiar environment. Let L denote a distal visual landmark and
let VIS be the population of formal units encoding the animat’s egocentric bearing o
relative to L. At any time ¢, the ensemble VIS activity was characterised by a gaus-
sian profile whose centre of mass estimated the egocentric angle «(t). The synaptic
projections from VIS to PoSC cells were established by means of a Hebbian learning
rule that correlated the egocentric signal encoded by VIS cells with the allocentric HD
representation encoded by PoSC cells. A corollary effect of applying this Hebb rule
was that only those visual cues that were perceived as stable by the animat could be
strongly coupled with its internal directional representation (see Sec. 3.2.2). The black
area in Fig. represents the mean HD reconstruction error when the system was
calibrated by a stable visual input. In contrast to the purely idiothetic coding (gray area),
the representation obtained by combining visual and self-motion signals displayed an
error that remained bounded over time. Finally, Fig. shows an example of tracking
of the robot’s ongoing heading by means of the HD model signal.

3.1.2 Modelling hippocampal place cells

In the model, spatial learning occurred via two processing streams that drived
two hippocampal place (HP) cell populations and produced two parallel spatial rep-
resentations: a place code based on visual landmark information (ViPC), and a
representation obtained by path integration (PiPC) (see Fig.3.1).
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Figure 3.3: (a) Mean error over time when estimating the animat’s heading based on the HD coding.
The gray region represents the angular deviation resulting from idiothetic-based dynamics alone. The
black area shows that the error remains bounded when visual signals are used to calibrate the HD system
occasionally. (Taken from Arleo and Gerstner 2001) (b)Example illustrating the ability of the HD system
to track the robot’s heading over time. The solid line represents the robot’s current orientation, whereas
the dashed line is the direction encoded by the HD cells. (Original source Arleo 2000)

Vision-based place coding was a three-step process. First low-level features were
extracted by sampling each image by means of a family of local visual filters (Fig.3.4a,b).
Second, the responses of the filters were combined to drive a population of units whose
activity became correlated to more complex spatial relationships between visual fea-
tures. We called these units ‘view cells’ (VCs) because they provided a neural encoding
of the views perceived by the animat. However, the activity of the VCs was not invari-
ant with respect to the animat’s gaze direction and position. Therefore, the third step
to achieve vision-based space coding consisted of combining multiple gaze-dependent
views at each animat’s position. This combination produced a local view encoding the
spatial relationships between the perceived visual cues and generated allocentric place
cell activity (Fig. 3.4c).

As discussed in Chapter 2, unimodal allothetic information is prone to perceptual
aliasing and can lead to ambiguous space representations. Indeed, due to visual
aliasing, the vision-based place cells could have multiple subfields and could
not differentiate spatial locations effectively (Fig. [3.4c, third plot from the left). As
a consequence, the accuracy of the vision-based representation was not uniformly
distributed over the surface explored by the simulated animal (Fig. 3.4d,e).

In the model, path integration (Mittelstaedt and Mittelstaedt 1980; Etienne and
Jeffery 2004) was employed to compensate for ambiguities in the visually driven
place coding. The navigator integrated its linear and angular displacements over
time to generate an environment-independent representation of its position relative to
a starting point. Such a dead-reckoning mechanism was used to drive a population
of cells (PiPCs) whose activity depended on self-motion signals only (i.e., it provided
a space coding based solely on idiothetic information). PiPCs had preconfigured
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Figure 3.4: Vision-based place coding. (a) A sample image taken by the robot while exploring an
open-field square environment. (b) The receptive fields of a set of filters used to sample the images and
detect low-level visual features (the ten filters correspond to the first ten principal components, numbered
from left to right, top to bottom, obtained by applying the learning algorithm proposed by Sanger 1989).
The model was also tested by employing a set of Gabor filters and a retinotopic sampling method. (c)
Some samples of vision-based place fields. The squares represent overhead views of the environment. The
mean firing rate of each recorded cell was plotted as a function of the locations visited by the robot (red
regions denote high activity). Due to visual aliasing, some cells exhibited multipeak receptive fields (third
plot from the left). The three-dimensional diagram suggests that visually driven place cells tended to have
rather high baseline firing rates. (d) Accuracy of the vision-based place representation. By averaging
the error function over the whole environment, we obtain a mean position error of about 60mm. (e)
In the model, the reliability of the visual space coding is assessed by measuring the dispersion of the
ensemble activity around the center of mass (computed by population coding). The diagram shows the
correlation between this dispersion measure and the vision-based position reconstruction error (number
of data points: 4600, correlation coefficient: 0.67). The robot utilises such an on-line reliability criterion
to select those local views that are suitable for calibrating its path integrator. (Taken from Arleo and
Rondi-Reig 2005)
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Figure 3.5: Place cell coding based on multisensory integration. (a) Samples of model place fields
obtained by combining vision and path integration. They did not exhibit multiple subfields and had very
low baseline firing (right diagram). (b) The animat used the ensemble HP cell activity to self-localize.
The diagram shows an example of population activity when the robot was located at the upper-right
corner of the arena. (c) In the absence of visual information (e.g. in the dark) place cell firing could
be sustained by the input provided by the path integration signal. The figure illustrates the population
activity recorded in the dark when the robot was approximately at the centre of the arena. (Taken from
‘Arleo and Rondi-Reig 2005)

metric interrelations within an abstract allocentric reference frame S’ that was
mapped onto the physical space S according to the animat’s entry position and
the absolute directional reference provided by HD cells. As discussed below, dur-
ing spatial learning the animat coupled the activity patterns of PiPCs with the local
views encoded by ViPCs. This allowed the system to learn a mapping function S’ — S
such that PiPCs could maintain coherent firing patterns across different entries in a
familiar environment.

The efferents of the two place cell populations (driven by vision and path integra-
tion, respectively) converged onto a third downstream network of HP cells (CA3-CAl
cells, Fig.3.1). Hebbian learning, inducing both long-term synaptic potentiation (LTP)
and depression (LTD), was employed to combine allothetic and idiothetic informa-
tion based on the agent-environment interaction. This generated a stable space
representation consisting of localised place fields similar to those found in hippocam-
pal CA3-CALl regions (Fig.|3.5a). These place fields were less noisy than those solely
driven by vision and did not exhibit multi-peak fields, meaning that the system over-
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came the sensory aliasing problem of purely vision-based representations.

The goal of the spatial learning process was to generate a large population of over-
lapping place fields covering the two-dimensional space uniformly and densely. The
navigator utilised this ensemble HP cell activity to self-localise (Fig. 3.5b). Popula-
tion vector decoding scheme (Georgopoulos et al. 1986; Wilson and McNaughton
1993) computed the centre of mass of the ensemble activity pattern to estimate the
animat’s current position. The use of the population activity, rather than single cell
activity, helped in terms of stability and robustness of the self-localisation process.

In the model, a place map could emerge and persist even in the absence of vi-
sual information (e.g., in darkness conditions). This property is consistent with the
experimental observation that hippocampal place fields can arise in darkness (Quirk
et al. 1990). Since the activity of the modelled HP cells relied on convergent excita-
tion from both vision and path integration, their mean peak firing rates were lower in
vision-less conditions than when the animat could use visual spatial cues (Fig. 3.5c).
The reduced firing activity of the HP units of the model in darkness conditions
is in agreement with the experimental findings indicating that HP cells recorded from
blind rats exhibit lower discharge frequencies than those observed in sighted animals
(Save et al. 1998).

The model postulated a role for the medial entorhinal cortex (MEC) as a possible
anatomical locus for the path integration based (PiPC) representation. Experimental
data suggest that the place field topology of location-sensitive cells in MEC does not
change across different environments (Quirk et al. 1992). The model proposed also
that the lateral entorhinal cortex might be involved in allothetic space coding, suggest-
ing it as a possible locus for the ViPC space representation. The entorhinal cortex con-
stitutes the main ‘cortical gate’ to the hippocampal formation, in the sense it receives
highly processed inputs, via the perirhinal and parahippocampal cortices, from several
neocortical associative areas (e.g., the parietal lobe) and conveys such information to
the hippocampus via the perforant path (Witter 1993).

3.2 Maintaining allothetic and idiothetic information
coherent over time

3.2.1 Exploring a novel environment

The animat initially explored an unfamiliar environment by relying upon path integration
only. As exploration proceeded, local views (encoded by the visually driven ViPCs)
were coupled (by means of LTP/LTD correlational learning) to the spatial framework
provided by the path integrator such that vision and self-motion signals could coop-
erate to form the hippocampal space code (i.e., the CA3-CALl place representation).
However, to maintain this allothetic-idiothetic coupling coherent over time, the path in-
tegrator must be prevented from accumulating errors. In order to do that, the animat
adopted an exploration strategy consisting of looped excursions (i.e., outward and
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Figure 3.6: Exploratory behaviour and path integration (PI) calibration. (a) To establish a coherent
allothetic-idiothetic coupling, the robot started exploring a novel environment (in this example a square
arena) by means of looped excursions centred at the starting location. (b) Example of rat’s behaviour
at the beginning of exploration in a novel circular environment (data issued from a collaboration with
C. Brandner, Inst. of Psychology, Univ. of Lausanne, Switzerland). (c) Uncalibrated (red curves)
and calibrated (blue curves) mean PI error (thin lines are raw data, whereas thick lines are polynomial
fittings). The red curves show that this mean PI error tended to grow over time. By contrast, if the
system used the vision-based place representation to calibrate the PI occasionally, this error remained
bounded over time (blue curves). (Taken from Arleo and Rondi-Reig 2005)

homing journeys) centred at the starting location (Fig.(3.6a). During an outward ex-
cursion the system acquired new spatial knowledge and updated its space code. After
a while, it started following its homing vector and as soon as it arrived and recognised
a previously visited location (not necessarily the starting location), it utilised the vision-
based representation to realign the path integrator. Once vision had calibrated the
path integrator, a new outward excursion was initiated. By iterating this procedure the
robot could keep the dead-reckoning error bounded (Fig. 3.6c), and propagate explo-
ration over the entire environment (the probability of calibrating the path integrator at
locations other than the starting region increased over time). Behavioural findings con-
cerning the locomotion of rodents exploring novel environments (Drai et al. 2001) (also
Brandner and Arleo, unpublished results) show a typical exploratory pattern consisting
of looped excursions centred at their home base (Fig. [3.6b). The model postulated
that maintaining the idiothetic and allothetic signals mutually consistent might



24 CHAPTER 3. Spatial Learning and Navigation in Neuromimetic Systems

be one of the factors determining such a loop-based exploratory behaviour of
animals.

3.2.2 Importance of landmark stability

The LTP-LTD Hebbian learning used to couple external and internal represen-
tations made stable visual configurations more likely to be correlated to self-
motion signals than unstable ones (Fig. 3.7a). As a consequence, only those visual
configurations that were taken as stable by the animat could influence the dynamics of
the space coding process. Stable landmarks could polarise the allocentric representa-
tion across different entries in an environment. This polarisation helped the system to
realign the allothetic and idiothetic components of its directional and spatial code and,
then, to reactivate a previously learned description of a familiar environment. Failure of
such a reactivation process might result in creating a new superfluous representation
(Knierim et al. 1998).

In a series of robot experiments (Arleo and Gerstner 2001) the constellation of
visual cues was kept stable during spatial learning. Then, the path integrator was
reinitialised randomly (simulating a disorientation procedure) and the robot was placed
back in the familiar environment. Since the system learned a stable coupling between
the idiothetic and allothetic signals, the robot could use the visual information to an-
chor its allocentric spatial representation, reset its path integrator, and reactivate the
previously learned place map (Fig. 3.7b, top row). In a second series of experiments,
the constellation of visual cues underwent arbitrary rotations during spatial learning.
Thus, the Hebbian learning scheme failed to establish stable correlations between id-
iothetic and allothetic inputs. As a consequence, when the robot was disoriented and
placed back in the explored environment, it was unable to reactivate the learned spatial
representation properly and intersession remapping occurred (i.e., HP cell response
patterns varied across subsequent visits of the same environment, (Fig.[3.7b, bottom
row). These results are in agreement with those reported by Knierim et al. (1995a)
who recorded HP cells and HD cells from freely moving rats.

Finally, notice that because the realigning procedure relied on the allothetic-idiothetic
coupling established by the robot via Hebbian learning, impairing this latter mechanism
would also lead to unstable intersession representations (i.e., remapping). This result
is consistent with experimental findings showing that animals with impaired hippocam-
pal LTP exhibit stable place cell firing patterns within sessions, but unstable mapping
between separate runs (Barnes et al. 1997).

3.2.3 Conflict situations

In the above experiments the animat used external visual fixes to recalibrate an other-
wise untrustworthy path integrator (e.g., after disorientation or because of cumulative
integration error). Here we consider the situation in which stable allothetic inputs and
reliable idiothetic signals provide conflicting spatial information. In the model, the rel-
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Figure 3.7:  Interaction between visual and self-motion signals. (a) Due to Hebbian learning, the
larger the stability of a visual cue configuration, the strongest its coupling with the path integration-based
representation (triangles are sampled data, the curve is a polynomial fitting). (b) Intersession responses
of one formal HD cell and one HP cell after spatial learning. At the beginning of each probe session
the robot was disoriented. Top: Visual cue configurations that remained stable during spatial learning
were able to polarize HD and HP firing at the beginning of each probe session. The cells reoriented
their receptive fields according to the 90° visual cue rotations (the asterisk indicates the centroid of the
visual cue configuration). Bottom: Unstable visual cues did not allow the disoriented robot to reactivate
coherent representations across sessions and remapping might occur. (Adapted from Arleo and Gerstner
2005 and Arleo and Rondi-Reig 2005)

ative importance of coupled external and internal spatial cues was a function of:
(i) the degree of confidence of the robot about its self-motion signals; and (i)
the degree of discrepancy between allothetic and idiothetic spatial information.
A series of tests was run inspired by the behavioural experiments by Etienne et al.
(1990), who studied the homing behaviour of hamsters in perceptual conflict situations
(see Chapter|2, Sec.|2.1/for a discussion of these experiments). First, we let the animat
learn the coupling between a stable visual configuration and its path integrator. Then,
during testing, we created both a 90° and a 180° conflict between external and internal
cues and examined the homing behaviour of the robot. Results in Fig. (top row)
show that when a 90° conflict occurred the visual component tended to influence the
robot’s homing trajectory more than self-motion signals. By contrast, for 180° conflicts
(Fig.|3.8a, bottom row) the system’s response was twofold: if the robot had not been
disoriented, then its homing behaviour was mainly determined by self-motion signals
(bottom row, central plot); on the other hand, if the robot had been disoriented, then it
relied on allothetic spatial information even for large discrepancies (i.e., 180°) between
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Figure 3.8: Conflict situations between vision and path integration. (a) During spatial learning the
visual cue configuration was maintained stable. The protocol for the probe trials includes: (i) An outward
journey during which the robot moved directly from its home base to the centre of environment in the
dark. (#1) A ‘hoarding’ phase during which the robot actively rotated on the spot for a random amount
of time (both the amplitude and the sign of the rotation were selected randomly). During hoarding,
the visual cue configuration was rotated by either 90° or 180° and the light was switched on. (i) A
backward journey during which the robot must compute the homing vector to return home. A conflict
occurred between vision and path integration (dashed and continuous arrows, respectively, in the first
column). The thick arrows in the second and third columns indicate the resulting mean homing behavior
of the robot averaged over ten trials (black dots). In the case of nondisoriented robot (second column),
the familiar visual cues tended to influence the robot’s behaviour when a 90° conflict occurred. By
contrast, the visual control vanished when the conflict was further increased (i.e., 180°). If the robot was
disoriented during the hoarding phase (third column), visual cues predominated for both 90° and 180°
conflicts. (b) The response of the robot to a 180° conflict depended on its confidence about the path
integrator. (Taken from Arleo and Rondi-Reig 2005)
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allothetic and idiothetic cues (bottom row, right plot). Finally, Fig. 3.8b shows the av-
erage response of the robot to a 180° conflict situation as a function of the degree of
confidence about its path integrator. The diagram indicates that as long as self-motion
information was given confidence above chance, the animat tended to use it to perform
homing behaviour. If the confidence went below chance, then a priority switch occurred
and visual information became predominant.

3.3 Action learning: goal-oriented navigation

The above spatial learning model enabled the animat to self-localise based upon the
ensemble firing of a population of HP cells. But, how can the place field representation
support goal-oriented navigation? In the model, HP cells drove a downstream popu-
lation of extra-hippocampal action cells whose ensemble activity mediated allocentric
motor commands and guided navigation (Fig. [3.1) (Arleo and Gerstner 2000a; Arleo
et al. 2001; Arleo et al. 2004).

The navigation problem, then, was: how can the system establish a mapping
function M : P — A from the place cell activity space P to the action space A?
A reinforcement learning scheme (Sutton 1988; Sutton and Barto 1998) was employed
to acquire this mapping function based on the animat’s experience. The system in-
teracted with the environment and reward-dependent stimuli elicited the synaptic
changes of the connections from place units to action units in order to learn the
appropriate action-selection policy. After training, the system could relate any phys-
ical location to the most suitable local action to navigate toward the goal while avoiding
obstacles. This resulted in an ensemble pattern of activity of the action units that pro-
vided a navigational map to support goal-directed behaviour. Notice that because the
CA3-CA1 space coding solved the problem of ambiguous inputs or partially hidden
states, the current state was fully known to the system and reinforcement learning
could be applied in a straightforward manner.

Action learning consisted of a sequence of training paths starting at random po-
sitions and ending either when the animat reached the rewarding location or after
a timeout. At the beginning of each trial, the navigator determined its starting loca-
tion and orientation based upon its HP and HD representations, respectively. Then, it
started searching for the goal while improving its action-selection policy. Temporal dif-
ference (TD) reinforcement learning (Sutton 1988; Dayan and Sejnowski 1994; Sutton
and Barto 1998) was applied to allow the system to learn to predict the outcome of its
actions with respect to a given target. A prediction error was used to estimate the dif-
ference between the expected and the actual future reward when, at a given location,
the animat took a chosen action. Training enabled the system to minimise this error
locally. The convergence condition was that, given any state-action pair, the deviation
between the predicted and the actual reward tended to zero.

Goal-learning performance was measured in terms of: (i) the mean search
latency, i.e. the mean time needed by the robot to find the target, over training
trials; (i) the generalisation capabilities of the system, i.e. the ability to initiate
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Figure 3.9: Learning navigation maps. (a) Vector field representation of a navigation map learned by
the robot after only training trials. The target location is near the upper left corner of the environment.
Arrows represents the local motion directions encoded by the ensemble action cell activity after learning.
(b) Mean search latency as a function of training trials. The reward-based learning algorithm converges
after approximately ten trials. (c¢) Navigation task in the presence of one obstacle (gray object) and two
distinct targets, G nearby the bottom left corner and G2 nearby the bottom right corner. The vector
field was learned by the robot after thirty trials when searching for G;. (d) Partial navigation map for
G+ learned by the robot when focusing on G;. (e) Final navigation map learned by the robot after ten
trials when searching for G5. (Taken from|Arleo and Gerstner 2005)

goal-directed actions at locations never experienced during training. Fig.
shows a navigation map learned by the robot when the rewarding location was in prox-
imity of the upper left corner of a square environment. The map was acquired after only
five training trials and enabled the robot to navigate toward the goal from any position
in the environment. The vector field representation was obtained by rastering uniformly
over the environment and computing, for each sampled position, the local action (ar-
row) encoded by the ensemble action cell activity. Many sampled locations were not
visited by the animat during training, that is, the navigator was able to associate appro-
priate goal-oriented actions to never experienced spatial positions. The mean amount
of generalisation, defined as the percentage of sampled positions that were not visited
by the animat during training, is of about 45% for the map of Fig. 3.9a. This large
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generalisation property was mainly a consequence of the coarse coding state repre-
sentation provided by the CA3-CA1 place cells of the model. Fig. 3.9b shows the mean
search latencies as a function of training trials. The search latencies decreased rather
rapidly and reached the asymptotic value (corresponding to appropriate goal-directed
behaviour) after approximately ten trials. This convergence time is comparable to that
of rats solving the reference memory task in the Morris water maze (Steele and Morris
1999; Foster et al. 2000).

Fig.3.9c shows the navigation vector fields learned by the robot in the presence of
one obstacle and two distinct types of rewarding locations, GG; (simulating for instance
a feeder position located at the bottom left corner of the arena) and G, (simulating for
instance the location of a water reservoir at the bottom right corner). First, the robot
was trained to navigate toward G;. Fig. [3.9c represents the navigation map for G,
learned by the robot after thirty training trials. While optimising the navigation policy
for G, the robot might encounter the rewarding location G, and start learning a partial
navigation map for it, even if G, was not its current primary target. Fig. shows
the knowledge about GG, acquired by the robot while searching for G;. Thus, when G,
became the primary target, the robot did not start from zero knowledge and needed a
short training period to learn an optimal policy to navigate toward it. Fig.|3.9e displays
the navigation map acquired by the robot after ten training trials when searching for Gs.

Similar to the previous hypothesis by Brown and Sharp (1995), the model postu-
lated that the anatomical interaction between the hippocampus and the ventral
striatum, and in particular the fornix projection from the CA1 region to the nucleus
accumbens, might be a part of the system where the reward-dependent action
learning would take place. The nucleus accumbens seems involved in processing
information concerning goal-oriented behaviour (Tabuchi et al. 2000). Ventral striatal
neurons receive space coding information from the hippocampal formation and are
activated in relation to the expectation of rewards (Schultz et al. 1997). The pres-
ence of dopamine-dependent plasticity in the striatum suggests that dopamine
responses might be involved in synaptic adaptation yielding reward-based learn-
ing. In particular, dopamine neurons in the mammalian midbrain seem to encode the
difference between expected and actual occurrence of reward stimuli (Schultz et al.
1997). Thus, the temporal difference error used in the model to update the synap-
tic weights from CA3-CA1 cells to action cells may be thought of as a dopamine-like
teaching signal.



30

CHAPTER 3. Spatial Learning and Navigation in Neuromimetic Systems




Chapter 4

Head Direction Cells:
Electrophysiological Recordings and
Theoretical Modelling

Preface. During my stay at the Laboratoire de Physiologie de la Perception et de I'Action
(CNRS-College de France, Paris, post-doctoral fellowship 2001-2003, associate researcher
2003-2004), | had the opportunity to undertake a training on neurophysiology and extra-cellular
recordings from freely-moving rats. With the team directed by S. |. Wiener, we focused on
the discharge properties of anterodorsal thalamic head direction (HD) cells. The experiments
mainly investigated the interrelation between visual and inertial (e.g., vestibular) cues control-
ling HD cell responses. New insights were provided about (i) the update of the HD represen-
tation following reorientation of static landmarks (Zugaro et al. 2003); (i) the role of dynamic
visual information (e.g., optic field flow) in controlling HD cell activity (Zugaro & Arleo et al.
2004; Arleo et al. 2004; Arleo et al. 2006); (iii) the relationship between the discharge of HD
neurons and the theta EEG signal (Arleo et al. 2005; Arleo & Battaglia et al. 2005).

In parallel to cell recordings, | could also accomplish theoretical studies by supervising
undergraduate students and thanks to a collaboration (ACI Neurosciences Intégrative et Com-
putationnelles, 2001-2004) with N. Brunel (Lab. of Neurophysics and Physiology of the Motor
System, Univ. Paris 5). The objective of this theoretical work was to reproduce our experi-
mental data about the interaction between vestibular and visual signals, and to put forth new
hypotheses about the mechanisms underlying the HD cell properties. We studied the dynam-
ics of a population of HD cells by means of both analytical and numerical approaches, and we
focused on the generation and maintenance of their ensemble activity based upon a distributed
continuous attractor network without recurrent excitation (Boucheny et al. 2005).

This chapter reviews our main experimental findings about HD cell activity, and it also out-
lines the theoretical HD cell model and its principal results/predictions. The reader is referred to
the Appendix C for reprints of Zugaro et al. (2003), Zugaro & Arleo et al. (2004), and Boucheny
et al. (2005). (Notice that the articles Arleo & Battaglia et al. 2005, and|Arleo et al. 2006 could
not be included because still under submission procedure.)

31



32 CHAPTER 4. Head Direction Cells: Electrophysiological Recordings and Theoretical Modelling

4.1 Experimental work on head direction cells

As discussed in Chapter 2, head direction (HD) neurons fire selectively as a function
of the allocentric orientation of the head of the animal in the azimuthal plane (Ranck
1984; Taube 1998; Wiener and Taube 2005). Therefore, the HD cell system is likely to
constitute a physiological basis for the animals’ sense of direction. HD neurons can be
found in a network of interconnected brain structures which are anatomo-functionally
coupled to the hippocampal place cell network (Knierim et al. 1998). HD cells were first
electrophysiologically recorded in the rat postsubiculum (PoSC) (Ranck 1984; Taube
et al. 1990a), and then found in numerous other structures including the laterodorsal
thalamic nucleus (Mizumori and Williams 1993), the dorsal striatum (Wiener 1993),
the retrosplenial cortex (Chen et al. 1994), the anterodorsal thalamic nucleus (ADN)
(Taube 1995; Blair and Sharp 1995), the lateral mammillary nucleus (LMN) (Stackman
and Taube 1998), and the dorsal tegmental nucleus (DTN) (Sharp et al. 2001).

Each HD cell is selective for one specific ‘preferred’ direction, regardless of the
animal’s ongoing behaviour and position. The response curve of a HD cell can be
approximated by means of a Gaussian tuning profile. The preferred directions of a
population of HD cells tend to be evenly distributed over 360° such that the HD cell
system may work as an allocentric neural compass. Fig.|4.1a shows the tuning curves
of four HD cells we recorded simultaneously from the ADN of a freely-moving rat.

The intrinsic dynamics of the HD cell system seems to rely upon the integration
of self-motion inertial signals (e.g., vestibular information) (Taube 1998; Wiener and
Taube 2005). During head turns (both in light and in darkness conditions) the ensem-
ble activity profile, determined by the sub-population of HD cells active at a particular
time, varies according to the instantaneous head angular velocity. Thus, the HD cell
system seems to have the additional property of integration of head velocity signals
and provides an ongoing memory trace of the direction of the head.

Anatomical, electrophysiological, and lesion data suggest that LMN and DTN might
constitute an essential sub-circuit of the HD cell system for generating and main-
taining the HD signal (Blair et al. 1998; Bassett and Taube 2001b; Taube and Bassett
2003). This would yield the following ascending processing scheme: DTN — LMN
— ADN — PoSC. Lesions to DTN disrupt the directional selectivity in ADN (Bassett
and Taube 2001a). Bilateral lesions of LMN abolish the HD signal in ADN (Blair et al.
1998). The directional selectivity of POSC cells is seriously impaired when lesioning
ADN (Goodridge and Taube 1997), but lesions of the PoSC leave the signal in ADN
largely intact (Goodridge and Taube 1997). A further evidence for the above process-
ing pathway is provided by a series of studies that have investigated the temporal
properties of HD cells in LMN, ADN, and PoSC. During head turns, LMN neurons tend
to anticipate the future head direction by approximately 40 — 75ms (Stackman and
Taube 1998; Blair et al. 1998), ADN cells show a smaller anticipatory time delay of
about 25 ms (Taube and Muller 1998; Cho and Sharp 2001), and PoSC cells tend to
encode the current directional heading (Blair and Sharp 1995). The DTN-LMN circuit
seems also well suited to account for the additional property of the HD cell system
of integrating the head angular velocity. The DTN receives ascending inputs from the
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Figure 4.1: (a) Tuning curves of four simultaneously recorded ADN HD cells (left column: cartesian
representation of the discharge frequency as a function of head direction; right column: polar represen-
tation). Three cells were recorded on the same electrode while the fourth (with the lowest peak firing
rate) was recorded from another electrode. The red jagged traces are the actual firing rate histograms.
The blue lines are Gaussian best-fit approximations of the individual response curves. (b) The response
curves of the same four cells after a 90° clockwise rotation of a visual landmark. The four preferred
directions shifted coherently (—81°, —85°, —84°, and —90°) such that, after rotation, their mutual an-
gular deviations remained almost unchanged). This was consistent with all previous literature indicating
that the preferred directions of the HD cells always shift coherently, and thus that the shift in preferred
direction for one cell is indicative of the shifts for all other cells in the network. (Data Arleo and Wiener).

medial vestibular nucleus, directly and indirectly via the nucleus prepositus hypoglossi
(Liu et al. 1984; Bassett and Taube 2001b), and both DTN and LMN contain neurons
whose activity is correlated with the angular velocity of the head in the horizontal plane
(Bassett and Taube 2001Db).

Although the generation of the direction selective activity of HD neurons seems to
depend upon idiothetic signals, their responses can be influenced by various multisen-
sory signals and they are primarily anchored on stable visual cues of the environ-
ment (e.g., Blair and Sharp 1996; Stackman and Taube 1997; Goodridge et al. 1998;
Zugaro et al. 2001; Zugaro et al. 2001; Zugaro & Arleo et al. 2004; or see Wiener
and Taube 2005 for a review). Fig. 4.1b shows the control exerted by a salient visual
cue upon the preferred directions of the four HD cells recorded simultaneously. Notice
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Figure 4.2: (a)The experimental apparatus was a circular platform, enclosed by a black cylinder. A
large white card attached to the inner wall served as the principal visual cue. A reservoir at the center
of the arena permitted to deliver drops of water at specific time intervals. (b)In the first stage of the
experiment, the rat freely explored the platform. (c¢)A directional response curve was constructed by
associating neuronal discharges with smoothed corrected head position samples and then fitting the data
with a Gaussian function.

how the four responses are updated coherently to changes of the orientation of the
environmental cues. That is, the preferred directions of a population of HD cells
tend to rotate rigidly as a whole (such that the mutual deviations between preferred
directions remain unchanged, Taube 1998; Wiener and Taube 2005).

4.1.1 How rapidly are the HD cell responses updated after rotation
of visual landmarks?

Although this issue was already addressed by previous studies (Knierim et al. 1998;
Zugaro et al. 2000), the employed experimental protocols could not measure updates
occurring faster than 15 s, in contrast with theoretical results predicting update latencies
of few hundred ms (Zhang 1996; Redish 1999). The experiment outlined in this section
was performed to test this prediction (see the reprint of Zugaro et al. 2003 in Appendix
C for further details).

We employed the classical experimental setup depicted in Fig./4.2 and we adopted
the experimental protocol described in Fig.4.3. The main result of this study was the
following:

e a mean latency of 80 + 10 ms (Fig. 4.4, left column) was observed for a HD cell
to go from baseline to peak firing activity (i.e., for the establishment of a new
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cell had been determined, water drops were delivered to
the small reservoir at the centre of the cylinder to keep
the lightly water-deprived rats immobile with its head
oriented in the preferred direction while drinking. The
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positioned at the reservoir at the appropriate orientation,
and water was ceased as soon as it moved away from the
preferred direction. The solenoid valve that released the
water made a distinct clicking sound that likely served
as a cue. Notice that it was important to not apply any
physical restraint, which is known to depress directional
responses (Taube 1995). (b) The light was turned off,
and the card is rotated by 90° along the cylinder wall.
(c) The light was turned back on. This triggered a shift
in the directional response curve of the neuron since
this activity was anchored to visual cues (right panel).
! Accordingly there should be a marked decrease in firing
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‘ ! determined) preferred direction while drinking water from
! the reservoir, full response curves could not be sampled.
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Figure 4.3: Experimental procedure (see right column). (Taken from Zugaro et al. 2003)

bump following the reorientation event);

e on the other hand, we found that the cessation of activity after the cue card was
shifted away from its original orientation (i.e., extinction of the bump existing prior
the reorientation event) occurred at a slower rate: the return to baseline oc-
curred only after 140 + 10 ms (Fig. 4.4, right column).

A possible (theoretical) explanation for the longer latency observed when the firing
rates returned to baseline might be that recurrent inhibition triggering this decrease in
firing rates would occur after the increase in overall activity within the HD cell network
(see Sec.|4.2 about attractor network models of HD cells).

These results showed that, in ADN HD cells, preferred direction updates benefit
from very rapid processing of visual signals. The very short latencies observed are
consistent with the fact that ADN receives direct projections from the retina (Itaya et al.
1981; Ahmed et al. 1996) as well as indirect projections from the visual cortex via the
postsubiculum (Vogt and Miller 1983) and the retrosplenial cortex (Reep et al. 1994),
and that visual stimulation of the retina evokes field potentials in the primary visual
cortex with delays as brief as 30 — 40 ms (Galambos et al. 2000).
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Figure 4.4:  Latency of preferred direction updates in HDcells. Raster plots (above), peri-event
histograms (middle) and cumulative histograms (below) (binwidth = 10ms) of action potentials. Time
zero indicates when the lights were turned on again. After light onset, the preferred directions returned
to their initial orientations (a), or shifted to the rotated (non-preferred) orientations (b). To determine
the average latency of the preferred direction update, least squares estimates were computed from the
cumulative histograms using the first 250 ms of data after light onset (thick curves). Transition points
were at 80+ 10 msfor returns to the preferred orientation (a) and 140410 msfor shifts to the non-preferred
orientation (b). Brackets indicate trials from the same cell within a given session; the variations in spike
density among the rows of rasters reflects differences in peak and background firing rates among the
neurons. (Taken from Zugaro et al. 2003)

4.1.2 Head direction cells depend upon dynamic visual signals to
select anchoring landmark cues

Cressant et al. (1997) showed that background cues tend to prevail over foreground
cues in controlling hippocampal place cell responses. Likewise, Zugaro et al. (2001)
showed that HD cells tend to be anchored to visual landmarks only when these
are in the background. There is a clear adaptive advantage to selecting background
cues because they provide more stable (and then reliable) spatial information as the



37

Figure 4.5:  Experimental protocol. (a) The rats freely foraged for food pellets on an elevated
small platform (diameter 22 cm) located at the center of a cylindrical black curtain (diameter 3m). A
foreground card (height 60 ¢, distance 36 cm) and a background card (height 240 ¢m, distance 144 cm),
bearing two vertical white stripes, served as principal orienting cues. The cards’ respective sizes and
distances to the platform center were proportioned so that they occupied the same visual angles. They
were separated by 90°. (b) After an initial recording (top panel), the animal was removed from the
platform, and the two cards were rotated in opposite directions (bottom panel). The rat was then
disoriented in complete darkness and returned to the platform as the light was turned back on, and a
second recording began. Recording sessions including baseline and double cue rotations were conducted
in continuous or stroboscopic light (flashes at 1.5 Hz). (Taken from Zugaro & Arleo et al. 2004)

animal moves about. But how do HD cells discriminate between foreground and
background cues?

The psychophysical literature shows that relative depth in the visual field can be
detected on the basis of several different stimulus attributes, including accommoda-
tion, occlusion (objects blocked by others are more distant), texture contrast, shadows,
vergence and mechanisms like dynamic motion parallax (during displacements more
distant objects appear to move less rapidly). Known brain systems specialised for
detecting optic field flow could automatically confer the latter sensitivity on the HD sys-
tem; for example, the optokinetic system is more sensitive to optic flow at low, rather
than high, velocities (Hess et al., 1989). The experiment presented here was designed
to test the working hypothesis that ADN HD cells might distinguish anchoring
background cues on the basis of dynamic visual processes like motion parallax
detection (see reprint of Zugaro & Arleo et al. 2004 for details).

Fig. shows the experimental setup/protocol. A large card was placed in the
background, and a small card was placed in the foreground, near the small central
platform. The cards where identically marked, proportionally dimensioned and sub-
tended identical visual angles from the central viewpoint. The rat was then disoriented
in darkness and the cards were rotated by 90° in opposite directions about the centre,
and the rat was returned. This rotation aimed at providing conflicting orienting cues:
after this rotation the cards were again separated by 90° but inverted in their left-right
relation. This procedure was first carried out under continuous lighting to permit nor-
mal visual processing. To test whether the selection of anchoring cues depended upon
dynamic visual cues (such as motion parallax), we then repeated these experiments
under stroboscopic light (flashes at 1.5 Hz).
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Figure 4.6: (a) Examples of shifts in preferred directions after card rotations under normal (left) and
stroboscopic (rigth) lighting. The response curves were sampled during the recording preceding (black
curves) and following (red curves) the rotation of the background card by —90° and the foreground card
by +90° around the platform. The initial directional response curves were all oriented to point to the
right (3 o’clock position) to facilitate comparisons. (Left column) Under continuous light conditions, the
preferred directions of the HD cells shifted by approximately —90°, following the card in the background.
(Right column) Under stroboscopic light conditions, the preferred directions of the HD cells could shifted
+90°, following the foreground card (cell 1, in row 1), or —90°, following the background card (cell 2 in row
2), or shifted by 180°, following the barycentre of the two cards (cell 3 in row 3). The labels ‘Foreground
card’, ‘Background card’ and ‘Both cards’ show the predicted angle of rotation of the preferred direction
if the respective cues had dominantly influenced the anchoring of the preferred direction. Data have
been rectified to compensate for the fact that background and foreground cards were rotated in different
directions among sessions. (b) Circular histograms (bin size: 20°) representing the whole data set. The
number of sessions corresponding to the respective shifts in preferred direction is indicated by the radius
of the concentric circles that serve as calibration bars. The preferred directions after cue rotations are
presented according to the same formalism as in (a) to facilitate comparisons. (Taken from Zugaro &
Arleo et al. 2004)
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As shown by the examples in Fig./4.6a (left column), in the majority of the recording
experiments the preferred directions of the HD cells stayed anchored to the background
card after card rotations when recorded in continuous light. By contrast, Fig. (right
column) shows that the response curves of HD cells before and after rotation of the
cards under stroboscopic lighting were equally likely to follow the background card,
the foreground card or the configuration of both. The distributions of responses in the
continuous and stroboscopic lighting condition (shown in Fig. |4.6b) were compared
and proved to be significantly different.

Thus, the principal result of this study was that stroboscopic lighting at a frequency
disturbing certain dynamic visual processes interfered with the preferential anchoring of
HD responses by background cues. Thus, dynamic visual signals are likely to play
a critical role in selection of anchoring cues by HD cells. Such inputs could include
dynamic motion parallax-related signals. These would permit background visual cues
to be discriminated from those in the foreground during head translation movements
as more distant objects appear to move at lower velocities.

4.1.3 Optic field flow signals update the activity of head
direction cells

We continued our investigations about the influence of dynamic visual information upon
HD cell firing and we formulated the following working hypothesis: can optic field
flow information update the directional coding of HD neurons?

Normally as a subject moves about, turning the head in one direction produces an
opposite optic field flow of the visual image. Hence rotations of the visual scene convey
information about rotations of the head in space. To test our working hypothesis we
designed an experiment to alter optic field flow signals relative to head rotations
(Arleo et al. 2004). All details about this experiment will be in the manuscript Arleo
et al. 2006 which is about to be submitted (therefore it was not included in Appendix
C). This section presents the basic protocol procedure and some preliminary results.

Fig. [4.7a shows the experimental setup. The animal was placed on a wall-less
circular platform surrounded by a large cylindrical black curtain. A planetarium-like
projector presented a field of points evenly distributed on the otherwise dark curtain.

One of the control procedures consisted of (i) switching off the planetarium, (ii)
rotating it by 90° in the darkness, and then (%i;) switching it back on. We did not ob-
serve any significant update of the preferred directions, meaning that the uniformly
distributed light points did not provided any salient static cue.

In the basic protocol of Fig. the preferred direction of the recorded neuron
was first recorded during 5 min with the planetarium still. Then, the latter was rotated
at a constant velocity (5 °/s) for about 120 s, while directional firing was still recorded.
Finally, baseline recordings were again made with the dot array stationary during 4 min.
As shown in the example of Fig. 4.7c (top row), the point array provided sufficient
information for stable HD responses when the planetarium was immobile.

Fig. 4.7c (central row) shows an example of preferred direction update during the
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Figure 4.7: (a) The experimental setup. The animal moved on a wall-less circular platform (diameter
75¢m) placed at the center of a cylindrical black curtain (diameter 3m). A planetarium projected
spotlights on the dark curtain. (b) In the simplest protocol, the directional response of the HD cell was
first recorded during 5min with the planetarium immobile. Second, the planetarium was made rotating
at a constant velocity (5°/s) for about 120 s. Third, the planetarium was stopped and the cell recorded
for 4min. (c) When the planetarium remained still (phase 1, top row) the preferred directions of the HD
cells tended to remain stable. During planetarium rotation (phase 2, central row) the preferred direction
shifted coherently with the rotating spotlight array. Finally, after the planetarium was stopped (phase 3,
bottom row) the directional response drifted back toward the initial preferred direction.

planetarium rotation period. The directional response of the cell shifted coherently with
the rotating point array. This may be due to the optic field rotation inducing circular
vection, and the HD system registering this as a shift in the animal’s orientation.
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Figure 4.8: This example shows the time course of the shift of the preferred direction of one HD cell
during the planetarium rotation and during the post-rotation period. (a) and (b) represent (in three- and
two-dimension, respectively) the response histogram obtained by averaging over a 30 s temporal window
sliding over time at 500 ms per step. (c) Preferred direction obtained by taking the center of mass of the
spike frequency histograms in (a) or (b).

This would conflict with vestibular, motor command and efferent copy signals indicat-
ing no such self-rotation. Consistent with this, the optic field flow signals provoked
directional shifts only when the animal was actively moving, not when it was immobile,
where the intermodality discrepancy would be highly salient. Fig. 4.7c (bottom row)
shows that during the post-rotation period, the directional response drifted back toward
the initial preferred direction. This result, which is not representative of the entire data
set, was chosen to show a case in which the HD cell could “recalibrate” its directional
firing after the planetarium rotation.

Interestingly, HD cells did not exhibit a rapid (jump-like) update of its preferred di-
rection (such as in Section 4.1.1, i.e. 80ms). Rather, a progressive drift took place.
See the example of Fig. 4.8 to compare the time course of the shift during and after
the rotation period. Such a delayed re-alignment of the directional firing was likely due
to an allothetic uncontrolled cue and resembled the progressive update reported by
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Knierim et al. (1998) after a 180° conflict between a salient visual landmark (a cue
card) and self-motion cues. This might indicate that during the planetarium rotation a
self-motion illusion (e.g., vection) had primarily driven the preferred direction shift and
generated the subsequent conflict situation.

4.1.4 Anterodorsal thalamic head direction neurons are
modulated by the hippocampal theta rhythm

The hippocampal EEG signal exhibits two characteristic patterns depending on the
animal’s ongoing behaviour: (i) when the animal actively explores its environment,
hippocampal local field potentials (LFPs) display prominent sinusoidal oscillations at
7 — 12 Hz termed theta rhythm (Green and Arduini 1954; Miller 1991; O’Keefe and
Recce 1993; Skaggs et al. 1996); the theta rhythm has also been observed during
passive locomotion of the animal (Gavrilov et al. 1996) as well as during sensory
scanning and REM sleep (Buzséki 1996); (ii) when the animal is, for instance, eating,
drinking, or grooming, the hippocampal EEG exhibits a rather irregular activity with
large amplitude and broad frequency spectrum (Vanderwolf 1969; Buzsaki et al. 1990).

Theta oscillations seem to be involved in timing hippocampal cell assemblies (Lisman
and Idiart 1995; Harris et al. 2003), as well as to be relevant to mnemonic functions
including storage and recall of sequences of places or events (see Buzsaki 2002 for
a recent review). There exists a phase correlation between the theta rhythm and hip-
pocampal place cell firing. During each episode of elevated firing (corresponding for
example to the traversal of a place field) pyramidal cells in the hippocampus follow a
characteristic pattern, starting to fire at a certain phase, then firing at progressively
earlier phases. This phenomenon has been referred to as ‘phase precession’ (O’Keefe
and Recce 1993; Skaggs et al. 1996; Harris et al. 2002; Mehta et al. 2002; Zugaro
et al. 2005). Thus, not only does the theta rhythm provide a timing mechanism to
organise cell assemblies, it also permits more precise localisation (because the phase
can indicate the position within the firing field and provide a mechanism for updating the
active population of neurons during movements (Burgess and O’Keefe 1996; Jensen
and Lisman 2000).

The anterodorsal thalamic nucleus (ADN) transmits directional information to the
hippocampus via retrosplenial cortex and postsubiculum (both of which have neurons
with both directional and theta modulation, Cho and Sharp 2001; Sharp 1996). Albo
et al. (2003) showed that AD neurons have several types of theta related activity in
recordings in urethan-anaesthetized rats (evoked by tail pinch). These types include
‘theta-off’ cells that cease tonic activity with the onset of theta, and ‘theta-on’ cells that
increase their firing rate during theta. The latter type includes cells with rhythmic dis-
charges synchronous with the theta rhythm, and cells with slightly rhythmic discharges
with strong phase-locking to theta oscillations.

We recently investigated the relationship between the theta rhythm and the
activity of head direction neurons in the anterodorsal thalamus (Arleo et al. 2005)
(the manuscript Arleo & Battaglia et al. (2005) is under submission procedure and was
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Figure 4.9: (a) Theta oscillations in skull-screw local field potential (LFP). A 2 s segment of LFP
showing prominent theta oscillations, which were constantly present during all recording sessions. (b)
Power spectrum of the LFP signal, showing a theta related peak at around 7 Hz. (c), (d) Theta
modulation of two example HD cells. The Histograms show the number of spikes fired as a function of
theta phase by the cells, one having a preferred phase near the peak of theta at 300° (c), the other near
the trough (d).

not included in Appendix C).

EEG dipole recordings were made via two skull screws, one above the hippocam-
pus and the other above the parietal cortex. Although higher amplitude theta can be
recorded from intra-hippocampal electrodes, the skull screw dipole could capture the
basic elements of hippocampal theta. Fig. 4.9a shows a 2 s segment of local field po-
tential (LFP) signal showing prominent theta oscillations which were constantly present
during all recording sessions. Fig. 4.9b displays the power spectrum of the LFP signal,
showing that the dominant frequency was centred at about 7 Hz. The theta amplitude
was correlated with animal movement speed, as it has been demonstrated previously
with intra-hippocampal electrodes.

The instantaneous theta phase at the moment of the emission of each action po-
tential was logged in histograms. Preliminary results show that most (71%) of the
recorded cells showed a significant preferential firing during a particular phase
of the theta cycle (see examples in Fig 4.9¢,d). The amount of activity modulation
(firing rate at the preferred phase minus firing rate at the least preferred phase) rep-
resented typically 5 to 20% of the phase curve baseline activity level. Also, AD head
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Figure 4.10: Preferred phase as a function of instantaneous firing rate. Data are represented for the
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mean firing phase for all the spikes that occurred with that particular instantaneous firing rate and the
95% confidence interval for the mean. The dashed line represents the preferred theta firing phase for each

cell.

direction cells did not show evident phase precession patterns (probably due to
their high firing rate, i.e. many spikes were fired during each theta cycle). This does
not rule out the possibility that theta oscillations interact with activity-related variables
(for example the firing rate) in a non-trivial way. To test this, we applied the analysis by
Harris et al. (2002) to our HD cell recordings. 70% of the cells that showed a significant
phase preference showed also an effect of firing rate on preferred phase (Fig 4.10).
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4.2 Theoretical modelling of head direction cells

4.2.1 A continuous attractor model for the maintenance and
integration of the HD signal

Self-sustaining persistent activity in the brain is likely to mediate working mem-
ory functions (see e.g., Wang 2001). The discharge of HD cells constitutes an ex-
ample of persistent neuronal activity that might serve an ongoing memory trace of the
allocentric orientation of the rat, which could be used for navigation purposes (Wiener
and Arleo 2003). If the head of the animal remains motionless and oriented in a given
direction 6, the sub-population of HD cells with preferred directions close to ¢ remains
active, demonstrating the persistence of the HD neural activity pattern in stationary
conditions. The mechanisms of sustaining persistent activity could involve particular
membrane properties as well as dynamic circuit interactions. These mechanisms as
well as the functional role of persistent activity have been the subject of a large body of
theoretical work. Most of these studies have identified continuous attractor networks
(Amari 1977; Ermentrout 1998) as a useful paradigm to describe the persistence
of a pattern of activity over time.

Continuous attractor network models have been proposed to account for selectiv-
ity properties of sensory (Ben-Yishai et al. 1995; Somers et al. 1995; Hansel and
Sompolinsky 1998) and motor (Lukashin and Georgopoulos 1993) systems, for main-
tenance of a continuous variable in working memory in prefrontal and parietal cor-
tices (Camperi and Wang 1998; Compte et al. 2000; Laing and Chow 2001; Gutkin
et al. 2001), and for properties of hippocampal place cells (Tsodyks and Sejnowski
1995; Samsonovich and McNaughton 1997; Redish and Touretzky 1997; Battaglia and
Treves 1998; Kali and Dayan 2000; Tsodyks 2005; Leutgeb et al. 2005).

HD cells have been hypothesised to constitute yet another system with one-
dimensional continuous attractor dynamics (Skaggs et al. 1995; Zhang 1996;
Redish et al. 1996; Goodridge and Touretzky 2000; Xie et al. 2002; Degris et al.
2004; Boucheny et al. 2005). As in most attractor systems, these models implement
a recurrent neural network in which cells representing similar states (i.e., neighbour-
ing orientations in the one-dimensional directional state space) are coupled by strong
excitatory collaterals, whereas units representing distant states strongly inhibit each
other. The intrinsic dynamics of the interaction between excitatory and inhibitory sig-
nals generates a centre-surround attractor scheme and allows the system to settle
down to stable (self-sustained) states where sub-populations of HD neurons with simi-
lar preferred directions are active while others remain silent (sometimes called ‘bump’
states).

In these models, the integration of the head angular velocity is achieved by introduc-
ing an asymmetry in the centre-surround attractor dynamics, which makes the bump
of activity shift over the continuous directional state space. To relate this asymmet-
ric component to head rotations, Zhang (1996) and Redish et al. (1996) modulated
the synaptic weights by means of angular velocity signals, whereas Goodridge and
Touretzky (2000) utilised synapses with a non-linearity that is tuned to yield a perfect
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Figure 4.11: The attractor-integrator model included a population of excitatory directional units in
the lateral mammillary nucleus (LMN) and two networks of inhibitory neurons in the dorsal tegmental
nucleus (DTN; ). Arrows and circles indicate excitatory and inhibitory synapses, respectively. The
circuit did not contain recurrent excitatory collaterals. LMN received an external input current I, while
DTNy, received modulatory external inputs I7 4 I; , providing the system with the head angular velocity
signal. (Taken from Boucheny et al. 2005)

integration of angular velocity signals. Skaggs et al. (1995) hypothesised the existence
of two groups of ‘rotation cells’ that receive vestibular inputs and fire as a function of the
magnitude of the angular velocity. One group is responsive for clockwise head turns,
the other for counterclockwise turns. The two groups project asymmetrically to the left
and to the right of the HD bump of activity, respectively. However, Skaggs et al. (1995)
did not simulate any model system to check the feasibility of this scenario. Blair et al.
(1998) and Degris et al. (2004) realized a neural implementation of this scenario by
proposing an attractor-integrator HD cell circuit. Finally, Xie et al. (2002) studied a two
population network of left and right units, and showed that with appropriate connec-
tions and linear synapses, the network can integrate the inputs with good accuracy in
a large velocity range.

All the aforementioned models rely on recurrent excitation to sustain persistent ac-
tivity in HD neurons. However, anatomical data show no evidence for recurrent
excitatory collaterals in the structures of the HD cell system that seem to give
rise to the self-sustained signal dynamics: the lateral mammillary nucleus (LMN)
and the dorsal tegmental nucleus (DTN) (Allen and Hopkins 1988; Allen and Hop-
kins 1989). On the other hand, reciprocal connections between LMN and DTN have
been demonstrated experimentally. Anatomical studies suggest that LMN receives as-
cending inhibitory (GABAergic) afferents from DTN (Shibata 1987; Allen and Hopkins
1989; Gonzalo-Ruiz et al. 1992; Wirtshafter and Stratford 1993) and that, in turn, LMN
sends descending excitatory efferents back to DTN (Allen and Hopkins 1989; Allen
and Hopkins 1990). Finally, electrophysiological data suggest that a large fraction of
cells in DTN are selective for angular velocity in either clockwise or counterclockwise
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shown as a function of Hy (left), K1 (centre) and Ir (right). Parameters: H; = 1 (except in left), K; =1
(except in centre), Ir = 1 (except in right). The uniform states (thin solid line) become unstable (dotted
line) above a critical value of Hy (left) and K; (centre), and at intermediate values of I (right). The
asymmetric states (one pair of populations suppressing the other pair) are indicated by thick black lines.
At some intermediate level of I, the system is tristable (between the dashed lines in right panel).

directions (Bassett and Taube 2001b; Sharp et al. 2001). These cells could provide
the basis for the ‘rotation cells’ postulated by Skaggs et al. (1995).

Taken together, this anatomical and electrophysiological data motivated our study
Boucheny et al. (2005) investigating an alternative continuous attractor model in
which no recurrent excitation was present (Rubin et al. 2001; Song and Wang
2003). This network was able to store in a short-term memory an angular variable (the
head direction) as a spatial profile of activity across neurons in the absence of selective
external inputs, and to accurately update this variable on the basis of angular velocity
inputs. The network was composed of one excitatory population and two inhibitory
populations, with inter-connections between populations but no connections within the
neurons of a same population. In particular, there were no excitatory-to-excitatory
connections. Angular velocity signals were represented as inputs in one inhibitory
population (clockwise turns) or the other (counterclockwise turns).

The architecture of the network is shown in Fig.4.11. The model included recip-
rocal connections between LMN and DTN, whose existence has been demonstrated
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Figure 4.13: Characteristics of the tuned state vs connection strength K. Left: width of the tuned
state as a function of K. Right: peak and background firing rates as a function of K (solid line:
excitatory network; dashed line: inhibitory networks; thin lines: uniform state; thick lines: tuned state).
For K < 16/3 (marked by dashed line), the uniform state was the only stable stationary state. Above
K = 16/3, the tuned state became the only stable stationary state. Notice that the tuning widths
decreased while K was increasing, while the peak firing rates increased with increasing K. (Taken from
Boucheny et al. 2005)

experimentally. It assumed the existence of two DTN sub-populations, one selective
for clockwise turns, the other selective for counterclockwise turns. Finally, the model
also assumed that these two DTN networks mutually inhibit each other. As we will see
later, such connections were not necessary for the model to operate, but they expanded
greatly the performance of the system in terms of angular velocity integration. As far as
we know, there is no experimental evidence for such a functional lateralisation within
the rat DTN, nor for the presence of DTN intrastructural inhibition. However, Sharp
et al. (2001) reported that DTNs in the left- and right-hemispheres exhibit reciprocal
inhibitory projections, and show some preliminary electrophysiological data suggesting
a tendency for DTN cells to be selective for ipsiversive head rotations.

4.2.2 Mathematical analysis of an attractor-integrator dynamics
without recurrent excitation

We first studied the simplest circuits that exhibit bistability in spite of the absence of
recurrent excitation: a model with two mutually coupled inhibitory populations, and a
model with four populations, two excitatory and two inhibitory (Fig.[4.12). Then, we de-
veloped a mathematical analysis of an attractor-integrator model with the architecture
of Fig./4.11 by using analog (firing rate) simplified neurons. This model was a generali-
sation of previous ring attractor networks (Ben-Yishai et al. 1995; Zhang 1996; Redish
et al. 1996; Ben-Yishai et al. 1997; Hansel and Sompolinsky 1998; Goodridge and
Touretzky 2000; Xie et al. 2002; Degris et al. 2004), and its architecture was similar
to the three-population architecture proposed by Song and Wang (2003): one excita-
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Figure 4.14:  (a) Rastergram of the action potentials emitted by LMN HD cells over time. Each
dot represents one spike. For zero angular velocity (i.e., I; = I, = 0), a stationary tuned state emerged
from random noise after a transient At ~ 200 ms. This attractor state persisted over time providing
a stable directional representation (6(t) = 181° computed by population vector coding). (b) Condition
of emergence of a tuned state as a function of the strength H of the excitatory projections from LMN
to DTN, and of the strength K of the inhibitory projections from DTN to LMN, given a fixed angular
offset v = 50° of the connections from DTN to LMN. H and K vary according to the following rule:
H=m-H{, K=m-K;p, with 0 < m < 2, where H; = 0.06 and K; = 1.12. For each m, we let the
network evolve from ¢ = 0 until ¢ = 1 s and looked at the LMN ensemble activity profile F,,,(t = 1). The
diagram displays all the LMN profiles Fy,,(t = 1), for 0 < m < 2, and shows that there existed a threshold
value m* ~ 0.6 above which a gaussian-shaped attractor state emerged. Notice that all the tuned states
F,,(t = 1) with m > m* had been aligned along the head direction 180°.

tory population (representing the LMN), and two inhibitory populations (representing
two distinct populations in the DTN, one selective for clockwise turns, the other selec-
tive for counterclockwise turns). The mathematical analysis allowed us to derive the
conditions on the connectivity for

e the emergence of the directionally selective HD profile: the study provided the
conditions under which the uniform state becomes unstable such that the
system converges to a tuned stationary attractor regime (i.e., a ‘bump of

activity’) (Fig. 4.13);

¢ the reliable integration of angular velocity inputs: an analysis of the linear stability
of the attractor state gave the analytical solutions for the stationary bump to
start moving around the ring;

¢ the range of angular velocities that can be accurately integrated by the model: the
study of the travelling bump solutions provided the conditions for the linearity
of the bump velocity function (relative to the angular speed inputs I, and [; in

Fig.4.11).

Our work proposed the first analytical investigation of such an architecture using
simplified network of threshold-linear neurons. The mathematical analysis provided
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Figure 4.15:  Tuning curves of the formal HD cells in LMN (a) and DTN (b). The mean peak
spike frequency is about 60 — 65 spikes/s for LMN units and 25 spikes/s for DTN cells. The width of
the gaussian activity profile is 180° for LMN and 250° for DTN. These tuning curve parameters are
consistent with those observed experimentally in the rat LMN and DTN areas (Taube 1998; Bassett and
Taube 2001b).

the boundaries of the parameter space for which stable direction selectivity can be
present, and those for which the network is able to integrate accurately angular velocity
information. The reader is referred to Secs. 2 and 3 of the reprint of Boucheny et al.
(2005), Appendix C, for details about the analytical study.

4.2.3 An attractor-integrator network of spiking neurons

Following the analytical study, we derived a more realistic implementation of the HD
model by means of large populations of spiking neurons forming an attractor-integrator
network according to the architecture shown in Fig. 4.11. LMN and DTN cells were
modelled by means of spiking leaky integrate-and-fire neurons and synaptic cur-
rents followed the time courses of AMPA, NMDA, and GABA receptors (see the
reprint of Boucheny et al. (2005) in Appendix C for full details about the network archi-
tecture as well as neuronal and synaptic models).
Numerical simulations using this neural model allowed us:

e to confirm our analytical predictions about the conditions on LMN-DTN in-
terconnectivity (e.g., strength of inhibitory projections) to generate stable
tuned states (i.e., emergence and persistence of HD cell signal) (Fig. 4.14);

e to obtain directionally selective activity profiles in our formal LMN and DTN
HD cells comparable to the tuning curves electrophysiologically observed
in LMN and DTN (Fig. 4.15);
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Figure 4.16: Stability of the tuned state as a function of the strength L of the mutual inhibitory
connections between the two DTNs. (a): For each value 0.03 < Ly < 0.15 we measured the angular
velocity v (solid curve) of the bump of activity in LMN and the variance around v over a 5 s period (dashed
curve). For Ly < 0.06, the tuned attractor state remained stable over time (angular speed v close to
zero). Around Lo > 0.06, the stationary bump became unstable, and the tuned state started moving
around the ring. Close to the bifurcation, there were large fluctuations of the angular velocity: the bump
moved in a very irregular fashion (v increased and the variance was very large). For Lo > 0.07 the tuned
state moved around the ring with a constant angular velocity v, with small fluctuations around v. (b):
Encoded head direction 0(t) over a 5 s trial for three particular values of Ly. The curves represent the
centre of mass of the ensemble LMN activity computed by population vector coding. Left: for Ly = 0.03
the bump of activity remained stable over time. Centre: for Ly = 0.062 the attractor state exhibited
a random angular velocity profile. Right: for Ly = 0.09 the bump moved at constant angular velocity.
(Taken from Boucheny et al. 2005)
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Figure 4.17: (a) For non-stationary regimes, e.g. I; > 0 and I, = 0, the tuned state shifted with a
speed proportional to the angular velocity encoded by the differential input 61(t), e.g. 5I(t) = I;(t)—L.(t).
The two sets of symbols show the angular velocity of the tuned state (averaged over 4 s) as a function of
constant head angular velocity, for two values of the angular offset o in the projections from DTN, to
LMN (circles: a = 50°, saturation occurred at & 520°/s; stars: « = 65°, the saturation velocity increased
to v &~ 780°/s). (b) The angular velocity profile v(t) of a freely moving rat was applied to the HD system
for 120 5. The model integrated v(t) over time providing an ongoing estimate 6(¢) (gray line) of the rat’s
heading 0(t) (black line). One example out of n = 35 simulations is shown here (for sake of clarity, the two
curves have been smoothed by means of an averaging time window of 500 ms). (c) Mean reconstruction
error, averaged over n = 35 trials, of the HD system when tracking angular velocity profiles of freely
moving rats during 120 s. The diagram shows that the integration of head angular movements based on
inertial signals only was prone to cumulative drift over time. (Taken from Boucheny et al. 2005)
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¢ to predict a role for the inhibitory projections existing within the DTN struc-
ture in determining the stability of the HD representation (Fig. 4.16);

e to study the response of the system to an external angular velocity input
(simulating vestibular signals converging onto DTN) (Fig. 4.17a);

¢ to test the integration property of the system on a set of rat angular velocity
profiles (Fig.4.17b,c);

¢ to investigate how the HD representation encoded by our attractor network could
be updated by reorienting external inputs (e.g., visual cues) and find update
latencies consistent with those observed experimentally by Zugaro et al.
(2003) in rat HD neurons (Fig. 4.18).

Our simulation results complemented those by Song and Wang (2004), who showed
how the network dynamics is influenced by the NMDA/AMPA ratio, and how the update
of the HD signal by external cues can take either the form of a continuous rotation of
the network state or a discontinuous jump to the new HD depending on the distance
between the old and new HDs and the strength of the external cue. We showed how
the network dynamics is influenced by the mutual inhibitory connections in DTN, and
how the projections from DTN to LMN determine the saturation velocity above which
the system is no longer able to integrate accurately. We showed how such an architec-
ture can integrate real angular velocity data and that it how rapidly can update its HD
representation (i.e., its attractor state) following a strong reorienting stimulus.
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red line: numerical simulation data; thin orange line: experimental data from Zugaro et al. (2003)) and
for sub-group of cells that became active after the stimulus onset (thick blue line: simulation; thin blue
line: experimental data). The simulation data has been shifted in time by 25 ms to maximize the overlap
between the two sets of curves. (Taken from Boucheny et al. 2005)




Chapter 5

Motor Behaviour Adaptation for
Optimal Goal-oriented Navigation

Preface. While being a member of the Neuroscience Group at the Sony Computer Science
Lab in Paris (associate researcher 2004-2005), | also had the opportunity to participate to a
project led by L. Rondi-Reig (LPPA, CNRS-Collége de France). This work focused on the
role of the cerebellum in spatial navigation. Transgenic L7-PKCI mice (lacking cerebellar long-
term synaptic depression, LTD, at the parallel fibre-Purkinje cell synapses) were tested with two
navigation tasks in order to dissociate the relative contribution of the declarative and procedural
components of spatial navigation. The results pointed towards a deficit of L7-PKCI mutants in
performing a fine tuning of goal-oriented trajectories according to the ongoing sensory context.
The use of transgenic mice permitted to characterise one of the underlying cellular mechanisms
that may mediate the acquisition of this procedural-like function of the cerebellum (as opposed
to the episodic-like functions ascribed to the hippocampus).

In order to characterise the performances of mice undertaking a navigation task, we also de-
veloped an automated Navigation Analysis Tool (NAT). This MATLAB-based environment per-
mitted to evaluate an extended set of behavioural parameters, and it was particularly adapted
to achieve a detailed characterisation of the trajectory patterns performed by the animals. The
rational behind developing NAT was threefold: (i) to provide an automated behavioural analysis
allowing us to study navigation on a small time-scale basis (ms), (ii) to increase the reliability
of the analysis (e.g., error minimisation), even when performed by multiple experimenters, (iii)
to be flexible enough to adapt the analysis procedures to different navigation apparatus.

This chapter reviews the experimental work investigating the navigation capabilities of L7-
PKCI cerebellar mice (Burguiere et al. 2005). Then, it briefly outlines the main features of the
developed behavioural analysis tool (Petit & Arleo et al. 2005). A reprint of Burguiére et al.
(2005) can be found in the Appendix C, whereas the contribution by Petit & Arleo et al. (2005)
could not be included in the reprint collection because still under submission.
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5.1 Spatial navigation impairment in mice lacking
cerebellar long-term synaptic depression

Spatial cognition and navigation capabilities call upon two types of long-term memory:
declarative mnemonic capabilities (e.g., the acquisition of representations encoding
the spatio-temporal relations between environmental cues and places), and procedu-
ral sensory-motor functions (e.g., adaptive motor control for the fine tuning of tra-
jectories based on contextual information) (Schenk and Morris 1985; Squire and Zola
1996; Petrosini et al. 1998; Burguiere et al. 2005).

As discussed in Chapters 2/ and 3| the hippocampal formation and several other
limbic regions are likely to constitute the neural substrates mediating allocentric space
coding (i.e., declarative-like functions). Recently, numerous experimental and clinical
works have postulated a possible involvement of the cerebellum in the procedural com-
ponents of spatial cognition (see reviews by Petrosini et al. 1998; Rondi-Reig and Bur-
guiere 2005). Also, the fact that the cerebellum receives multimodal spatial information
and that it is anatomically interconnected to the limbic system as well as the frontal and
parietal cortices (Schmahmann and Pandya 1989; Schmahmann 1996; Schmahmann
and Pandya 1997), supports the hypothesis of a cerebellar role in spatial navigation.

We focused on the cellular mechanisms subserving the contribution of the
cerebellum in spatial learning (Burguiére et al. 2005). Our working hypothesis was
that cerebellar Long-Term synaptic Depression (LTD), occurring at the parallel fibre-
Purkinje cell (PF-PC) synapses, and required for the acquisition of classical condition-
ing tasks (Thompson et al. 1997), may also be necessary for the acquisition of effi-
cient trajectories toward a goal through a basic and common process of sensory-motor
adaptation. Our hypothesis of a role of PF-PC LTD in the procedural component of nav-
igation was inspired by the Marr-Albus-Ito theory that considers the cerebellar learning
process as an error based system (Marr 1969; Albus 1971; Ito 1993). According to this
theory, the climbing fibres convey error information to the PF-PC synapses and trigger
a modulation of their strength via LTD. Ito showed that in VOR adaptation experiments
PF-PC LTD is likely to constitute the neural substrate of such an error-driven motor
learning process (Ito and Kano 1982). In the case of spatial navigation, the trajectory
performed by the animal must be adapted to the spatial context and optimised to lead
directly to the goal.

In order to test this hypothesis:

e We employed the L7-PKCI transgenic mice model (De Zeeuw et al. 1998), which
presents a specific inactivation of the PF-PC LTD. De Zeeuw and colleagues
have demonstrated that adult L7-PKCI mutant mice have intact motor capabilities
and normal electrophysiological properties of Purkinje cells (e.g., baseline dis-
charges) (Goossens et al. 2001). Likewise, we did not observe any abnormalities
in the sensory-motor reflexes, physical characteristics, and general behaviour of
L7-PKCI mice. In addition, hippocampal functions (synaptic transmission and
long-term synaptic plasticity ) were not impaired in L7-PKCI mutants (Burguiére
et al. 2005).
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Figure 5.1: The two spatial navigation tasks employed for the experiments: the Morris water maze
(MWM) (a) and the Starmaze task (b). In both tasks the subject has to navigate to an escape platform
submerged under opaque water (dashed circle) from four randomly selected departure points (black stars).
However, in the Starmaze animals are constraint to swim within alleys that guide their movements, which
reduces the possible deviations from an ideal trajectory. (Taken from Burguiere et al. 2005)

e We adopted two different spatial learning tasks, the Morris water maze (MWM)
(Morris et al. 1982) and a new task called the Starmaze (Rondi-Reig et al. 2004)
(Fig. 5.1), to dissociate the relative importance of the declarative and procedural
components of navigation. In both tasks, the animal has to find a fixed hidden
platform from random departure locations, which requires declarative capabilities
to learn a spatial representation of the environment. However, in contrast to the
MWM task, the Starmaze allows the animal to only swim within alleys. This helps
the subject to execute goal-directed trajectories effectively, reducing the procedu-
ral demand of the navigation task.

The results showed that L7-PKCI mice were impaired in solving the MWM task
compared to their control littermates (Fig. 5.2, but see Burguiére et al. 2005 for
details). Nevertheless, the spatial navigation impairment was due to neither a deficit
in swimming speed, nor a deficit in visual guidance abilities (Fig. 5.2d,e). Further-
more, the results suggested that both control and L7-PKCI mice were able to acquire a
memory of the localisation of the platform. To investigate this difference we assessed
the accuracy of the mice goal-oriented trajectories during learning (see Section 5.2
for a description of the employed analysis tool), and found that the trajectories of L7-
PKCI mice toward the platform were significantly less effective compared to those
employed by control mice. Thus, this findings suggested that L7-PKCI mice could
learn to locate the platform (declarative component) but they tended to execute
non-optimal goal-directed trajectories (procedural component) (see Fig./5.3/for a
qualitative comparison between the searching behaviour of controls and mutants over
training).

We let the same groups of subjects undertake the allocentric starmaze task, which
implies a lower procedural demand than the MWM. No statistical difference was
observed between the spatial learning capabilities and navigation performances
of controls and mutants in the Starmaze (Fig.5.4). The absence of a deficit when the
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Figure 5.2: L7-PKCI mice were impaired in solving the hidden-platform version of MWM task. (a)
The mean escape latencies of controls and mutants (white and black squares, respectively) were similar
at the beginning of training (day 1). However, controls improved their performances significantly better
than mutants over time. The behavioural patterns corresponding to the search scores defined by Petrosini
et al. (1996) are illustrated by the cartoon trajectories on the right side. The lower the score, the better
the searching behaviour. The search scores of L7-PKCI mice were significantly higher than those of
control animals. (b) The escape latencies and the search scores were highly correlated for both control
(top) and mutant (bottom) mice, suggesting that the longer time-to-goal needed by L7-PKCI mice was
due to non-optimal searching trajectories. (c) L7-PKCI mutants exhibited a significantly larger amount
of circling behaviour over training. (d) The mean swimming speeds of controls and mutants remained
comparable over the entire training period. (e) Mutants were not impaired in solving the visible platform
version of the MWM (i.e., visuo-guidance navigation task). (f) The mean ratio between the time spent
within the target quadrant and the total duration of the trial of both controls and mutants increased
significantly above the random trajectory level during training. However, controls improved their ratio
significantly better than L7-PKCI. (g) The mouse-platform distance parameter suggested that mutants
followed significantly longer trajectories than controls. (h) The mean angular deviation between ideal and
actual trajectory showed that mutants had a deficit in maintaining an effective locomotion orientation
(relative to the target) during navigation. (Taken from Burguiére et al. 2005)
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Day 5

Figure 5.3:  Three-dimensional plots of the mean spatial occupancy (i.e., the time, z axis, spent at
each sampled region of the maze, x-y axes) of control and mutant mice at different training days. The
value associated to each grid cell was obtained by normalizing the time spent in the cell region relative
to the duration of each trial, then averaging over all day trials and over all the animals of a group. These
qualitative representations suggested that, when solving the MWM task, mutants had larger searching
zones than control animals during training. (Taken from Burguiére et al. 2005)

trajectory was guided corroborated the results obtained with the MWM, which pointed
towards the inability of L7-PKCI mice to adapt their goal-oriented behaviour effectively.
Thus, the results obtained with the Starmaze strengthened our hypothesis that the
declarative component was likely to be unimpaired in L7-PKCI mice.

This work corroborated previous spatial navigation studies with other cerebellar
models (Leggio et al. 1999; Martin et al. 2003), but it also identified the parallel
fibre-Purkinje cell (PF-PC) LTD as being a possible core mechanism underlying
the cerebellar spatial learning function. How could the same cellular mechanism,
i.e. PF-PC LTD, be involved in motor learning and more cognitive process such as




60 CHAPTER 5. Motor Behaviour Adaptation for Optimal Goal-oriented Navigation

a b

20
el S-
2 P>0.1 N P>0.1
216
2 €
wv
> S
212 =~ &7
© g L
Y= c
o8 s
[7] 2 S
Q o ‘470-
£ 4
c

0 (s

130 50 70 T90 11 13 1 3 5 7 9 11 13
training days training days

—0— /- —— -/L7-PKCI

Figure 5.4: L7-PKCI mutants were not impaired in learning the allocentric version of the Starmaze
task. (a) No statistically significant differences were observed between the number of alleys visited
during a trial by control and mutant mice. (b) The mean distance swam to reach the target was also
not significantly different between the two groups. (Taken from Burguiére et al. 2005)

spatial learning? Several cognitive processes can be considered on the basis of the
same sensory-motor coupling scheme observed in classical motor learning (Ito 1993).
Spatial navigation requires a linkage between the spatial context (including sensory in-
puts and internal state information) and the explorative response (motor output) char-
acterised by the animal’s trajectory. While the spatial context may be conveyed by
the mossy fibre - granule cell - parallel fibre pathway relaying information from the
pontine nuclei (Thach et al. 1992), errors in the explorative response may be medi-
ated by the climbing fibre signals that originate from the olivary subnuclei that are in-
nervated by descending projections from the mesodiencephalic junction and cerebral
cortex (De Zeeuw et al. 1998). Since induction of PF-PC LTD requires conjunctive ac-
tivation of the parallel fibre and climbing fibre pathways, this form of synaptic plasticity
could be responsible for the establishment of this linkage (Ito 1993).

Thus the cerebellum may mediate a general learning function to create a context-
response linkage adapted to the task. During spatial learning, the subject could es-
tablish an appropriate context-response coupling resulting in effective motor behaviour
(e.g., in the execution of optimal trajectories to the target). At the cerebellar level,
procedural learning may result from a classical control learning scheme in which the
feedback loop allows the system to converge towards an adapted context-motor link-
age. The abstract model shown in Fig. 5.5 can be applied to study the process of
sensory-response adaptation underlying both basic motor learning and higher cogni-
tive learning. The absence of PF-PC LTD in L7-PKCI mice could lead to the accumu-
lation of errors over time (i.e., during the execution of a goal-directed trajectory), due
to the absence of continuous context-dependent corrections of the motor signals (Ito
1993). From a behavioural point of view, the accumulation of these errors would lead
to a drift during unconstraint (not guided) navigation as in the MWM task, whereas it
would be less relevant in the Starmaze task due to the reduced number of possible
goal-directed trajectories.
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Figure 5.5:  Abstract model describing the error-based cerebellar learning hypothesis (adapted from
Ito 1993). This theoretical model can be applied to study the process of sensory-response adaptation
underlying both basic motor learning and higher cognitive learning. Contextual information (i.e., multi-
modal sensory signals, animal’s internal state, and desired action) enters the cerebellar cortex (CbC) via
the mossy fibre - granule cell - parallel fibre pathway. The inferior olive (IO) generates an error signal
based on the discrepancy between desired and actual action, and conveys this information to the cerebel-
lum via the climbing fibers. The convergence of both contextual and error signals at precise timing can
induce LTD at the parallel fibre - Purkinje cell (PF-PC) synapses. This learning process can lead to the
acquisition of the optimal sensory-response linkage and, then, it can allow the cerebellum to compensate
for the error dynamically. In the case of spatial navigation, this can result in the optimisation of the
goal-directed trajectory performed by the animal. Specific inactivation of the PF-PC LTD mechanism
would impair cerebellar learning and disrupt the correction signal. This would result in non-optimal
spatial behaviour due to cumulative error over time. (Taken from Burguiere et al. 2005)

5.2 A Navigation Analysis Tool (NAT) to evaluate
spatial behaviour patterns

The complexity of spatial behaviour makes it necessary to develop automated analysis
tools suitable for the computation of meaningful parameters (Dalm et al. 2000; Drai
and Golani 2001; Graziano et al. 2003). Unfolding the spatial behaviour process by
observing it through a multidimensional parameter space may yield heavy computa-
tional loads, especially if the temporal resolution of the observables is high (e.g., ms).
As a consequence, the issue of automating the analysis procedures is relevant to the
purpose of (i) optimising the use of available resources (especially time), (i7) improving
the reliability of the analysis of large data sets.

We developed a new Navigation Analysis Tool (NAT) (Petit & Arleo et al. 2005) to
extend the set of parameters classically used to quantify spatial navigation (e.g., es-
cape latency). NAT was designed to better investigate the ability of a subject to acquire
a motor behaviour that optimises the execution of goal-directed trajectories. Thus,
NAT permits a detailed characterisation of the trajectory patterns. We employed
NAT to assess the navigation performances of control and L7-PKCI mice solving both
the starmaze and the Morris water maze (Burguiére et al. 2005). In fact, NAT was
programmed to account for a specific set of parameters adapted to the form of the
starmaze apparatus (i.e., presence of alleys).
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Figure 5.6: Example of artifact correction performed by NAT. Representations of a mouse’s trajectory
before (a) and after (b) applying the artifact correction algorithm. (c) and (d) Speed profiles before
and after artifact correction, respectively. (Taken from Petit & Arleo et al. 2005)

A video-tracking system provided, for each training session, a time series of the
animal positions {¢, z(t), y(t)}, where z,y denote the cartesian coordinates of the body
image sampled every At = 40 ms. However, the recorded traces can occasionally
be affected by spurious data leading to inaccurate measures of the animal’s spatial
coordinates over time. Thus, as a first step, NAT pre-processes the time series to
denoise them and to correct possible artifacts automatically (Fig.|5.6). After the artifact
correction, NAT measures the following set of basic parameters:

e spatial locations are sampled by means of a uniform grid;

e each grid cell is given a value according to the measured function, which are
the occupancy value normalised relative to the duration of the trial, the mean
instantaneous speed in that area, and the sum of body rotation angles in that
area,;

¢ these grid-based functions are then averaged over all the trials of a subject (and
eventually over all the trials of the subjects of a same group) and the mean values
are used to perform some statistical tests (e.g., T-test) to evaluate the significance
of the intergroup differences.
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Figure 5.7: The ‘multiple strategies’ protocol of the starmaze. The alleys forming the central pentag-
onal ring have either black or chessboard-like walls, whereas the radial alleys have white walls. The maze
is placed inside a black square curtain with distal visual cues attached on the curtains (crosses, circle,
black and white stripes). D is the departure location, G is the goal consisting of an immerged platform
(dotted circle). The arrow represents the optimal trajectory. To use optimal trajectory, animals have to
go through to intersection I, then II, and finally III. (Taken from Petit & Arleo et al. 2005)

the mean escape (or time-to-goal) latency;
the mean distance covered by the subject before reaching the target;

the instantaneous and mean travelling speed (useful to compare the escape la-
tencies across trials, this parameter can also be used to characterise different
training phases, Verbitsky et al. 2004);

the mean and the cumulative distances between the animal and the target, d =
(d(t))icpo,r) @nd D = 3,107 d(t), respectively, where d(t) is the subject-to-target
distance at time ¢, and T is the duration of a trial (Gallagher et al. 1993);

the mean and cumulative body rotations, which can inform us about the smooth-
ness of the exploratory trajectory (Wolfer and Lipp 1992) (i.e., at each time step
At, NAT computes the absolute directional change 6(At) € [0°,180°]; then, it
averages over the entire trial, i.e. § = (9(At))aer; and it also computes the
cumulative angle © = X", 0(Ab));

the mean absolute egocentric angle ¢ = (¢(t))acr, Where ¢(t) is the angular
deviation at time t between the optimal direction towards the target and the ac-
tual motion direction of the animal; the smaller the mean angle ¢ the more the
trajectory is optimal in terms of deviation from an ideal goal-directed trajectory;

the time spent on average by a subject within some user-defined functionally
relevant regions (e.g., the goal region) (Graziano et al. 2003).
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The latter measure (i.e., the mean spatial occupancy) is then generalised in order to (i)
remove any prior hypothesis about the relevance of specific regions, (ii) evaluate some
location-dependent functions other than occupancy, (i) increase the spatial resolution
of the assessed functions. To do that, NAT performs a grid-based behaviour analy-
sis: Finally, NAT computes a specific set of parameters adapted to the starmaze
setup. In the starmaze task (Fig.|5.7), given a departure point D, the optimal trajectory
to the goal G corresponds to a unique sequence of alleys. Nat measures:

¢ the number of visited alleys before reaching the goal, which is inversely propor-
tional to the navigation performance;

e the specific sequences of visited alleys, which allows us to label and enumerate
the subject’s trajectories;

¢ the directions taken by the animal at specific choice points (e.g., intersections) of
the maze.

The latter measures, which aims at segmenting the animal trajectory into local
decision events, is carried out at different detail levels:

e at the first level, NAT considers all the intersection points visited by the subject as
mutually independent (both spatially and temporally); then it scores each of them
positively (negatively) if the choice made by the animal was adequate (inappropri-
ate) relative to the optimal trajectory; finally it averages over all the choice points
to assess the policy adopted by the subject over the entire trial;

e at the second level, NAT considers only the subset of intersections belonging to a
specific sequence of alleys (e.g., the optimal goal-directed sequence) and scores
them independently at each visit of the animal; then, for each choice point, it com-
putes a mean score by averaging over all the times the animal passed through
that intersection during a trial; these mean scores tell us about the ability of the
subject to make, on average, the right choices at specific (spatially relevant) inter-
section points; finally, NAT stores the score obtained by the subject the very first
time it has encountered each choice point; the larger these first-visit scores, the
more the navigation policy learned by the animal tends to an automated optimal
motor behaviour;

¢ at the third level, NAT focuses again on the subset of intersections belonging to
a specific alley sequence (e.g., intersections I, II, and III of Fig. 5.7), but it
takes into account their spatio-temporal relations (in contrast to the second level
where it considers them as independent events). Let us assume, for instance,
that the animal encounters the intersection point /1 at time ¢ and that it takes the
correct direction towards the goal (i.e., it turns to the right). Then, NAT computes
the following score s;; = 1/M;, where M, is the number of alleys visited by the
subject since its last visit of the intersection point I and before encountering the
choice point /1 (at time t). At the end of each trial, NAT calculates the mean score
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Ci = (s11(t)):c0,1) by averaging over all the times the animal has visited the inter-
section point 77 during a trial. In a similar way, NAT generates the mean scores
Cr = (si(t))epor; and Crir = (s111(t))eepo,r); the larger these values, the better
the subject has learned the spatio-temporal relations between the intersections
of the optimal goal-directed sequence. Finally, similar to the second level, NAT
pays a particular attention to the very first time the animal has encountered each
of the three choice points. For instance, if the animal made a good choice the
first time it visited the intersection 71, NAT computes the score s;/(tirst) = 1/N,
where N is the number of alleys visited between the first visit to the choice point
I and the first visit to /1.
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Chapter 6

Exploring the Neural Code via
Information Theory

Preface. During my stay at the Neuroscience Group at Sony Computer Science Lab Paris
(associate researcher 2004-2005) | had the opportunity to increase the detailedness of my the-
oretical neuroscience approach and focus on information processing at the level of single neu-
rons. The project (done in collaboration with the Dept. of Physiological and Pharmacological
Sciences, University of Pavia and INFM, Italy) aimed at quantifying the information transmission
of cerebellar granule cells, and concentrated on the mossy fibre-granule cell (MF-GC) synaptic
relay. This system has a peculiar structure because it is characterised by a very limited number
of synapses (4 on average), permitting to dissect the noise sources during neurotransmission
and to carry out an extensive analysis of the input stimuli.

A stochastic release model of the MF-GC synapse and a Hodgkin-Huxley-like model of the
GC were employed for the numerical simulations. Experimental data were obtained by means
of in vitro whole-cell patch recordings of GCs. The information transmitted through a single
GC was quantified before and after induction of long-term synaptic plasticity (LTP/LTD) at MF-
GC synapses. Also, attention was payed to the role of spike time correlations across the MF
inputs in regulating information transfer. Our results indicate that a major amount of information
is conveyed by the spike time correlations across the inputs and that short- and long-term
synaptic plasticity affects the information transmission process significantly. Interestingly, long-
term synaptic potentiation increases the average amount of information transmitted, but not
necessarily the contribution of the most informative set of stimuli.

This chapter outlines the information theoretic approach adopted for this study and presents
some principal findings. This work has only been presented at conferences (Bezzi et al. 2004;
D’Angelo et al. 2005;Bezzi et al. 2005; Coenen et al. 2005) and because the main manuscript
Bezzi et al. (2005) is under submission procedure, it could not been included in Appendix C.
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6.1 Information theoretic analysis

Understanding neural processing requires the knowledge about how information is rep-
resented by the activity of neurons (i.e. neural code) (Bezzi et al. 2005). Neurons are
complex transmitting devices that encode information in terms of sequences of stereo-
typed voltage pulses (spikes or action potentials). The information content of these
spike trains can be assessed by considering (i) their average frequency, (i) their pre-
cise timing (e.g., the interspike interval distribution) (Rieke et al. 1997; Gerstner and
Kistler 2002), or (7ii) the exact timing of the first spike (Thorpe et al. 1996).

The approaches accounting for precise spike timing tend to be more efficient from
the informative viewpoint because they permit to capture the fine temporal structure
of the neural signal. In addition, the temporal pattern of the spike train can affect the
dynamics of the synaptic contacts, and hence the processing. For instance, short-term
memory effects (i.e., short-term facilitation and depression) may regulate postsynap-
tic temporal summation in a time-dependent manner (O’'Donovan and Rinzel 1997;
Buonomano 2000). Therefore, to fully understand information processing in neuronal
assemblies we need theoretical tools that allow us to quantify the ability of a specific cell
or group of cells to transmit information at different levels of resolutions, and to assess
the robustness of this process. In this regard, information theory (Shannon 1948)
has been proved to be suitable for studying information processing in different brain
areas (Rieke et al. 1997). Within this framework it is possible to quantify the amount
of information that a given set of neural responses provides about a specific
set of stimuli or a set of activities of upstream neurons. Furthermore, Shannon infor-
mation and similar quantities can be used to characterise different coding strategies
or to discover the contribution of spatial and temporal correlations to the information
transmission (Panzeri et al. 1999; Bezzi et al. 2002).

Mutual information (Shannon 1948) (MI) provides a measure of how much informa-
tion is contained in the neural patterns. In this framework, neurons can be treated
as stochastic communication channels and MI can be used to measure their trans-
mitting properties. Assessing MI requires to determine the probability distribution of
the output spike trains given any input spike train. Given a controlled set of stimuli S,
we record the elicited neural responses r» € R when one stimulus s € S is repeatedly
presented to the cell according to a prior probability p(s). For example r can be defined
in terms of firing rate, or of interspike interval distribution, or of the first spike timing.
Once all the data have been collected, the joint probability p(r, s) and the response
probability distribution p(r) can be estimated. Then, the mutual information can be
calculated according to:

ISR) = 3 3 plrs) log, 205 (6.1)

SsESTER p(r)p(s)

IEstimating the joint probabilities from experimental data needs very large samples and it is often
unfeasible, but approximation techniques exist (see for instance Panzeri and Treves 1996).
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or equivalently in terms of conditional probability p(r|s) = p(r, s)/p(s)

1SR =3 S pls)p(rls) log, 212 (6.2)

SsESrer p(rr)

Introducing the entropy H(R) = — >, p(r) log, p(r) of a probability distribution p(r),
we can rewrite Eq. 6.1 as:

I(S;R) = H(R) — H(R|S) (6.3)

where H(R|S) = Y ,csp(s)H(R]s) is the conditional entropy.

Shannon’s Ml provides a quantitative measure of the averaged information trans-
mitted through the synapse by a set of responses given a set of input spike trains (or
vice-versa). We were also interested in identifying those stimuli that were best en-
coded by the GC. Thus, for each stimulus s € R we computed the stimulus specific
contribution to the MI, termed surprise:

5) = r|s)lo M
I( )—%ﬁap( [5)logy =

This allowed us to find the most informative set of stimuli, and to investigate in which
conditions the cell coding capability was optimised.

6.2 Quantifying information transmission at
cerebellar mossy fi bre - granule cell synapses

6.2.1 The cerebellar granule cell constitutes a suitable neuronal
channel for information theoretic studies

In most cases, (i) the multiple mechanisms of nonlinear integration at individual sy-
napses, (ii)the large number of synapses (typically 103 —10%), and (i) their location on
wide dendritic trees with complex electrotonic and active properties, make it infeasible
to perform a thorough information theoretic analysis of the transmission properties of
single neurons. Approximations have been attempted via dimensionality reduction of
input-output space whereby the effect of an individual synapse on the neuron response
was evaluated while considering the rest of the dendritic inputs as background noise
(London et al. 2002).

We focused on a “simple” neuron, the cerebellar granule cell (GC), in which the
excitatory input space could be explored extensively (Fig.6.1a). GCs constitute a re-
markable exception because: (i) they have a compact electrotonic structure (D’Angelo
et al. 1995; Silver et al. 1996) and therefore their whole cell membrane can be con-
sidered as equipotential, disregarding spatial effects on computation (Koch and Segev
2000); (ii) they receive a very low number of mossy fibre (MF) afferents (4 on average)
(Eccles et al. 1967; Jakab and Hamori 1988), which generates a tractable number of
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Figure 6.1: Cerebellar granule cell (GC) morphology and digitalization of neural signals. (a) Confocal
image of a biocytin-stained GC in the rat cerebellum. GCs have a low number of mossy fiber (MF)
afferents (4.17 on average). (b) The membrane potential of a GC recorded over 220ms. Spike trains
were digitised as strings of Os and 1s within discrete time bins of 10ms. (Taken from Bezzi et al. 2005)

possible combinations of presynaptic inputs and reduces the complexity of Ml calcu-
lation. Moreover, the mechanisms of GCs intrinsic excitability and synaptic transmis-
sion and plasticity have been intensely investigated (e.g., D’Angelo et al. 2001; Nieus
et al. 2005). GCs are tiny neurons (6 um diameter, Jakab and Hamori 1988), they
are very numerous (~ 10! in humans, about half of the neurons of the whole brain),
and constitute the major input stage of the cerebellum, the granular layer. Mossy fi-
bres (MFs) are the primary afferents to the cerebellar cortex and convey multimodal
sensory inputs to the GCs. The MF-GC synaptic transmission constitutes the core of
the granular layer computation. Despite the structural simplicity of GCs, the temporal
dynamics of the MF-GC synapses call upon the same complex mechanisms mediating
information processing at most of brain synapses (Braitenberg 1967; Medina, Garcia,
Nores, Taylor, and Mauk 2000). MF-GC synaptic transmission is based on nonlinear
transformations determined by presynaptic short-term facilitation and depression, glu-
tamate spillover, postsynaptic AMPA and NMDA receptor gating, and multiple voltage-
dependent channel interactions regulating intrinsic electroresponsiveness (D’Angelo
et al. 1995; Mitchell and Silver 2003; Nielsen et al. 2004; Sola et al. 2004; Nieus et al.
2005). According to classical theories of Marr (1969) and Albus (1971), the GC layer
might encode multimodal afferent MF signals into a sparse representation to facilitate
downstream discrimination of input patterns.
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6.2.2 A model of the MF-GC synaptic transmission

In order to conjugate fundamental aspects of neurotransmission derived from physio-
logical recordings with a detailed reconstruction of postsynaptic electroresponsiveness,
we needed a detailed model of the synaptic transmission at the MF-GC relay (D’Angelo
et al. 2005). A model of the GC was derived from D’Angelo et al. (2001). GCs are
electrotonically compact (D’Angelo et al. 1995; Silver et al. 1996; Cathala et al. 2003),
hence there was little need to simulate dendrites and a mono-compartmental structure
was employed. The GC model included four independent synaptic contacts (Nieus
et al. 2005), with three releasing sites per synapse. To account for the stochasticity
of neurotransmission a stochastic version of the model was developed in which the
neurotransmitter release at each site was generated by a probabilistic process mod-
ulating glutamate concentration. Independent postsynaptic receptor densities (AMPA
and NMDA) could therefore be activated by the corresponding releasing sites according
to a stochastic process. In the model, the state of the presynaptic terminal was com-
puted according to a three-state scheme adapted from Tsodyks and Markram (1997).
This integrated model permitted a systematic investigation of the multiple mechanisms
regulating MF-GC synaptic transmission and driving synaptic plasticity. The NEURON
simulator (Hines and Carnevale 2001) was employed to implement and validate the
model.

6.2.3 Experimental measure of information transmission at the
MF-GC synaptic relay

Experimental data were obtained by means of in vitro whole-cell patch clamp record-
ings of GCs of wistar rats. GC stimulations were carried out by means of a bipolar
electrode positioned above the MF bundle (Nieus et al. 2005). To measure MI, one
to four MFs were then stimulated simultaneously by a set of spike trains according to
a protocol that allowed us to mimic the discharges of GCs following punctuate tactile
stimulation in vivo (Chadderton et al. 2004). The information transmitted through a
single GC was quantified before and after having induced long-term synaptic plastic-
ity (both LTP and LTD) at MF-GC synapses, a condition known to modify the release
probability at the MF synaptic terminals (Sola et al. 2004).

6.2.4 Outline of principal results

First, both our experimental and numerical results indicated that the temporal struc-
ture of the spike trains conveys a large fraction of the total information trans-
mitted. We measured MI either by characterising the GC responses by means of their
spike frequency, or by considering each spike train as a binary string, in which the posi-
tion of each spike mattered (Fig.|6.1b). On average, the average amount of information
carried by the firing frequency was 51%, meaning that half of the information transfer
was due to temporal interspike relationships.
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Figure 6.2: The effect of long-term plasticity upon MI and on the information transmitted by the
subset of most informative inputs. (a) MI calculated by stimulating the formal MF-GC synapses with
a rather large stimulus set (65536 stimuli) and by varying the release probability p on the four MFs
independently, within the range [0.1,0.8]. Each data point indicates the MI value corresponding to a
different combination of p across the four MFs, and the x-axis provides the p averaged over the four MFs
(therefore, different MI values can coexist for any value of p averaged). (b The mean surprise (averaged
over the subset of stimuli with a surprise larger than 90% of the maximum surprise value) tends to a
plateau as the mean release probability p (averaged over the four MF-GC synapses) is increased. (c)
GC responses (spikegrams, left, and PSTH, right) to one of the most surprising stimuli (1111” on all 4
MFs as indicated by the arrows) for three different values of release probability. This is an illustrative
example of the general process described above in b. (Taken from Bezzi et al. 2005)
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Figure 6.3: Correlated activity across the inputs contributes to information transmission. On average,
the larger the temporal correlation coefficient C, which measures the average number of coincident spikes
across the four MF afferents, the larger the surprise the information transmitted by a stimulus. (Adapted
from Bezzi et al. 2005)

Second, again both experiments and theory showed that long-term potentiation
(LTP), which increases neurotransmitter release probability p, affects the information
transfer dynamics by enhancing Ml significantly (see Fig. 6.2a for the relationship
between MI and p as predicted by the theoretical model). This finding suggested that
optimal transmission might correspond to large p values.

To further investigate this hypothesis we run a series of numerical simulations to
analyse the effect of long-term synaptic plasticity upon the information transmitted by
the subset of the most informative stimuli. Fig. 6.2b shows the mean surprise as func-
tion of the release probability p. After an initial rapid growth, the surprise tended to a
plateau. Thus, maximal transmission of the most informative inputs occurs already at
intermediate values of p (0.4 < p < 0.5). Fig. 6.2c displays the GC responses to one
of the most surprising stimuli for three different values of release probability. When p
increased from 0.1 to 0.5, the time locking of the cell response to the input stimulation
improved, augmenting information transmission. However, for larger p values (e.g.,
p = 0.8) short-term depression reduced the AMPA transients and depolarisation be-
came driven by smoothly-varying currents (like the NMDA and persistent Na+ current)
(D’Angelo et al. 2001; Nieus et al. 2005) decreasing the probability of having pre-
cise stimulus-elicited response spikes. Therefore, although on average MI was max-
imised by LTP, an efficient transmission of most informative stimuli occurred at
intermediate values of neurotransmitter release, comparable to those measured in
vitro in standard conditions (Sola et al. 2004).

The above findings may suggest that neurons as well as synaptic plasticity mecha-
nisms have evolved for optimising the transmission of a limited set of relevant stimuli.
We further examined the input spike train patterns to identify those features (e.g., dis-
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charge frequency and spatio-temporal structure) that are relevant to optimal informa-
tion transfer. Stimuli with large firing rates were usually highly informative, indicating
that the spike count contributed to information transmission. Nevertheless, as noted
above, information was not only encoded just in terms of spike count. We examined
the most informative stimuli and noticed that they tended to be characterised by the
presence of multiple coincident spikes across the four MFs, whereas no coincident
spikes were observed in the least informative inputs. This result indicated that corre-
lated activity across the four MF afferents may largely contribute to information
transmission. To test this hypothesis, we measured the information transmitted by
each stimulus as a function of the amount of temporal correlation C' across the four
MFs. Fig. 6.3 shows that, on average, the larger C, the larger the information trans-
mitted by a stimulus. These results showed that the correlation across distinct afferent
signals largely contributed to the information transferred by the neuron and they ex-
tended previous studies showing that GC firing requires the co-activation of two or
more MFs (D’Angelo et al. 1995).



Chapter 7

Conclusions and Future Perspectives

The research work presented in this dissertation is characterised by a cross-disciplinary
approach that brings together experimental, theoretical, and robotic techniques. This
integrative neuroscience methodology can be employed to study the neural principles
underlying the ability of animals to interact with their environment, process multimodal
sensory information, and learn low-level sensory-motor couplings as well as more ab-
stract context representations supporting flexible spatial behaviour.

The projects outlined by Chapters 3, 4, 5, and [6 have all given rise to collabora-
tions and/or supervisions of master and Ph.D. works that are still ongoing. Thereupon,
extending/improving most of the studies described in this report will constitute a large
body of my future research.

Spatial learning and navigation in neuromimetic systems. A biologically-inspired
model of the neural bases of spatial learning and goal-oriented navigation has been
presented in Chapter 3. The model, which has been tested on a mobile robotic plat-
form, reproduces the place and directional coding provided by hippocampal place (HP)
and head direction (HD) cells, respectively. It also demonstrates that combining allo-
thetic and idiothetic spatial information is crucial for generating reliable spatial memo-
ries. This model, which has already been extended thanks to the collaborations with W.
Gerstner (Laboratory of Computational Neuroscience, Ecole Polytechnique Fédérale
de Lausanne, EPFL) and J.-A. Meyer (Animatlab, Université Paris VI), has now become
a module for a European integrated project (named ICEAbot, 2006-2010). Among the
objectives of the international consortium that conceived ICEAbot there is the aim of
synthesising a neuromimetic spatial learning system accounting for motivation-based
action selection and for the anatomo-functional interactions between the hippocampus,
several neocortices, the amygdala, and the basal ganglia. Furthermore, together with
A. Guillot (Animatlab, Université Paris VI), we are supervising a Ph.D. project (2004-
2007) that aims at extending the neuromimetic spatial cognition model by studying
the role of the hippocampus-prefrontal cortex interaction (e.g., for “mental” planning of
navigation trajectories).

Head direction cells: electrophysiological recordings. A series of electrophysiolog-
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ical experiments focusing on the directional selective discharges of HD cells in the rat
anterodorsal thalamic nuclei (ADN) has been outlined in the first part of Chapter 4.
These experiments shed some light on the control of static (e.g., environmental land-
marks) and dynamic (e.g., optic field flow) visual information upon HD cell activity. They
also provide some insights on the relationship between the HD cell firing rate and the
hippocampal theta rhythm. The study concerning the effect of visual optic field flow on
the HD cell coding is being continued in collaboration with S. I. Wiener (Laboratory of
Physiology of Perception and Action, LPPA, CNRS-Collége de France, Paris). In the
future, we will attempt to complement our electrophysiological findings with a series
of psychophysical experiments with subjects undergoing the same type of optical field
flow stimulation. This might produce some results on the effect of vection phenom-
ena (i.e., the self-motion perception induced by an optic field flow) upon the sense of
direction of humans undertaking a spatial task. In particular, this might allow us to
link the results at the level of single-cell discharges (i.e., ADN HD neurons) with those
concerning high-level illusory perception in humans.

Head direction cells: theoretical modelling. A theoretical model of the HD cell sys-
tem has been presented in the second part of Chapter 4. The objective of this the-
oretical work was to investigate (both analytically and numerically) the mechanisms
underlying (i) the generation and maintenance of the directional coding of a large pop-
ulation of formal HD neurons; (ii) the integration of vestibular-like information (e.g.,
angular velocity signals); (iii) the update of the ensemble HD cell activity following
reorienting visual cues. This work is the result of a collaboration with N. Brunel (Labo-
ratory of Neurophysics and Physiology of the Motor System, Université Paris V) and S.
I. Wiener (LPPA, CNRS-Collége de France, Paris). In the current version of the model,
only static visual stimuli are employed to update the HD cell representation. A further
step will consist of incorporating the dynamic visual signals (e.g., optic field flow) that
may converge onto the HD cell circuit via the accessory optic system. This will allow
us to study the mechanisms regulating the dynamics of the progressive shift of the
preferred directions of ADN HD cells observed experimentally in the presence of visual
optic flow.

The role of the cerebellum in spatial cognition. A behavioural study investigating
how cerebellar learning can promote spatial navigation has been described in Chap-
ter 5. This work has employed L7-PKCI mice, a transgenic model that lacks long-term
synaptic depression (LTD) at the parallel fibre-Purkinje cell (PF-PC) synapses. The
main result of this study is that PF-PC LTD (i.e., a mechanism at the synaptic level)
may contribute to the procedural component of spatial navigation, in the sense it may
mediate the adaptive tuning of navigation trajectories (planned outside the cerebellum)
according to the ongoing sensory-motor contexts. This work has recently given rise
to a theoretical study done in collaboration with L. Rondi-Reig (LPPA, CNRS-College
de France), who led the original behavioural study, and N. Brunel (Laboratory of Neu-
rophysics and Physiology of the Motor System, Université Paris V). The objective of
this theoretical work consists of modelling the cerebellar macrocircuit (including mossy
fibres, granule cells, parallel fibres, Purkinje cells, deep cerebellar nuclei, inferior olive,
and interneurons such as Golgi cells) and to mimic the long-term synaptic plasticity oc-
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curring at the synaptic relays of this network. This will allow us, for instance, to emulate
a deficit of PF-PC LTD and, hopefully, to reproduce the same procedural impairments
observed in L7-PKCI mice. Also, this will help us to study how synaptic modifications
occurring at other learning sites of the cerebellar network (e.g., between the mossy
fibres and the deep cerebellar nuclei) may compensate for the PF-PC LTD deficit.

Neural information processing and optimal neural coding. A study investigating neu-
ral information processing at the major input stage of the cerebellum, i.e. the granular
layer, has been presented in Chapter 6. This work focuses on the information trans-
mission properties of single granule cells (GCs) and has been carried out using both
theoretical (i.e., Hodgkin-Huxley-like modelling) and experimental (i.e., in vitro patch-
clamp recordings of rat GCs) methods. The cytoarchitectural properties of GCs (e.g.,
the fact they only receive four afferent synapses and they have a compact electrotonic
structure) make them suitable for an information theoretic analysis of their input-output
relationships. Both theory and experiments show that long-term synaptic plasticity
influences the GC information transfer significantly and they support the hypothesis
that the temporal structure of the spike trains (as opposed to their firing rate) con-
veys a large amount of information. This work, done in collaboration with O. Coenen
(Neuroscience Group, CSL Sony, Paris) and E. D’Angelo (Dept. of Physiological and
Pharmacological Sciences, University of Pavia and INFM, Italy), is now being extended
along two main directions. First, the effect of changes of the cell’s intrinsic excitabil-
ity on information transmission will be investigated. Intrinsic electroresponsiveness will
be regulated through the modulation of voltage-dependent ionic channel conductances
(e.g., partial blockades of hyperpolarising K+ channels or depolarising Ca** currents),
or through the modulation of the cell’s recovery time delay. Second, the information
theoretic analysis will be extended to study a population of GCs. The cerebellar gran-
ular layer receives a large spectrum of afferent sensory signals and our information
transmission analysis may help us to test the hypothesis that GCs provide an efficient
encoding of multiple sensory-motor contexts to facilitate learning (e.g., to reduce de-
structive interference) at downstream synaptic relays (e.g., parallel fibre-Purkinje cell
synapses).

Besides the new (ongoing) works described above, there are two future projects
that will capitalise (principally) on the collaboration with L. Rondi-Reig (LPPA, CNRS-
Colleége de France). The first concerns a spatial learning study to investigate the func-
tional interaction between the cerebellum (which is likely to mediate procedural-like
memory) and the hippocampus (which mediates declarative memory). This study will
involve both experiments (e.g., extracellular recordings) and theoretical methods (e.g.,
structural modelling). The second project will attempt to model the principal mech-
anisms regulating synaptic plasticity (e.g., the activation of NMDA receptors during
induction of LTP) in the hippocampus, and to emulate high-level spatial memory im-
pairments produced by deficits in these (low-level) plasticity mechanisms. This study
will complement an ongoing experimental work (directed by J. Mariani of the Labo-
ratory of Neurobiology of Adaptive Processes, Université Paris VI, and L. Rondi-Reig
of the LPPA, CNRS-Collége de France) that aims at characterising the molecular and
cellular bases of spatial orientation deficits in aged subjects.
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