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PAR

ANGELO ARLEO
Laurea in Scienze dell’Informazione, Università degli Studi di Milano,
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Abstract

Intelligent behavior in complex environments involves many basic capabilities. In particular, to achieve
cognitive navigation, both biological organisms and artificial agents need to be endowed with spatial
learning capacities, that is, they must be able to locate themselves within the environment, to perform
complex target-directed behavior (e.g., to reach feeder locations), and to avoid penalties (e.g., collisions
with obstacles).

Neurophysiological and behavioral experiments on rodents suggest that the Hippocampus is the
structure of the brain that provides a neural basis for space coding. Indeed, hippocampal place cells
exhibit an explicit representation of the animal’s location within the environment. In addition, neurons
encoding the orientation of the rat’s head in the azimuthal plane have been recorded from the hippocam-
pal formation, i.e., head-direction cells. Place coding and directional sense are crucial capabilities for
solving spatial learning tasks. This endorses the hypothesis that the hippocampus plays a functional role
in rodent navigation, and that it supports spatial cognition and spatial behavior.

The overall objective of this work is to study the neurophysiological mechanisms underlying rodent
spatial behavior, and to emulate these processes to design an autonomous navigating agent. In particular,
we focus on cognitive navigation and we develop a neuro-mimetic system modeling biological spatial
learning. We address the two following questions:

(i) How do rodents establish a space code of their environment based on available sensory inputs and
on their continuous interaction with the world? We put forward a modular neural architecture based on
the functional properties as well as the anatomical interconnections of the brain regions involved in space
representation. We model hippocampal place cells and head-direction cells as two neural populations.
These two systems are strongly coupled and interact with each other to form a unitary space learning
system. Allothetic (e.g., visual and auditory signals) and idiothetic inputs (e.g., vestibular and propri-
oceptive signals) are combined to establish stable place and direction codes. Unsupervised Hebbian
learning is employed to allow the agent to build its worldview based on its own experience.

(ii) How can cognitive navigation be accomplished based on the above spatial knowledge? The
hippocampal space representation model is used as a basis for achieving target-oriented behavior. Hip-
pocampal place cells drive an extra-hippocampal population of action neurons. Synaptic efficacy be-
tween place cells and action cells is modified as a function of dopaminergic target-related reward signals.
This results in an ensemble action cell activity that provides goal-directed navigation.

Biologically inspired solutions have been shown to be a useful methodology for developing flexible
and self-contained artificial navigation systems. The experimental evaluation of the model has been
done by implementing it on a mobile robot. We emphasize the importance of continuous interaction
between the robot and the environment. This results in an incremental and dynamic development of the
navigation system, and enables the robot to adapt its lifelong behavior according to situations that it has
never experienced before.

The present study has produced some insights in the neurophysiological processes involved in ani-
mal spatial cognition (i.e., functional and anatomical predictions). From a robotic viewpoint, we have
endowed an artificial agent with animal-like exploration and self-localization capabilities, which allows
the robot to accomplish effective target-oriented navigation exploiting its interaction with the world.
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Sommario

La navigazione di un agente autonomo in ambienti complessi richiede capacità cognitive. Sia gli orga-
nismi biologici che gli agenti artificiali devono essere dotati di capacità di apprendimento per mostrare un
comportamento cognitivo. L’interazione agente-ambiente è una componente fondamentale dell’appren-
dimento: Essa permette lo sviluppo della conoscenza necessaria per adattare le proprie azioni a situazioni
che non sono prevedibili.

La navigazione cognitiva si basa sulla capacità di auto-localizzazione da parte di un agente: quest’ul-
timo deve utilizzare le proprie risorse sensoriali per determinare la propria posizione nello spazio. L’infor-
mazione sensoriale può provenire da fonti esterne (e.g., stimuli visivi) oppure da fonti interne (e.g.,
stimuli vestibolari). Gli organismi biologici integrano questi due tipi di informazione per costruire una
rappresentazione spaziale adeguata. I processi neuro-fisiologici che determinano tale capacità cognitiva
non sono ancora stati completamente identificati.

Gli esperimenti neuro-fisiologici e comportamentali condotti sui topi da laboratorio rivelano che
l’ippocampo è la struttura cerebrale sulla quale si basano le capacità di apprendimento spaziale degli ani-
mali. Infatti, le cellule ippocampali di posizione (i.e., hippocampal place cells) codificano esplicitamente
la posizione di un animale nell’ambiente, mentre le cellule ippocampali di direzione (i.e., head-direction
cells) ne rappresentano l’orientazione nel piano orizzontale. La capacità di codificare posizione e orien-
tazione nello spazio bidimensionale è determinante per il processo di auto-localizzazione. Ciò conferma
l’ipotesi che l’ippocampo ha una funzione importante nei processi di navigazione cognitiva degli animali.

Gli obiettivi principali di questa tesi sono: (i) Lo studio dei meccanismi neuro-fisiologici che gover-
nano l’attività delle cellule ippocampali; (ii) L’emulazione di tali processi per lo sviluppo di un agente
artificiale autonomo. In particolare, lo scopo è di realizzare un sistema neuronale basato sulle proprietà
funzionali e anatomiche delle strutture cerebrali coinvolte nel processo di navigazione cognitiva.

È stato sviluppato un modello ippocampale in cui due popolazioni neuronali (i.e., cellule di posizione
e di direzione) interagiscono al fine di permettere l’apprendimento di rappresentazioni spaziali. Tale
sistema integra le informazioni sensoriali esterne ed interne per ottenere un’adeguata stabilità a livello
della rappresentazione. L’apprendimento non-supervisionato (i.e., unsupervised Hebbian learning) è
utilizzato per permettere al sistema di acquisire conoscenza grazie alla propria esperienza.

La rappresentazione appresa è utilizzata per permettere la navigazione da un punto qualsiasi dello
spazio verso una posizione obiettivo. Una popolazione extra-ippocampale di cellule d’azione (i.e., action
cells) è utilizzata per determinare il comportamento del sistema. L’attività di tali cellule è determinata
dalle cellule di posizione attraverso delle connessioni sinaptiche. L’entità di tali connessioni è modificata
tramite apprendimento “per rinforzo” (i.e., reinforcement learning). Un segnale di tipo dopaminergico
è utilizzato per modificare tali connessioni in funzione dell’obiettivo. Tale metodo permette di ottenere
un’attività neuronale a livello delle cellule d’azione che codifica una mappa di navigazione.

Il modello è stato implementato su un robot mobile per effettuarne la validazione sperimentale.
L’enfasi data all’interazione robot-ambiente permette lo sviluppo incrementale del sistema di navigazione.
Inoltre, il robot acquisisce la capacità di generalizzazione necessaria per adattare il proprio comporta-
mento a situazioni mai affrontate in precedenza.

Per concludere, tale lavoro ha permesso di chiarire alcuni meccanismi che sono alla base della na-
vigazione cognitiva degli animali e di formulare delle predizioni di carattere funzionale e anatomico
concernenti le strutture cerebrali coinvolte in tali processi.
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Chapter 1

Introduction

1.1 Motivation

For successful spatial behavior, both animals and autonomous artifacts need to continuously interact
with their environment. An agent, be it a robot or an animal, senses its world via different perceptual
capabilities (e.g., vision, olfaction, touch), and has to employ such multimodal information to adapt
its behavior. Reaching an interesting location (e.g., a food source), returning home, finding short-cuts,
adopting efficient exploration strategies: In order to perform these tasks autonomously and effectively,
a navigating agent needs to be endowed with spatial learning capabilities. In particular, it has to able to
locate itself in the environment as well as to perform target-oriented behavior.

Cognitive neuroscience defines navigation as the capability of planning and performing a path from
a current position ~p(t) towards a desired location ~pgoal [114, 97]. Implicit in this definition is the ability
of a navigating agent to adapt its goal-directed behavior to the complexity of the task to be solved.

Approaching a target location ~pgoal is easy if the latter is either directly visible or identified by a
visible cue. In this case, a simple landmark-guidance behavior can be adopted to solve the task, i.e.,
taxon navigation. Taxon strategies can be understood by means of simple stimulus-response behavior,
that is, the agent must associate a single response to a single stimulus [309]. This yields a simple reactive
strategy: Given a stimulus (e.g., a spotlight), the agent orients towards it and approaches it.

A second type of navigation based on stimulus-response learning is praxic navigation. The agent
navigates towards a goal by executing a specific motor sequence acquired by training [272]. This strategy
is appropriate, for instance, when the target is identified by a sequence of specific cues. Then, instead
of single orienting responses as in taxon navigation, the agent can learn more elaborate sequences of
stimulus-action associations.

Target locations are often either not directly identified by any cue (or sequences of cues), or simply
“hidden” with respect to the agent’s sensory capabilities. In this case, goal-oriented behavior requires
more complex spatial learning, i.e., locale navigation [256]: A representation of the spatio-temporal
properties of the environment is built to enable the agent to locate itself and navigate based on locally-
available sensory information. This type of representation is also referred to as cognitive map [361],
in the sense that it requires high-level information processing to encode the knowledge about a familiar
environment, and to use such knowledge for flexible behavior (e.g., planning short-cuts).

Do animals have access to internal models of their environments? Do animals use these models

3



4 CHAPTER 1. Introduction

for cognitive-like navigation? Neurophysiological as well as behavioral findings support the hypothesis
that they actually do. Indeed, as the complexity and the perceptual capabilities of biological organisms
increase, an explicit spatial representation appears to be employed to support navigation in complex
task-environment contexts [361, 255, 256].

The most studied neurophysiological structure of mammals exhibiting such a spatial representation
property is the hippocampus [255, 256, 209, 243, 324, 278, 394, 323, 166]. This area of the brain has
been thought to mediate spatial coding ever since experimental evidence for location-sensitive neurons
(place cells) in the hippocampus of freely-moving rats was found [255]. In addition, neurons whose
activity is tuned to the orientation of the rat’s head in the azimuthal plane have also been observed in the
hippocampal formation. These neurons (head-direction cells) endow rodents with an allocentric compass
system. Place coding and directional sense are crucial for solving complex spatial learning tasks. This
supports the hypothesis that the hippocampus plays a functional role in rodent navigation, and provides
a neural basis for spatial cognition and spatial behavior.

1.2 Towards Neuro-Mimetic Spatial Learning

Within the multidisciplinary research field concerning the design of artificial intelligent agents, the task
of developing autonomous navigating systems is still an open problem [74, 87]. The complexity of
this task lies inherently in the concept of autonomy: An autonomous agent should have a completely
self-contained control system to adapt its lifelong behavior to all possible situations it might face.

The traditional Artificial Intelligence approach, based on predefining internal accurate models of
the world to endow robots with human-like symbolic capabilities, has been recognized unsuitable for
such a task [53]. Firstly, real complex environments are often unpredictable, making it impossible to
design a built-in knowledge to associate the most appropriate action for every situation. Additionally,
the agent’s sensory-motor system and the interaction agent-environment are typically corrupted by noise
whose distribution is often unknown. Finally, predefined models are intrinsically biased since they tend
to reflect the worldview determined by the human sensory system and to inherit the structure of linguistic
descriptions used to formulate them [88].

Recent research on autonomous robots has moved towards a novel non-symbolic approach termed
behavior-based robotics [54, 190, 89]. Capabilities such as reactivity, flexibility and real-time acting have
received considerably more attention than optimality and completeness. The idea is to let the agent build
up its own worldview and behavior by means of its own experience (i.e., learning). Based on the idea
that “the world is its own best model” [53], the behavior-based approach stresses the importance of con-
tinuous interaction between the robot and its environment for an incremental and dynamic development
of the control system [190]. The principles for designing behavior-based robots often take inspiration
from basic behavior mechanisms observed in biological systems and from well-established neurophys-
iological adaptive strategies such as neural plasticity [27, 73, 204, 268, 52, 269, 338]. This research
direction has been shown to be a promising way to realize autonomous navigating systems. Several
behavior-based learning frameworks, such as reinforcement learning and evolutionary techniques, have
successfully addressed the problem of designing adaptive systems to autonomously navigate in unpre-
dictable real environments [218, 217, 72, 115, 176, 191, 104, 86, 248]. Most of the proposed solutions,
are based on reactive behavior: Agents learn to map incoming stimuli to actions in order to perform
the best control policy to accomplish their task, without building any internal spatial model of the en-
vironment. As a consequence, the behavior-based paradigm can be employed to capture the functions
undertaken by the taxon system in biological agents, although it does not allow us to scale up to more
complex tasks such as cognitive (i.e., locale) navigation [186].

The issue of building an internal model of the world to be used for autonomous navigation has been
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largely investigated in robotics. Map-learning research has produced two principal approaches, namely
the metric paradigm [232, 231, 94, 95] and the topological paradigm [178, 197, 407]. In the former,
the geometrical features of the world are modeled accurately. One of the most popular of such methods
consists of representing space by means of a two-dimensional evenly-spaced grid called occupancy grid
[231, 232]. Each grid cell estimates the occupancy probability of the corresponding area of the world.
Topological maps are more compact representations in which spatial relations between relevant locations
in the environment are modeled by means of a topological graph [178, 197, 308].

Since occupancy grids reproduce the geometrical structure of the environment explicitly, they are
easy to learn and maintain. On the other hand, this approach is limited by its vulnerability to errors that
affect the metric information (i.e., robot’s position and distance to obstacles). In addition, building occu-
pancy grids is very expensive in terms of memory and time: to accurately model a complex environment,
the resolution of the occupancy grid must be high, which results in heavy computation. Topological maps
are more qualitative representations of the world, so that they are not necessarily vulnerable to errors in
the metric information. Also, the complexity of the learned graph is directly related to the world com-
plexity optimizing the use of time and space resources. However, since pure topological maps rely on a
sensory pattern recognition process, distinct places producing equivalent sensory patterns might disrupt
the self-localization system.

Since these two paradigms exhibit complementary strengths and weaknesses [359], several models
have been put forth to integrate both representations into a hybrid system [68, 95, 356, 359, 12]. How-
ever, systems engineered so far are not as robust, flexible, and adaptable as biological space-learning
systems. Therefore, similar to the behavior-based idea of modeling biological solutions, moving to-
wards a biologically-founded approach to achieve cognitive navigation offers the attractive prospect of
developing autonomous systems that directly emulate mammalian navigation abilities.

1.3 Aims of this Thesis

The overall objective of this work is to study the neurophysiological mechanisms underlying rodent spa-
tial behavior, and to emulate these mechanisms to design an autonomous navigating agent. In particular,
we will focus on cognitive (i.e., locale) navigation and we will develop a neuro-mimetic system suitable
for modeling the components of biological spatial learning. We address the two following questions:

(i) How do rodents establish a space code of their environment based on available sensory inputs and
on their continuous interaction with the world? We will model the properties of hippocampal place
cells and head-direction cells, and we will realize a neural architecture based upon the anatomical
interrelations between the brain areas involved in space learning.

(ii) How can cognitive navigation be accomplished based on the above spatial knowledge? We will
develop a navigation mechanism to achieve goal-directed behavior by employing the above place
and direction representations for reward-based action learning.

The experimental evaluation of the developed model will be done by implementing the system on a
mobile robotic platform (Sec. 1.4). We stress the importance of continuous interaction between the
robot and its environment (situated artificial intelligence paradigm [371, 270]) to produce an incremental
experience-dependent development of the spatial learning system.

An understanding of the functional role of spatial representations in autonomous agents is of central
importance to the field of both neurobiology and robotics. Research in this field may contribute to new
developments and cross-disciplinary insights:
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• Exploration of bio-inspired models of spatial learning may lead to a better understanding of the
mechanisms supporting intelligent navigation capabilities of animals. Neuro-mimetic robotics
offers a useful tool to validate new hypotheses concerning functionalities in neurophysiological
processes. The fact that artifacts are simpler and more “experimentally transparent” than biolog-
ical systems (e.g., a rat), makes them appealing for understanding the nature of the underlying
mechanisms of animal behavior.

• Conversely, modeling biological solutions may provide efficient and robust navigation strategies
and then lead to an immediate applicational pay-off in designing more powerful and adaptive
artificial autonomous agents. Modeling the fact that biological systems can acquire their internal
models incrementally and on-line according to the requirements of the given task-environment
context, may provide interesting solutions to current robotics.

1.4 Methods

1.4.1 Neural Networks

The system we use to endow the agent with space learning and navigation capabilities relies on the
artificial neural network paradigm1 [146, 144, 36]. A neural network is a massively parallel distributed
system suitable for storing and processing complex information, and making it available for use [144].

The elementary constituents of a biological neural network are simple computing units referred to as
neurons. Each neuron i receives a large number of input connections termed dendrites, and transmits its
response through the axon output connection. The computational power of a neural network derives from
the massive interconnections between its neurons. Synapses are the elementary components that mediate
the interaction between neurons. The most common type of synapse converts a presynaptic electrical
signal into a chemical signal and then back into a postsynaptic electrical signal [325]. In particular, a
presynaptic process liberates a neural transmitter that diffuses across the synaptic junction and acts on
the postsynaptic dendrite.

An artificial neural network is a machinery designed to model the adaptive way in which the brain
processes information to perform a given task. In particular, a neural network resembles the brain in
two aspects [144]: (i) It acquires the necessary knowledge to solve a problem through a non-symbolic
learning process; (ii) Storing this knowledge occurs through the modification of the weights of the inter-
connections between neurons (i.e., synaptic plasticity).

Therefore, artificial neural networks offer a suitable tool for designing experience-dependent naviga-
tion systems, and allow us to model the functional properties as well as the anatomical interconnections
of the brain regions involved in animals’ spatial learning.

1.4.1.1 Rate Coding Model

We employ a highly simplified neuronal model in which the firing activity ri of each neuron i is measured
by temporally averaging the number of spikes emitted by i during a time window ∆t [2, 146]. The
concept of rate coding has been largely employed in artificial neural systems. A signal I forms the input
of a neuron i and yields an output ri = f(I) representing the mean firing rate of i. The function f is
termed transfer function. An example of commonly used transfer function is the sigmoid, such that the
activity ri tends asymptotically to 1 for large input signals [146].

1Artificial neural networks are also referred to as connectionist networks, neurocomputers, and parallel distributed proces-
sors.
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Figure 1.1: (a) The mobile Khepera miniature robot (basic configuration). (b) One of the configurations used in this thesis:
the robot is equipped with a linear camera on the top. Images consist of 64-pixel one-dimensional arrays. The azimuthal visual
range is of approximately 36◦. (c) The second configuration employed: the linear vision turret is replaced by a black and white
CCD video camera. The two-dimensional view field covers about 90◦ in the horizontal plane and 60◦ in the vertical plane. The
image resolution is 768 × 576 pixels. In this configuration, the Khepera’s sensory system involves (i) allothetic information,
i.e., infrared readings, light detection, vision, and (ii) idiothetic information, i.e., dead-reckoning.

The main limitation of this neuronal model is that it cannot capture the fast processing speed exhibited
by real neurons (e.g., cells in the human visual cortex [358]). That is, reaction times in neural cells are
often too short to tolerate temporal averages. Nevertheless, the rate code model permits simple analytical
calculations which results in acceptable computation times even in the case of large neural populations.
This is suitable for the type of neural processing adopted in this work.

1.4.2 Experimental Setup

1.4.2.1 Agent: The Khepera Robot

In order to validate the spatial learning system developed in this thesis, we employ a physical implemen-
tation on a mobile Khepera miniature robot2.

2The Khepera has been designed and developed at the Microprocessors and Interfaces Laboratory of the Swiss Federal
Institute of Technology Lausanne (EPFL) in 1993 [230]. Nowadays, it is a largely diffused commercial platform produced and
distributed by K-Team S.A. (www.k-team.com).
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(a) (b)

Figure 1.2: (a) The 60× 60 cm arena with the Khepera robot inside. Black and white stripes provides the input for the linear
visual system. (b) The 80 × 80 cm arena used for the robot equipped with the CCD camera. Visual stimuli are provided from
standard laboratory background. In both cases a camera above the environment is used to monitor the robot’s behavior.

The Khepera robot has a cylindrical shape with a diameter of 55mm, and, in the basic configuration,
it is 36mm tall (Fig. 1.1 (a)). Two DC motors drive two wheels independently providing the robot
with non-holonomic motion capabilities. The Khepera CPU board consists of a Motorola MC68331
processor with 128Kb of EEPROM and 256Kb of RAM. An A/D converter supports the acquisition of
analog sensory signals (e.g., infrared readings). A standard RS232 serial-port provides the possibility of
connecting the robot to an external computer in order to elaborate and process sensory signals3 .

The Khepera has an open modular architecture: additional turrets can be superimposed to extend
its basic configuration. Figs. 1.1 (b, c) show the two types of configurations used in this work. The
sensory capabilities of the agent are provided by: (i) Eight infrared sensors to detect obstacles4 (i.e.,
tactile-like perception) and measure ambient light; six of the infrared sensors cover the frontal 180◦

of the robot, while the remaining two sensors cover approximately 100◦ on the back side; (ii) A light
detector placed in the front of the robot (additional turret); (iii) A vision system (either a linear camera,
Fig. 1.1 (b), or a two-dimensional CCD camera, Fig. 1.1 (c)); (iv) An odometer to map wheel turns into
linear displacement (i.e., dead-reckoning). As shown in Fig. 1.1 (c), signals provided by infrared sensors,
light detector, and visual system, form the allothetic sensory information perceived by the robot through
its interaction with the external world. On the other hand, the internal movement-related signal provided
by the odometer constitutes the idiothetic sensory input.

Due to its physical and functional characteristics, Khepera offers a suitable platform for designing
experiments similar to those performed by ethologists and neurophysiologists on rodents. Indeed, its
small size allows us to work with experimental setups similar to those used with rats. Furthermore,
its sensory system (i.e., vision, light detection, tactile-like perception, and odometry) is appropriate to
emulate the perceptual capabilities of rats.

In this thesis we will develop a “high-level” controller to enable the robot to behave based on its own
experience (i.e., learning). However, we also endow the Khepera with a low-level hard-coded reactive
module providing obstacle avoidance. This behavior is triggered whenever the proximity sensors detect
an obstacle, and takes the control (over the high-level system) to always keep the robot in a safe state.

3The robot can also be used in a totally stand-alone configuration by using its own processor to treat data. However, since
we have to interpret two-dimensional video streams provided by a CCD camera module, we need an external frame grabber.

4In average, Khepera’s infrared sensors can detect an object at a maximum distance of about 4− 5 cm.
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1.4.3 Experimental Apparatus

Figs. 1.2 (a, b) show the two experimental arenas used for experiments performed in this thesis. Both
arenas are open-field environments in which the agent can freely move and sense its world. The 60 ×
60 cm arena of Fig. 1.2 (a) is employed for experiments with the linear-vision system. Walls are covered
by randomly distributed black and white stripes of variable width providing the visual patterns to the
system. The 80×80 cm arena of Fig. 1.2 (b) is used for the two-dimensional vision system. The arena is
placed within a standard laboratory background. Small walls prevent the robot from running outside the
environment. In both cases, a light source is located on one of the arena walls. In addition, the robot’s
behavior is monitored by means of a video camera above the experimental environment.

1.5 Roadmap of this Dissertation

This thesis is organized in three main parts: (i) Spatial orientation: Head-direction cells; (ii) Space
representation: Hippocampal place cells; (iii) Spatial behavior: Goal-oriented navigation. Each part
provides a self-contained description of the theoretical and experimental concepts related to its main
topic. In particular, all parts have the same following structure:

Contributions

(n chapters)

Biological

the art

State of 

(1 chapter)(1 chapter)

Background

The first chapter of each part gives the background for understanding the kind of neurophysiological
mechanisms to be modeled. The second chapter reviews previous research work. The remaining n
chapters contain the modeling and experimental work done in this thesis.

Spatial Orientation: Head-direction Cells (Part II)

Chapter 2 describes the neurophysiological properties of direction-sensitive neurons (i.e., head-direction
cells) as well as the anatomical interconnections between the areas of the brain in which they have
been observed.

Chapter 3 describes several models that have been put forth to capture the direction-selectivity property
of head-direction neurons.

Chapter 4 is the first in which we present our computational approach for modeling the rodent direc-
tional sense. We also give experimental results obtained by validating the model with our robotic
implementation.

Chapter 5 addresses the interrelation between external (i.e., allothetic) and internal (i.e., idiothetic) sig-
nals and their relative influence upon head-direction cells. In particular, we perform some experi-
ments similar to those done with rodents to investigate in which conditions one type of information
(either external or internal) becomes predominant.

Space Representation: Hippocampal Place Cells (Part III)

Chapter 6 describes the hippocampal involvement in spatial learning. The properties of location-sensitive
neurons (i.e., place cells) are described and related experimental findings are reviewed. Several
brain regions involved in spatial learning are briefly introduced, and a general view of the princi-
pal neural pathways connecting the hippocampal formation to the rest of the brain is given. Also,



10 CHAPTER 1. Introduction

anatomical lesion data are reviewed which give some hints about the functional role of the involved
brain areas.

Chapter 7 provides a rather extensive review of previous models of animals’ space representation capa-
bilities. We do not only present approaches focusing on hippocampal place cells, but also models
focusing on the animals’ capability of navigating based on self-motion information only (i.e., path
integration). Furthermore, we give some results obtained by implementing a specific approach to
space coding, namely the model by Burgess, Recce, and O’Keefe [62].

Chapter 8 presents our contribution in interpreting visual data in order to achieve self-localization. We
describe the allothetic pathway of our hippocampal model. Starting from real images taken by the
robot during exploration, we establish a population of visually-driven place cells. Experimental
results obtained with both the linear and the two-dimensional vision setup are presented.

Chapter 9 describes our model of path integration (i.e., the idiothetic pathway of the system). Results are
given to emphasize the intrinsic limitation of path integration, i.e., its cumulative self-localization
error over time.

Chapter 10 combines the allothetic and idiothetic representations to establish a population of place cells
in the hippocampus. Reported results demonstrate that combining external and internal signals
yields stability in the system. As for head-direction cells, we study the interaction between extrin-
sic and intrinsic cues to control hippocampal place cells.

Spatial Behavior: Goal-oriented Navigation (Part IV)

Chapter 11 discusses the goal-directed navigation capabilities of animals and reviews experimental data
on rodents. Also, it describes the role of dopaminergic neurons in reward-based learning.

Chapter 12 describes previous models of hippocampal-based navigation. It also presents results obtained
by implementing two of the reviewed approaches: the model by Abbott, Blum, and Gerstner
[1, 46, 122], and the navigation part of the model by Burgess, Recce, and O’Keefe (the space-code
part has been implemented in Chapter 7).

Chapter 13 proposes our action learning scheme to allow the robot to acquire navigational maps based
on the hippocampal representation established in Part III. Goal-oriented navigation is achieved by
means of reward-based learning.

This dissertation terminates with Chapter 14 in which the achievements and the limitations of this thesis
are discussed, and where our future directions of research are described.
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Foreword

Spatial orientation is crucial for both biological and artificial systems involved in navigation. We define
self-orienting agents those navigating systems capable to establish their own orientation in the azimuthal
plane autonomously and on-line.

Experimental findings suggest that animals and humans are self-orienting agents: During navigation
they can autonomously monitor their directional heading with respect to an allocentric spatial reference.
Neurophysiological data show the existence of an internal directional sense as a basis for spatial behavior
[210, 97, 353]. In particular, experiments show that ants [382, 77, 238], bees [35], spiders [131, 316],
rodents [224, 223, 273, 100, 314, 3], dogs [21, 30, 313], and humans [30, 304, 111, 102] rely on an
internally maintained directional reference when homing by path integration. The latter is a route-based
mechanism in which self-motion signals are integrated over time in order to infer the location and the
heading of a navigating agent relative to a departure point [223, 201, 98]. This implies estimating the
rotational as well as the translational component of motion continuously [314].

In order to assess their rotational displacements over time (i.e., directional tracking), animals like
desert ants and bees estimate their current azimuthal heading by using the sun as an absolute directional
reference [380, 383, 78]. By contrast, mammals mostly rely on idiothetic inertial cues in order to mea-
sure rotations [98, 102]: They combine and integrate vestibular stimuli, proprioceptive information, and
efference copy of motor commands over time [42, 210, 102]. However, measuring angular displace-
ments based on inertial self-motion information only, induces a directional sense affected by cumulative
drift [198, 210, 102]. For this reason, when available, allothetic information (e.g., visual cues) has to be
incorporated in order to recalibrate the heading representation [354, 210, 166].

In this part, we study the neurophysiological structures involved in self-orientation, and we address
the issue of modeling their basic functionalities:

• In Chapter 2 we provide the biological background: We describe the properties and the functional
role of direction-sensitive neurons termed head-direction cells.

• In Chapter 3 we review some existing approaches to model the biological directional system.

Contributions (the work presented in this part of the thesis has been published in [15, 17]):

• In Chapter 4 we put forth a new computational approach for the rodent directional sense, and we
give experimental results obtained by validating it on a real mobile Khepera robot.

• In Chapter 5 we study the influence of external signals (e.g., visual cues) upon our directional
system. We perform experiments (with the mobile robot) similar to those employed by ethologists
and neurophysiologists (with rodents) to study the control of extrinsic cues upon head-direction
cells.
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Chapter 2

Biological Head Direction Cells

Experimental recordings from freely-moving rodents show the presence of head-direction cells, i.e.,
neurons which fire as a function of the animal’s heading in the azimuthal plane [279, 353, 347, 388, 229,
71, 41]. Each head-direction cell fires maximally only when the animal’s head is oriented in a specific
direction, regardless of the orientation of the head relative to the body, of the animal’s behavior, and of
the animal’s spatial location. Thus, the ensemble activity of head-direction cells works as an allocentric
compass providing a neural basis for the rodent’s directional sense [210].

2.1 Anatomical Background

Direction-sensitive neurons have been recorded from the following brain regions: (i) The deep layers of
the postsubicular cortex1 (poSC) [279, 353], (ii) the anterodorsal nucleus (ADN) of the anterior thalamus
(AT) [347, 348, 41, 166], (iii) the lateral mammillary nuclei (LMN) [181], (iv) the laterodorsal nucleus
(LDN) of the thalamus [229, 228], (v) the posterior parietal (PP) and the posterior cingulate2 (PC) cortices
[69, 71, 70, 213], (vi) and the dorsal striatum (caudate nucleus) [397, 226].

Although not completely understood yet, some of the anatomical mutual connections between the
above brain areas (Fig. 2.1 (a)) have been characterized [353, 282]. The postsubiculum (poSC), the an-
terodorsal nucleus (ADN), and the lateral mammillary nuclei (LMN) are all interconnected [138, 29].
The laterodorsal nucleus (LDN) and the postsubiculum (poSC) are also interconnected [138]. The pos-
terior cingulate cortex (PC) is interconnected with both ADN and poSC [138, 29]. Finally, the poste-
rior parietal cortex (PP) is also interconnected with poSC, projects onto posterior cingulate cortex, and
receives afferent inputs from LDN, and from the visual, sensory-motor, and somato-sensory cortices
[138, 174, 60].

1The postsubiculum (poSC), also termed dorsal presubiculum, is a six-layered cortical area (like other cortical regions in
the retrohippocampal formation). Almost all observed head-direction cells were located in the deep layers IV-VI [353].

2The posterior cingulate cortex is also known as retrosplenial cortex.

15
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Figure 2.1: (a) A simplified overview of the brain areas containing head-direction cells and their anatomical interconnections.
Glossary: poSC: postsubiculum, ADN: anterodorsal nucleus, LMN: lateral mammillary nuclei, LDN: laterodorsal nucleus. (b)
The ensemble head-direction activity codes for the allocentric animal’s heading θ with respect to a reference direction Φ.

2.2 Neurophysiological Properties of Directional Cells

Let i be a head-direction cell. Its spiking frequency ri(θ) varies as a function of the angle θ between the
midline of the animal’s head and an arbitrary reference direction Φ (Fig. 2.1 (b)) [353]. Cell i has its
own unique preferred direction θi, that is ri(θ) is maximal only when the animal’s heading θ is equal to
θi. The mean spike-frequency distribution of a head-direction cell i is approximately a Gaussian curve3

centered in the preferred direction θi and with an average standard deviation σ ranging from 20◦ to 60◦

[353, 210] (Fig. 2.2 (a)). The amplitude of the peak is characteristic for each cell [353]. Importantly,
the preferred direction of each cell is invariant with respect to the animal’s location, that is, for a given
cell i, θi remains constant over the whole environment. As a consequence, since the set of all preferred
directions Θ := { θi | ∀i } covers uniformly 360◦, the ensemble cell activity acts as an internal neural
compass [166].

Data show that directional cells are not topographically organized [353, 348, 318, 405]. That is,
two distinct head-direction cells i and j with similar preferred directions θi and θj are not necessarily
neighboring units of the network.

A key property of directional cells is the stability and consistence of the representation [354, 130, 350,
282]: The difference between preferred directions of distinct directional cells remains constant, despite
cue manipulation, disorientation of the animal, or exposure to different environments [166, 327, 405].
Thus, if cell i and j have preferred headings θi and θj , respectively, then any event inducing a shift in the
firing direction θi, ∆θi, will produce an equivalent shift in the preferred direction θj , ∆θj , such that the
difference θi− θj will remain constant in magnitude and sign [210]. This rotational coupling endows the
system with high stability.

Although head-direction cells are primarily correlated with the animal’s spatial orientation, the head
angular velocity ω plays an important role in modulating their firing activity [213]. Experiments show
that most of the cells in the lateral mammillary nuclei (LMN) are strongly correlated with both head
direction and angular velocity [181]. Thus, the mean firing activity of a LMN cell i is a function of θ
as well as ω, that is ri(θ, ω). Similar cells have also been observed in the posterior parietal cortex (PP),
the somato-sensory cortex, and the visual cortex [210, 376]. In the postsubicular cortex (poSC), cells
whose activity depends on the sign of the angular head velocity have been found [353, 318], but only in a

3Or alternatively, a triangular curve [353].
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Figure 2.2: (a) Tuning curve of a postsubicular cell recorded by Blair and Sharp (1995) [41]. (b) The poSC cell exhibits
similar preferred directions during both head still (dotted line) and counterclockwise head rotations (solid line). (c) The same
holds for clockwise turnings (solid line) vs no rotations. Data courtesy T. Blair and P. Sharp.

very small percentage [282]. Finally, ADN head-direction cells tend to increase their average firing rate
proportionally to the magnitude of the head angular velocity, whereas poSC cells, typically, do not [41].

Interestingly, cells in the anterodorsal nucleus (ADN) tend to anticipate the animal’s “future” direc-
tion during head turning [41, 355]4. In particular, ADN cells shift their preferred direction as a function
of ω such that their activity may temporally anticipate head directions by a time delay τ . Let i be an
ADN cell, and let θ denote the present animal’s heading. The fact that cell i shifts its preferred direction
θi proportionally to ω can be expressed by the following equation [41]

θi(ω) = θ − ωτi (2.1)

where τi ≥ 0 is the time delay of cell i. Velocity ω is assumed to be positive for clockwise turning
and negative for counterclockwise turning. According to Eq. 2.1, cell i encodes the present orientation
θ whenever the head is not turning (Fig. 2.3 (a)). During counterclockwise turns, ω < 0, the relation
θi ≥ θ holds, and cell i predicts θ by shifting its preferred direction to the right (Fig. 2.3 (b)). By contrast,
during clockwise turns, ω > 0, cell i tends to fire maximally at θi ≤ θ, that is it tends to shift its preferred
direction to the left (Fig. 2.3 (c)).

The physical constant τi defines the anticipatory property of cell i. Earlier experimental data sug-
gested for τi a value of approximately 30ms constant over the entire ADN population [41]. However,
recent findings show that ADN cells have “individual” specific time delays ranging between 0ms and
100ms [39]. In addition, recent results show that ADN cells have double-peak firing curves [40], where
the deviation between the two peaks is proportional to the constant τi of the cell. These double-peaked
ADN curves deform during rotation such that the “anticipating” peak (e.g., the left peak if ω > 0) rises
while the other decreases [282].

To summarize, postsubicular cortex (poSC), anterodorsal nucleus (ADN), and lateral mammillary
nuclei (LMN) may be considered as primary structures with respect to the directional selectivity property.
By contrast, cells observed in the posterior parietal (PP) cortex, in the posterior cingulate (PC) cortex, and
in the laterodorsal nucleus (LDN) exhibit less clear first-order correlation to head direction [282]. When
recorded in a radial maze [71], PP and PC cells show correlation to both directional and behavioral
information [213]. For instance, their activity depends on whether the animal is moving inward or

4Recent experimental findings [38, 336] show that also cells in the lateral mammillary nuclei (LMN) exhibit an anticipatory
directional coding.
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Figure 2.3: (a) A sample of mean firing rate of an ADN cell recorded by Blair and Sharp (1995) [41] during no head rotation.
(b) The tuning curve of the same ADN cell tends to shift to the right (solid line) during counterclockwise turns. (c) The cell
shifts its preferred firing direction to the left (solid line) during clockwise turnings. Data courtesy T. Blair and P. Sharp.

outward the maze, and whether the animal is turning or moving straight [71]. Furthermore, PP and PC
head-direction cells may show multiple peaks during cue-manipulation experiments [69, 70, 282]. LDN
cells show a strong dependence on allothetic cues in order to become tuned to directional cues in a radial
maze [228]. Indeed, directionality in LDN cell activity is established only after an exposure period (about
one minute) of the animal to the environment in light conditions. If light is subsequently switched off,
orientation selectivity persists for approximately two minutes only [228, 282].

2.3 Anatomical Lesion Data

A large body of experimental work has been done to study how anatomical lesions impair the directional
selectivity of head-direction cells. The following is a brief review of results:

Lesions to the postsubicular cortex. Data show that after poSC has been damaged, ADN thalamic cells
are still directional selective [129, 351]. However, ADN cells become insensitive to allothetic cues and
depend on vestibular input only [282].

Lesions to the anterodorsal nucleus. The directional selectivity of poSC cells is seriously impaired when
damaging ADN [128].

Vestibular lesions. The activity of ADN thalamic head-direction cells is severely disrupted after vestibu-
lar lesions [335].

Lesions to the laterodorsal nucleus. Damages to LDN do not disrupt head-direction cells in poSC [126].

These results suggest that thalamic directional cells (ADN) are related primarily to vestibular inputs, and
indirectly to allothetic signals via the postsubiculum (poSC). Indeed, after poSC lesions they are still
tuned to the animal’s head direction, but they do not respond to external stimuli. On the other hand,
postsubicular cells seem indirectly related to inertial signals via the ADN cell activity, while they might
be more involved in incorporating allothetic information coming from afferent projections from the pari-
etal cortex [405]. As far as we know, there are no published results concerning lesions to the lateral
mammillary nuclei, and to parietal and retrosplenial cortices.
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2.4 Allothetic vs Idiothetic Cues

Head-direction cells continuously update their ensemble activity to track the animal’s heading. How is
this update mechanism carried out? What are the sensory inputs involved? Several experiments have been
done to establish which cues primarily control biological directional cells [354, 210, 166, 350, 130, 102].

The preliminary hypothesis concerning the influence of the Earth’s geomagnetic field upon direc-
tional firing activity has been deserted at once. Neurophysiological data clearly show that cells in poSC,
ADN, and LMN can be controlled by salient visual cues within the experimental environment (e.g., a
white card on the wall of the arena) [210, 229, 354, 166, 102]. For instance, rotating a dominant visual
cue by an angle δ induces an approximately equivalent shift δ in the preferred direction of all cells i, that
is Θ′ = { θi + δ | ∀i } [279, 354, 130, 348, 181].

Despite their dependence upon visual stimuli, poSC, ADN, and LMN cells exhibit clean directional
selective properties even in the absence of allothetic polarizing cues [351]. In particular: (i) If head-
direction cells have been established in light conditions, they maintain stable directional curves either
after removing visual cues or in the dark [354, 210, 229]; (ii) If an animal enters an environment in
complete darkness, head-direction cells are carried forward from the previous environment, and they
continue to show normal directional firing [282].

According to this evidence, it has been hypothesized that idiothetic inertial cues (e.g., vestibular and
proprioceptive signals) might play a major role in controlling head-direction cells. Thus, directional ac-
tivity would be primarily given by integrating angular displacements of the head over time [210]. The
existence of neurons (in the posterior parietal, somato-sensory, and visual cortices) whose activity is cor-
related to the head’s angular velocity supports this theory [210, 376]. However, self-motion information
is vulnerable to cumulative drift over time [198, 210, 102]. Thus, during exploration, long lasting as-
sociations might be learned to form a stable mapping between allothetic and idiothetic representations.
Afterwards, this learned mapping might enable the animal to use stable visual cues to calibrate inertial
information [210, 166].

Experiments with disoriented rats have been carried out to study how the animal’s experience influ-
ences the strength of the control exerted by visual cues on head-direction cells [350]. These studies show
that the more a visual cue is considered as stable by the animal, the stronger the control exerted by the
cue on directional cell activity [166].

To summarize, although the actual mechanism underlying biological head-direction cells is still un-
clear, a general consensus is now emerging which identifies egomotion information as a primary input.
Nevertheless, animals seem to rely on external reliable cues in order to maintain their head-direction
system consistent over time [210, 229, 327, 166, 102, 405].
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Chapter 3

Modeling Head-direction Cells:
State of the Art

Since early neurophysiological results in the 80s showed the existence of directional cells in the rat
brain [279, 353, 347, 388, 229, 71, 41], several approaches have been proposed to model the orientation
selectivity property of these neurons. Despite their differences, all these models postulate a primary
role of inertial stimuli (e.g., vestibular and proprioceptive information) in determining the dynamics
of biological directional cells. Nevertheless, different models focus on distinct underlying aspects, and
propose either a more theoretical, neurophysiologically plausible, or functional approach. In this chapter,
we survey the most relevant approaches which have characterized the research on directional cells in the
last decade.

3.1 McNaughton et al. (1991)

McNaughton et al. [210] propose the first mechanism to integrate vestibular signals in order to update the
directional representation. In particular, they employ a linear associative neural network to replace the
mathematical integration of angular velocity. The input of the network consists of the current heading
information H(t), and the current angular displacement H ′(t)1. Then, the linear associative mapping
defined as

ϕ : H ×H ′ → H

provides the next angular heading H(t + ∆t).
McNaughton et al. consider a population H of directional cells encoding H(t), and a population

of angular velocity cells H’ encoding H ′(t). In addition, since linear independence of the inputs is a
necessary condition for linear mapping, they propose an intermediate group of neurons in which all
possible joint values HH’ are represented by a set of linearly independent vectors. Each cell belonging
to the HH’ population is tuned to both a specific heading and a specific angular velocity.

At each time step the system is in a particular state H(t) and the H ′(t) signal is used to induce the
shift towards the new state H(t + ∆t). The HH’ population acts as a neural associative look-up table of

1In fact, H ′(t) is the angular velocity over an arbitrary discrete time ∆t, that is H ′(t) = dH/dt.
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angular velocity integrals, and determines the state transition H(t) → H(t + ∆t) by projecting onto H
cells properly. Below is a functional view of the system

HHH’H’

For instance, let H(t) = 90◦ and H ′(t) = 45◦/∆t be the current heading state and the current angular
velocity, respectively. Then, the cell i ∈ HH’ encoding the joint feature (H(t), H ′(t)) is maximally
active. Cell i projects to the H population so that it will activate the directional neuron coding for
H(t + ∆t) = 135◦.

With respect to the issue of calibrating directional cells by means of external cues, McNaughton
et al. assume a population of local-view cells (i.e., direction-selective place cells) projecting to the H
population and suggest to apply Hebbian learning to correlate local-view cell activity to H cell activity.

The hypothesis postulated by McNaughton et al. is the first plausible theory explaining both the
update mechanism underlying head-direction cells and the influence of extrinsic signals. However, they
address the problem on a rather abstract level, without accounting for neural connections and dynamics.
Indeed, they do not report any implementation of the model into a concrete directional system.

3.2 Skaggs et al. (1995)

Skaggs et al. [327] propose a refinement of the model suggested by McNaughton and colleagues. In
particular, they focus on the neural architecture of the directional system. A one-dimensional attractor
network scheme [393, 9, 96, 165, 172, 173] is used to consistently model the population of directional
cells. That is, head-direction cells are coupled by intrinsic connections, so that nearby cells are linked by
strong excitatory synapses, and distant cells are connected by strong inhibitory projections. A simplified
scheme of the network follows

Rotation Cells (CLK)

Rotation Cells (CNT)

Head-direction Cells

Due to the attractor nature, at each time step the directional system exhibits a stable representation
consisting of a single localized cluster of active cells. The attractor scheme also determines the shift of
activity over the head-direction population. Given a stable state, if an excitatory external signal is applied
to cells on one side of the peak, the activity will gradually shift towards the side at which the input has
been applied.

Skaggs et al. consider two populations of “rotation” cells whose role is similar to that of HH’ cells
in the model by McNaughton and colleagues. One group of rotation cells is responsible for clockwise
turns, the other for counterclockwise turns. Each rotation cell is active only if the current heading is
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equal to its preferred direction and the head is turning according to its preferred angular velocity sign.
Clockwise rotation cells project to head-direction cells neighboring them on the right. Counterclockwise
rotation cells project to head-direction cells neighboring them on the left. Then, during clockwise turns,
for instance, clockwise rotation cells will excite directional cells to the right of the current peak, and the
hill of activity will shift rightward.

Skaggs et al. also consider a set of visual feature detectors, each of which responds maximally
to a specific visual cue located at a specific egocentric bearing angle. These neurons project to head-
direction cells, and Hebbian learning is used to modify synaptic connections. The activity of visual
feature detectors is used to correct head-direction activity. Note that, since visual detectors are head-
centered (egocentric) and not world-centered (allocentric) orientation selective, Skaggs et al. assume
that detected visual cues are infinitely distant from the animal’s motion area.

To summarize, Skaggs et al. model the neural mechanism underlying directional cell activity and
focus on how the peak of the population activity may shift to track head rotations. However, the pro-
posed model is still an abstract description of the head-direction system and it is not supported by any
simulations or implementations.

3.3 Zhang (1996)

Zhang [405] stresses the central role of the intrinsic dynamics of the head-direction ensemble. The model
includes a fully-connected neural network having a one-dimensional ring topology. Zhang considers the
distribution of the preferred directions over the entire population as continuous and uniform, and focuses
on the average behavior of directional cells. In particular, an analytical framework is formulated account-
ing for: (i) Gaussian-shaped directional tuning curves. (ii) The stationary self-sustaining dynamics of the
system. A pure attractor network is constructed by defining both a weight distribution function describ-
ing the average synaptic strength between directional cells, and an activation sigmoid function relating
the average firing activity of cells to their average inputs. (iii) A dynamical shift model. Another weight
distribution function is defined which extends the weight function used for the static case by introducing
an antisymmetric component (anisotropy in the connection matrix). This modifies the system’s dynamics
by producing a shift of the hill of activity over the entire population. In addition, the weight distribution
function is such that the shape of the activity profile is invariant with respect to system rotation.

In Zhang’s model, the velocity of the shift is determined by a factor γ(t) which defines the magnitude
of the antisymmetric component in the weight distribution. It is shown that if γ(t) is taken proportional to
the angular head velocity ω(t), then the network works as a perfect velocity integrator. On the other hand,
if γ(t) also contains a component proportional to the angular head acceleration ω ′, then the directional
shift over the network tends to lead the true head direction by a constant time delay τ . Zhang argues that
this might explain experimental data on anterior thalamic directional cells (ADN) [41].

The model also accounts for head-direction calibration based on external signals. In particular, Zhang
considers one local-view detector responding to one specific local view. Then, Hebbian learning is used
to correlate the activity of this detector to the head-direction ensemble activity.

To recapitulate, Zhang puts forth a mathematical framework to explain the neurophysiological prop-
erties of head-direction cells. An explicit analytical formulation of the head-direction dynamics as a
continuum is proposed, in which the descriptions of both the static and the dynamic behaviors in terms
of the symmetry of the synaptic weight distribution are unified. Zhang reports the first simulation results
of a directional system based on a pure attractor scheme. The mathematical description of the directional
shift might explain the anticipatory behavior of ADN cells [41]. However, the model does not explain
the fact that some ADN cells tend to increase their firing rate at high turning velocity [41]. In addition,
Zhang does not explicitly transpose his model into an anatomically plausible implementation, that is he
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does not separate the role of distinct biological areas involved in direction representation. Finally, he
does not report any results concerning the tracking capability of the system on realistic data.

3.4 Blair (1996)

Blair [37] suggests that postsubiculum (poSC) and anterior thalamus (AT) might form a thalamocortical
circuit to integrate angular displacements over time. In particular, he focuses on the role of anticipatory
head-direction cells (termed AHD cells in the model) lying in AT. AHD cells, which predict future
headings, project to poSC cells (termed PHD cells in the model) which code for the current animal’s
heading. PHD neurons can be seen as the equivalent of the H cells in the model by McNaughton et
al. [210]. AHD cells inform PHD cells about when to update their representation of the current head-
direction. PHD cells do nothing but receiving afferent inputs from AHD cells. In the model, AHD
cells anticipate PHD cells due to an assumed transmission delay (5ms) between AT and poSC cells.
Furthermore, the strength of AHD → PHD synapses is weak so that each AHD cell must fire several
spikes in order to trigger a PHD cell. Below is a simplified overview of the model

CLK CNT

PHD

AHD AVHD

AVAS

The state-shifting behavior of the system relies on the mutual interaction between AHD cells: Lateral
excitatory and inhibitory projections are used to make the system rotate according to head angular veloc-
ity. In particular, each AHD projects excitatory synapses to its neighbors. Inhibition is obtained via two
group of cells, namely AVHDCLK and AVHDCNT , which fire as a function of the head-direction and the
sign of the angular velocity (similar to HH’ cells in the model by McNaughton et al.). Blair postulates
that AVHD cells might be located in the reticular thalamic nucleus. In order to correlate the AVHD cell
activity to angular velocity, Blair considers two velocity cells, named AVCLK and AVCNT , coding for
the sign of the angular velocity. These cells are assumed to be located either in the postsubiculum, or in
the retrosplenial cortex. The angular velocity cell AVCLK inhibits AVHDCNT cells, whereas AVCNT

inhibits AVHDCLK cells.
Each AHD cell i excites the corresponding AVHDCLK cell which in turn inhibits the AHD cell i− 1

(i.e., the cell neighboring i on the left). On the other hand, each AHD cell i excites the AVHDCNT cell
which inhibits the AHD cell i + 1 (i.e., the cell neighboring i on the right). During clockwise turns, for
instance, AVHDCLK are active whereas AVHDCNT are silent. The AHD cell i will directly excite its
neighbors i− 1 and i + 1, but cell i− 1 will be inhibited by the AVHDCLK cell. As a consequence, the
activity will shift towards cell i + 1 making the system rotate clockwise.

The velocity of the system is determined by an angular speed cell AS, whose activity is inversely
proportional to the magnitude of angular velocity. The AS cell inhibits AHD cells, so that during fast
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turning, for instance, propagation through the AHD layer is weakly inhibited and the system rotates
quickly. Blair predicts that the AS cell might be located in the mammillary bodies.

Blair’s hypothesis is the first in which AT and poSC cells form an angular velocity dead-reckoning
circuit. The model stresses the importance of the anticipatory behavior of AT cells, in particular the fact
that the AT representation leads the poSC representation.

The model fits some properties of AT and poSC biological cells. Nevertheless, the system produces
directional tuning curves that are much narrower than real ones. Likewise, Blair only validates the
tracking performance of the system for a simple case (one single 60◦ back and forth rotation), whereas
he does not report any results on more realistic data. Finally, the system does not provide any calibration
mechanism to reset vestibular information in order to keep the tracking error bounded over time.

3.5 Redish, Elga, and Touretzky (1996)

Redish, Elga, and Touretzky [284] further develop the hypothesis of attractor network (formulated by
Skaggs et al. and simulated by Zhang) to maintain stability in the head-direction system. In particular,
they utilize a coupled attractor network in order to create a directional system characterized by a Gaussian
attractor state [96]. The attractor network consists of two groups of neurons: One pool of excitatory units
E, and one pool of inhibitory cells I. Neurons in both pools have evenly distributed preferred directions.
Each excitatory cell i ∈ E with preferred direction θi projects strong exciting synapses to neurons in
both E and I having preferred directions close to θi. Each inhibitory neuron j ∈ I weakly inhibits all
cells in both E and I pools, whereas cells in E and I having preferred directions close to θj are inhibited
slightly more. The dynamics of the attractor module is such that both excitatory and inhibitory pools are
characterized by a single stable state at each time. Below is a scheme of the coupled attractor network

i

j

E

I

Redish, Elga, and Touretzky propose a head-direction system involving primarily the postsubiculum
(poSC) and the anterior thalamic nuclei (AT). Both poSC and AT are characterized by the above coupled
attractor architecture. Interconnections between poSC and AT are between their excitatory pools EpoSC

and EAT , respectively. A set of synapses, termed matching connections, interlinks neurons in EpoSC

with neurons in EAT having equivalent preferred directions. Moreover, a set of projections, namely left-
and right-offset connections, is responsible for updating the head-direction representation. Each unit i ∈
EpoSC with preferred direction θi has a left-offset connection to unit jl ∈ EAT such that θj = θi− δ, and
has a right-offset connection to unit jr ∈ EAT such that θj = θi + δ. The offset δ is the same for all units
and it is equal to δ = 10◦.

All offset synapses are modulated by the head angular velocity ω. Thus, during rightward turnings,
right-offset connections have a strength proportional to the magnitude of angular velocity |ω|, whereas
left-offset connections have strength zero. By contrast, during leftward rotations, left-offset connections
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are proportional to |ω| and right-offset connections are zero. When the head is still, both left- and right-
offset connections have strength zero, and matching synapses synchronize poSC and AT representations.

Similar to Blair’s model, the system by Redish, Elga, and Touretzky involves an inhibitory input to
AT coming from the mammillary bodies (MB). This input is assumed to be proportional to the magnitude
of the angular velocity. MB cells work as a gain control mechanism to compensate for modulated offset
connections. This allows the system to maintain the shape of the hill of AT activity nearly unchanged
during rotations (otherwise, the combined input from offset and matching connections would distort it).
A scheme of the entire system is sketched below

Right

MB

Left

AT

Angular VelocityAngular Velocity

δ

poSC

Simulation results show biologically plausible directional tuning curves as well as effective head-
tracking capabilities (in particular, the authors report tracking performance over 20 s of simulation).
Also, in the model, AT activity anticipates poSC activity by a constant leading time τ of approximately
10ms (capturing the anticipatory property of real anterior thalamic neurons).

As discussed by Redish (1997) [282], a major problem for this theory is its discrepancy with anatom-
ical lesion data. Indeed, after lesions to the postsubiculum (poSC), anterior thalamic cells (AT) are still
directional selective [129, 351]. By contrast, the model predicts that lesions to poSC cells would disrupt
the entire system. Also, the authors do not report any explicit results concerning the calibration of the
cumulative tracking error by means of extrinsic cues. Finally, as pointed out by Redish (1997) [282], the
model requires the existence of poSC → AT synapses modulated by head angular velocity. An alterna-
tive system would involve a population of cells firing as a function of both head-direction and angular
velocity (i.e., HH’ and AVHD cells in the models of McNaughton et al. and Blair, respectively) to drive
AT cell activity.



Chapter 4

A Model of the Rodent Directional Sense

We model biological head-direction cells by means of a neural architecture in which internal (e.g.,
vestibular) and external (e.g., visual) cues are combined to establish a stable head-direction represen-
tation. The dynamics of the system is primarily controlled by idiothetic stimuli which determine the
directional selectivity property. Allothetic information is used to occasionally modify the system’s dy-
namics and calibrate head-direction cell activity. Fig. 4.1 shows a functional overview of the model. The
architecture may be understood as consisting of three functional modules: (i) An angular velocity inte-
grator, (ii) a neural substrate forming the output of the system, and (iii) a module incorporating external
signals to achieve system calibration. The model is implemented and tested on a robot.

4.1 Integrating Angular Velocity

In order to integrate the angular velocity ω over time, we consider a directional circuit involving three
neural populations, namely HAV, ADN, and LMN (Fig. 4.1).

Head Angular Velocity Cells. A directional system, whose dynamics is primarily controlled by inertial
self-motion signals, needs to assess angular displacements continuously. In both rodents and primates,
there exist cells coding for angular velocity based on vestibular and sensory-motor information [212].
Cells that are maximally active when the head is turning in one specific direction, as well as cells re-
sponding maximally only when the head is not turning, have been observed in the posterior parietal,
retrosplenial, and posterior sensory-motor cortices [210, 376].

We take a population HAV= {Ω+, Ω=, Ω−} of cells whose activity is correlated to the sign and the
magnitude of the angular velocity ω. Cells Ω+ and Ω− fire proportionally to |ω| only during clockwise
and counterclockwise turning, respectively. Cell Ω= fires only when the robot is not rotating.

LMN Directional Cells. LMN cells model neurons in the lateral mammillary nuclei which are tuned
to the animal’s heading θ as well as the head angular velocity ω [181]. We discretize the continuous
angular space Θ = [0◦, 360◦] in S = 180 steps of 2◦ each. Then, we define a population LMN=
{ { lz , ls, lm, lf } | 1 ≤ l ≤ S } of S × 4 = 720 cells with evenly distributed preferred directions θl. In
particular, we take four cells li for each direction θl. That is, the magnitude of the angular velocity |ω| is
discretized by LMN cells in four possible states which are ωz (zero), ωs (slow), ωm (medium), and ωf

(fast). We assume that ωz = 0◦/sec, ωs = 100◦/sec, ωm = 200◦/sec, and ωf = 400◦/sec. A LMN
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Allothetic Stimuli

INCORPORATING EXTERNAL
STIMULI

    visual bearing
cells

        VIS
place cells

Idiothetic Stimuli

INTEGRATING ANGULAR
VELOCITY

        LMN
directional cells

directional cells
    anticipatory
        ADN

velocity cells
    head angular
        HAV

directional cells

SYSTEM’S OUTPUT

calibration cells
        CAL

         poSC

         sLEC

Figure 4.1: A functional overview of our directional system. Idiothetic inputs (right-hand pathway) are integrated over
time by the circuit including ADN, LMN, and HAV. Allothetic signals (left-hand pathway) are incorporated to calibrate head-
direction cells by the circuit made of sLEC, VIS, and CAL cells. Finally, poSC cells form the output of the system.

cell fires maximally when the agent’s heading is equal to its preferred direction and the agent is turning
at a specific angular velocity. For instance, the activity of cell lm ∈ LMN is maximal when θ = θl and
|ω| = ωm.

ADN Directional Cells. Directional cells in the anterodorsal nucleus have the property of anticipating
the animal’s future direction during head turning, whereas they encode the current direction when the
head is still. This anticipatory behavior depends on a constant time delay τ [41, 355].

According to recent experimental findings [37], we take τa as characteristic for each cell a ∈ ADN.
In other words, we assume that some ADN cells may anticipate head-direction more than others. We
consider five distinct time delays τ1 < · · · < τ5 for each preferred direction θa, such that τ1 = 20ms,
τ2 = 40ms, τ3 = 60ms, τ4 = 80ms, and τ5 = 100ms. Then, we define a population ADN=
{ { a1, . . . , a5 } | 1 ≤ a ≤ S } in which five ADN cells aj (having different time delays τj) code
for each direction θa. Every aj cell anticipates θ by a different angle when |ω| > 0, but all preferred
directions θaj

are equal to θ when ω = 0.

4.1.1 Idiothetic-based Dynamics

LMN and ADN interact with each other in order to integrate angular motion over time, that is, to update
the direction representation according to HAV cell activity. In this section, we describe the synaptic
connections and the neural activity of HAV, LMN, and ADN populations.

HAV Cell Activity. The activity of a cell Ωi ∈ HAV is correlated to the sign and magnitude of the
angular velocity ω according to

rΩ+
=

{ ω
ωmax

ω > 0

0 otherwise
, rΩ−

=

{

|ω|
ωmax

ω < 0

0 otherwise
, rΩ=

=

{

1 ω = 0
0 otherwise

(4.1)

Thus, rΩ+
∈ [0, 1], rΩ−

∈ [0, 1], and rΩ=
∈ {0, 1}.

ADN Cell Activity. ADN cells play a major role in determining the system’s dynamics. They induce
the synchronized shifting behavior enabling directional cells to track rotations. ADN cells are driven by
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Figure 4.2: (a) Each ADN cell receives afferents through three distinct receptors nr+, nr=, nr−. A neuroreceptor nri is
open to inputs Ii from LMN cells only when the corresponding angular cell ωi is active. (b) Synaptic inputs to an ADN cell
aj , with j = 2.

LMN and HAV cells. In particular, LMN feeds ADN with information about the current heading θ(t),
whereas HAV determines the direction and velocity of the shift of ADN activity.

Let aj be an ADN cell, where 1 ≤ a ≤ S and 1 ≤ j ≤ 5. In the current implementation, all ADN
afferent connections have synaptic weight equal to 1. Cell aj has three neural receptors nr+, nr=, nr−,
which correspond to positive, negative, and zero ω, respectively. Each receptor nri receives inputs Ii

from LMN cells and it is gated by the activity of cell ωi ∈ HAV (Fig. 4.2 (a)).
In order to model the ADN anticipatory property (Eq. 2.1), we employ LMN → ADN matching and

offset synaptic projections (Fig. 4.2 (b)) [327], such that the higher τj , the more a cell aj is informed in
advance about the current heading θ(t) during agent rotation, and the more the cell may anticipate the
future direction θ(t′). On the other hand, projections LMN→ADN are such that ADN cells aj may code
for the present heading when the agent is not rotating.

Let l and a be LMN and ADN cells such that θl = θa. Each aj neuron, with 1 ≤ j ≤ 5, receives:

(i) One matching input from cell lz on its receptor nr=;

(ii) Three left-offset inputs on its nr+ neuroreceptor from cells (l− j)s, (l− 2j)m, and (l− 4j)f ,
respectively;

(iii) Three right-offset inputs on its nr− neuroreceptor from cells (l+ j)s, (l+2j)m, and (l+4j)f ,
respectively.

The activity raj
(t) of an ADN cell is determined by its LMN input. The sign of the angular velocity ω

decides which receptor nri is currently open, while the magnitude of ω determines which LMN cell is
currently firing through nri. For instance, if ω > 0 and |ω| = ωm = 200◦/sec, then cell aj will listen to
its nr+ input and will fire according to

raj
(t) = r(l−2j)m

(t) · wjl (4.2)

where wjl is the connection from cell (l−2j)m to cell aj .
Due to the above connecting scheme, the higher τj , the more cell aj is informed in advance about the

current heading θ(t) during agent rotations. In other words, the higher τj , the more cell aj will anticipate
future directions. The rotational speed of the system depends on the anticipatory behavior of ADN cells
and then on the angular velocity ω as discretized by LMN activity. Moreover, since receptors nr i are
gated by the continuous HAV activity, the larger |ω|, the more frequently cell aj will listen to its LMN
afferents inputs. Then, the velocity of the shift in ADN activity is proportional to the continuous |ω|.
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Figure 4.3: (a) Tuning curve of a cell aj ∈ ADN of our model with τj = 40 ms. When the robot is not rotating, the preferred
direction is θa = 180◦. (b) Polar tuning curve (solid line) of cell aj during counterclockwise turning with |ω| = 100◦/sec.
The cell anticipates the future heading (dashed line) by about 4◦. (c) During counterclockwise turning with |ω| = 200◦/sec,
cell aj shifts its preferred direction of about 8◦ (solid line). (d) During counterclockwise turning with |ω| = 400◦/sec, cell aj

shifts its preferred direction of about 16◦ (solid line).

Fig. 4.3 shows some results obtained by recording the firing activity of a cell aj in the ADN layer of
the model. The time delay of the recorded cell is τj = 40ms. When the robot is not rotating (Fig. 4.3
(a)), cell aj exhibits a preferred direction θa = 180◦. Figs. 4.3 (b, c, d) show the polar tuning curves
of cell aj during counterclockwise turning, when |ω| = ωs = 100◦/sec, |ω| = ωm = 200◦/sec, and
|ω| = ωf = 400◦/sec, respectively. Cell aj anticipates the robot’s future heading by shifting its preferred
direction (solid curve) of approximately 4◦, 8◦, and 16◦, respectively, which is consistent with Eq. 2.1.

LMN Cell Activity. LMN cells are correlated with the heading θ(t) as well as with the angular velocity
ω. Each cell li ∈ LMN receives afferents from five ADN cells aj (with, τ1 < · · · < τ5) and modulates
its firing activity according to HAV cell activity.

ADN cells inform LMN cells about future headings. Let l and a be LMN and ADN cells, respectively,
such that θl = θa. Each cell li ∈ { lz , ls, lm, lf } receives five input connections wij , one from each cell
aj , where 1 ≤ j ≤ 5 (Fig. 4.4 (a)). Connections wij are fixed and are defined according to

wij =

{

Wstrong j = 1
Wweak 2 ≤ j ≤ 5

(4.3)

where Wweak and Wstrong are two constant terms such that Wstrong � Wweak, and
∑

j wij = 1. The
activity of a LMN cell li is given by

rli(t) =

{ ∑5
j=1 wij · raj

(t) |ω| = ωi

0 otherwise
(4.4)
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Figure 4.4: (a) Synaptic projections from ADN to LMN in our model. (b) Tuning curve of a head-direction cell li ∈ LMN
with preferred direction θl = 240◦ .

where ωi ∈ {ωz, ωs, ωm, ωf}. Due to the distinct time delays τj associated with each preferred direction,
each LMN cell li is actually informed about arrival at θl by a sequential activation on its ADN inputs.
We assume that only when all ADN inputs aj have sequentially predicted arrival at θl, cell li is enabled
to fire fire according to Eq. 4.4. Note that, due to Eq. 4.3, rli(t) ≈ ra1

(t). That is, cell li needs the
sequential activation of all anticipatory inputs aj to be able to fire, but its firing rate is mostly determined
by the most recent input a1. Fig. 4.4 (b) shows a result obtained by recording the firing activity of a cell
li ∈ LMN in our robotic implementation. The cell’s preferred direction is θl = 240◦.

4.2 Interpreting the Directional Output

poSC Directional Cells. We consider a population of cells poSC = { p | 1 ≤ p ≤ S }, with evenly
distributed preferred directions θp, forming the output of the directional system (Fig. 4.1). Thus, at each
time t, the poSC ensemble activity RpoSC(t) = { rp(t) | 1 ≤ p ≤ S} provides the estimate θ(t) of the
robot’s allocentric heading θ(t).

Experimental results suggest that postsubicular cells are indirectly related to internal cues through
thalamic directional cells [128, 405]. Our poSC cells are primary driven by ADN cells. In particular,
ADN→ poSC projections are defined according to the same scheme used for ADN→ LMN connections.
Also, poSC activity is based on the same mechanism used to drive LMN cells. That is, a cell p is enabled
to fire only when all its ADN inputs have been sequentially activated. Fig. 4.5 (a) shows the tuning curve
of a cell p recorded from the poSC layer of our model. Cell p responds maximally when the robot’s
heading is approximately equal to θp = 160◦.

In order to interpret the poSC ensemble activity as output of the directional system, we apply popu-
lation vector coding [121, 394]. We compute the estimation of the robot’s heading θ(t) according to

θ(t) = arctan
(

∑

p

sin(θp) rp(t) /
∑

p

cos(θp) rp(t)
)

(4.5)

where rp(t) is the firing rate of poSC cell p, and θp is its preferred direction. Fig. 4.5 (b) shows a
population activity as recorded from our poSC layer during robot turning. According to Eq. 4.5, the
ensemble activity codes for the allocentric heading θ(t) ≈ 180◦.

When the robot first enters the arena, the system is initialized with respect to an arbitrary absolute
direction Φ. We set the population activity of poSC, LMN, and ADN cells as a Gaussian distribution cen-
tered at Φ and with σ = 20o. That is, the activity of a cell i is initialized as ri(t) = exp(−di(t)

2 / 2σ2),
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Figure 4.5: (a) Tuning curve of a directional cell p ∈ poSC of our model. The cell’s preferred direction is approximately
θp = 160◦. (b) A sample of poSC population activity coding for a robot’s heading of approximately 180◦.

where the deviation di(t) is given by

di(t) =

{

min(| θi − Φ |, |Φ− θi + S |) θi > Φ
min(| θi − Φ |, | θi −Φ + S |) otherwise

(4.6)

As the robot starts rotating, the system starts shifting its internal representation to track angular displace-
ments.

4.3 Using Allothetic Cues for Head-direction Calibration

Neurons in the postsubicular cortex (poSC) are correlated with external directional information [129,
351, 405]. They receive afferents from the posterior parietal (PP) cortex as well as the laterodorsal
nucleus (LDN), two structures which are strongly related to allothetic signals. We assume that cells in
the poSC layer of our model are responsible for incorporating allothetic inputs (e.g., visual cues) in order
to maintain the heading representation consistent over time.

We let the robot estimate its egocentric bearing α relative to a weak light source L which is located
on one of the walls of the arena (Fig. 1.2). The idea is to use the bearing signal α for calibrating the
directional system. However, since L is not an infinitely distant cue, it does not provide an absolute
directional reference (as the sun does for desert ants and bees [380, 383, 78]). Thus, compared to the
absolute framework defined by Φ, the egocentric bearing α is not invariant with respect to spatial location
(Fig. 4.6). As a consequence, we need to combine the bearing information α with some place coding
information. We consider a calibrating system (Fig. 4.1) made of:

(i) A population of visual bearing cells (VIS), whose activity encodes the robot’s egocentric bearing
α(t) at time t;

(ii) A population of place cells (sLEC) coding for the robot’s current spatial location ~p(t) based on
visual information only;

(iii) A population of calibration cells (CAL), driven by VIS and sLEC cells, firing as a function of α(t)
and ~p(t). We call these neurons calibration cells (CAL) because their activity is directly used to
calibrate head-direction cells.
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Figure 4.6: (a) A light source L is used as an external polarizing cue. The robot (dark-grey circle) estimates its egocentric
bearing α to calibrate head-direction cells. With respect to Φ, the bearing α is not invariant with respect to the robot’s location.
(b) At two distinct positions the robot has the same allothetic heading θ, but two distinct egocentric bearings α1, α2. (c) At two
distinct positions the robot has the same bearing α, but two different headings θ1, θ2.

Visual Bearing Cells. A cell v ∈VIS fires as a function of the current bearing angle α between the robot
and the light cue L. Biological cells that respond maximally only when an external stimulus arrives from
a particular egocentric direction have been observed in the inferior parietal cortex, the internal medullary
thalamic lamina and the superior collicus [210, 327, 166]. For the robotic implementation, we consider
a population VIS = { v | 1 ≤ v ≤ S } of S = 180 cells with preferred directions evenly distributed
over 360◦. In order to interpret the VIS ensemble activity RV IS(t) = { rv(t) | 1 ≤ v ≤ S}, we apply
population vector coding (Eq. 4.5).

The robot detects light by means of eight infrared sensors and one light-sensor facing forward. These
nine sensory inputs ~s(t) = (s1(t), . . . , s9(t)) have to be interpreted to drive VIS activity RV IS(t). To
deal with such a noisy and high-dimensional input, we trained a feed-forward neural network N to
approximate the mapping function M : S → RV IS(α), where S is the input sensory space. The idea
is to let the robot learn M only once by off-line supervised learning. Network N is trained by using
gradient descent back-propagation [294]. The network’s input consists of the sensory reading vector
~s(t) = (s1(t), . . . , s9(t)). The output is the VIS cell population activity RV IS(t) (see Appendix B for
more details).
Vision-driven Place Cells. We employ place-coding information to map the egocentric bearing α into
an allocentric directional framework. In particular, we consider place cells in the superficial lateral
entorhinal cortex (sLEC) of our hippocampal model (Part III), whose activity depends on visual cues
only. The firing activity rs(~p) of a sLEC cell s is a function of the robot’s spatial position ~p within the
arena, regardless of its allocentric heading θ. Fig. 4.7 shows two samples of sLEC place fields recorded
in our model after spatial learning.

Calibration Cells. We consider a population CAL = { c | 1 ≤ c ≤ S } of S = 180 calibration cells.
CAL cells play a central role in the calibration process. They form the “neural boundary” between the
allothetic vision-based representation and the idiothetic movement-related representation. On the one
hand, CAL cells receive afferents from both VIS and sLEC cells. On the other hand, CAL cells are
interconnected with poSC cells. In particular, each CAL cell c receives an input connection from one
and only one poSC cell p, such that θc = θp. By contrast, cell c projects efferents onto all poSC cells
(Fig. 4.8 (a)). Thus, calibration takes first place in poSC layer. Then, poSC propagates the calibration
signal to LMN, which in turn starts driving ADN cells based on recalibrated signals.

Calibration cells (CAL) are characterized by a bimodal firing behavior depending on whether learn-
ing (i.e., correlating allothetic and idiothetic information) or calibration (i.e., updating directional rep-
resentation based on external cues) is taking place. In both cases, CAL cell activity relies on a winner-
take-all competitive scheme [295]: At time t, only the most active cell c∗ (i.e., rc∗ ≥ rc ∀c ∈ CAL) is
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Figure 4.7: Two examples of sLEC place fields recorded from our hippocampal model (Part III). Diagrams represent the
firing rates rs1

(~p) and rs2
(~p) of cells s1 and s2 as a function of the robot’s spatial position ~p within the arena. The peaks of the

two tuning curves identify two rather localized regions of the space, which endows the robot with self-positioning capabilities.

enabled to fire, whereas all other cells are forced to remain silent. For sake of clearness, in the following
we discuss learning and calibration separately.

4.3.1 Correlating Allothetic and Idiothetic Signals

We let the robot explore the environment and apply LTP1 correlational learning to modify synaptic con-
nections VIS→ CAL, sLEC→CAL, and CAL→ poSC. In particular, the aim is to associate the heading
θ(t1) encoded by poSC cells at time t1, with the bearing angle α(t1) and the spatial location ~p(t1) en-
coded by VIS and sLEC cells at time t1, respectively. As a consequence, if at time t2 the agent is at
position ~p(t2) ≈ ~p(t1) with bearing α(t2) ≈ α(t1), it may calibrate its directional cells by recalling the
memorized activity pattern corresponding to θ(t1). In other words, Hebbian learning enables the system
to associate allothetic and idiothetic representations based on the robot’s experience. CAL cells function
as a long-term memory device: they allow the agent to store “snapshots” of poSC cell activity and use
the combined signal (α, ~p ) to recall this activity for calibration.

During learning, CAL cell activity depends on poSC cells only, whereas all inputs coming from VIS
and sLEC cells are inhibited. In particular, each CAL cell c is driven by the corresponding poSC cell p,
such that θc = θp (Fig. 4.8 (a)). The p → c connection is fixed and has a synaptic strength wcp = 1. The
activity rc of each CAL cell c is given by

rc(t) =

{

0 ∃c∗ : rc∗(t) > rc(t)
rp(t) otherwise

(4.7)

Thus, during learning, CAL cells are rigidly coupled with poSC cells and function as directional neurons.
Connections CAL → poSC, VIS → CAL, and sLEC → CAL are initialized to zero, and changed

on-line by means of one-shot Hebbian learning2

∆wij = ν ri rj (1− wij) (4.8)

where i and j are the post- and presynaptic neuron, respectively, and ν = 1 is the learning rate. At time
t, learning is triggered only if:

1See Sec. 6.5 for a brief description of the long-term potentiation (LTP) learning mechanism.
2“One-shot” means that once a connection has been learned, it will not be modified any further.
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Figure 4.8: (a) Each cell c ∈ CAL receives input connections from all VIS and sLEC cells. Moreover cell c receives one
input from the corresponding cell p ∈ poSC. Cell c projects to all poSC cells. (b) Combined signals (αi, ~pi), which have been
learned at distinct time steps ti, enter cell c via distinct neuroreceptors nri.

(i) Relation t − t′ ≤ T holds, where t′ is the last calibration time, and T is a fixed temporal thresh-
old. This prevents the system from correlating allothetic and idiothetic signals when the deviation
|θ(t)− θ(t)| might be large.

(ii) Relations σv ≤ Σv and σs ≤ Σs hold, where σv(t) is the VIS activity variance around the center
of mass µv(t), and σs(t) is the sLEC activity variance around µs(t), respectively. Σv and Σs are
two fixed thresholds. We assume that only when σv and σs variances fall below a threshold, the
informations carried by VIS and sLEC are suitable for calibration.

Bearing-place associations (αi, ~pi), which have been established at different learning times ti, have
to be maintained separate in order to achieve effective calibration. Thus, each CAL cell c has several
neuroreceptors nri to keep separate signals (αi, ~pi) that are temporally distinct (Fig. 4.8 (b)).

4.3.2 Calibrating Head-direction Cells

During non-learning, CAL cell activity is determined by external cues via connections VIS → CAL and
sLEC→ CAL previously created. In particular, the activity rc of cell c ∈ CAL is defined by

rc(t) =

{

0 ∃ c∗ : rc∗(t) > rc(t)
(

1 + exp
(

− β(
∑

j rj(t)w
nri

cj − 1
2

∑

j rj)
)

)−1
otherwise

(4.9)

where j varies over VIS and sLEC cells, wnri

cj represents an afferent synapse to receptor nri, and β is
taken equal to 1.

CAL cell activity is maximal only when the robot has a specific bearing α relative to L and it is at
a specific spatial location ~p. Thus, CAL cells enable the robot to recognize previously learned place-
orientation contexts. As a consequence, whenever there exists a maximally active CAL cell (i.e., ∃c :
rc(t) ≥ ε), shifting the directional cell activity towards CAL cell activity results in calibrating the robot’s
head-direction system.

Calibrating Technique n. 1. Calibration is accomplished by means of the learned CAL → poSC
projections. Indeed, after one-shot Hebbian learning (Eq. 4.8), synapses encode the poSC ensemble
activity as memorized when learning occurred. Thus, if at time t there exists a maximally active cell c ∈
CAL, poSC activity may be simply calibrated by:

(i) Making cell c inhibit all ADN efferents to poSC;
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Figure 4.9: Calibrating the internal directional system by using allothetic signals helps to keep bounded the tracking error
over time. (a) The uncalibrated error (grey region) versus the calibrated error (black region) when applying the first calibra-
tion technique (Eq. 4.10). (b) The uncalibrated error versus the calibrated error when using the second calibrating technique
(Eq. 4.11).

(ii) Updating poSC activity according to

rp(t) = wpc ·max(rc(t), 1) ∀p ∈ poSC (4.10)

where wpc weights the synapse connecting c to p.

Let θc(t) and θp(t) be the headings encoded by CAL and poSC activity at time t, respectively. Eq. 4.10
forces a shift in the poSC activity towards CAL activity such that, after calibration, the relation θp(t) =
θc(t) holds.

Calibrating Technique n. 2. Eq. 4.10 gives CAL cells the highest priority whenever a previously
learned place-bearing situation is recognized. A slightly different approach would consist of considering
a linear combination of idiothetic and allothetic signals to calibrate poSC activity. Let θ

new
p denote the

calibrated poSC representation. We take

θ
new
p = arctan

(

(

γ sin(θp) + (1− γ) sin(θc)
)

/
(

γ cos(θp) + (1− γ) cos(θc)
)

)

(4.11)

The weighting factor γ(λ, ξ) depends on the confidence λ of the robot relative to idiothetic signals at
time t, as well as on the discrepancy ξ between the internal and external representations of the robot
heading at time t. In particular, we take

γ(λ, ξ) = exp
(

−
1

2

((λ− µλ

σλ

)2
+
(ξ − µξ

σξ

)2))

(4.12)

where µλ = µξ = 1, and σλ = σξ = 0.5. We do not model explicitly λ and ξ. Rather, we simply take λ as
a function of the time step tc at which the last calibration occurred, that is, λ(tc) = exp(−t2c/2σ

2
t ), with

σt = 40. Thus, we simply assume that the confidence of the robot relative to idiothetic signals decreases
non linearly with respect to the time from last calibration. Similarly, we take ξ = exp(−(d−µd)

2/2σ2
d),

where d is the deviation between internal and external representations, and σd = 70.
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4.3.3 Measuring the Tracking Error Over Time

In order to evaluate the advantages of using external cues to calibrate idiothetic information, we run a
series of n experiments all starting at t = 0. At each step the robot updates its orientation randomly
and the head-direction system is used to estimate its allocentric heading. The above learning scheme is
employed to correlate external and internal cues on-line. In each trial i we monitor the deviation between
the actual robot’s heading θi(t) and the estimation θi(t) encoded by the directional system (Eq. 4.5) over
time. The mean tracking error at time t is defined as

e(t) =
1

n

n
∑

i=1

| θi(t)− θi(t) | (4.13)

The robot turns with a constant angular velocity ω ≈ 100◦/sec, and rotates, at each time step, by an
angle ∆θ drawn from [−90◦, 90◦]. For simplicity, the robot turns on the spot during the whole trial at a
location where the necessary learning condition σs ≤ Σs holds. The experiment includes n = 10 trials,
each of which consists of 300 steps.

We compare the error e(t) of a non-calibrated system with the error ec(t) of a calibrated one. Further-
more, we evaluate the system’s performance when using the two above calibration techniques. Fig. 4.9
(a) shows the uncalibrated mean error e(t) and the calibrated error ec1(t) when using the first calibration
technique (Eq. 4.10). Fig. 4.9 (b) shows the uncalibrated error e(t) versus the calibrated error ec2(t)
when using the second calibration technique (Eq. 4.11). Error e(t) grows continuously because of its
cumulative nature. On the contrary, calibrated errors ec1(t) and ec2(t) remain bounded over time. Al-
though error ec1(t) is in average slightly smaller than ec2(t), the two calibration techniques yield similar
results. Note that Eq. 4.10 can be directly implemented by means of a neural network, whereas Eq. 4.11
is merely an algorithmic technique. On the other hand, Eq. 4.11 accounts for two important factors (i.e.,
how much the agent trusts idiothetic information, and how much internal and external signals diverge
from each other), which makes it suitable for studying the interaction between allothetic and idiothetic
cues to control the head-direction dynamics (Chapter 5).

In Fig. 4.10 we present a result concerning the head-tracking capability of the system when using
allothetic-based calibration (technique n. 1, Eq. 4.10). According to the above experimental setup, we let
the robot randomly update its orientation during trials of 50 time steps. Solid lines represent the robot’s
nominal heading θ, whereas dashed lines represent the heading θ as encoded by the poSC population
activity. Due to the combination of inertial and visual stimuli, the directional system tracks the robot
heading rather effectively over time.

4.4 Discussion

Head-direction cells play a major role in spatial learning: they provide an allocentric neural compass
supporting cognitive navigation. Experiments suggest that lesions to directional cells in the postsubicular
cortex seriously disrupts the performances of animals in spatial tasks [352].

We put forth a functional model to reproduce the neurophysiological properties of direction-sensitive
neurons. Our approach is consistent with previous models (Chapter 3) in that it postulates the primary
role of inertial stimuli in determining the dynamics of head-direction cells. However, we stress the
importance of incorporating extrinsic signals into the system in order to improve the stability of the rep-
resentation. This is necessary for continuously tracking the agent’s direction in real sensory-environment
contexts.
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Figure 4.10: Some samples of head-direction tracking capability. Solid lines are the robot’s real heading θ, whereas dashed
lines are the orientations θ as estimated by the head-direction system. The robot is let update its orientation θ at each time
step by randomly turning of an angle ∆θ uniformly drawn from [−90◦, 90◦]. Head-direction cell activity is used to track the
allocentric heading θ over time. The angular velocity ω is constant and equal to 100 ◦/sec. Each trial consists of 50 time steps.

Our basic directional circuit includes the anterodorsal thalamic nucleus (ADN), the lateral mammil-
lary nuclei (LMN), and the postsubiculum (poSC), three brain regions primarily involved in the biological
directional sense.

ADN and LMN form the angular velocity integrator of the model. They are continuously informed
about angular displacements by a population of head angular velocity (HAV) cells, whose activity is
correlated to the sign and the magnitude of angular velocity. LMN and ADN cells interact with each
other to integrate HAV cell activity over time. LMN provides ADN with the current heading, whereas
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ADN informs LMN cells about future headings. Similar to Blair [37] and Redish, Elga, and Touretzky
[284], we emphasize the anticipatory property of ADN cells. However, in contrast to those approaches,
we do not consider the anticipatory time-delay as invariant over the ADN population. Rather, according
to the abstract hypothesis formulated by Blair and Sharp [41], we consider a mechanism in which each
preferred direction is encoded by a cluster of ADN neurons having different anticipatory time-delays
(which is consistent with recent experimental findings [39]). As a consequence, each LMN cell is in-
formed about arrival at its preferred direction by a sequential activation of its ADN afferents. A LMN
cell fires only when all its ADN inputs have been sequentially activated.

Cells in poSC form the output of our directional system. They are indirectly driven by idiothetic
stimuli via ADN cells. In contrast to [37, 284], our poSC cells do not drive ADN cells directly. Rather,
poSC neurons are responsible for incorporating allothetic information. They are related to external di-
rectional cues via a hypothetical population of neurons termed calibration (CAL) cells. CAL cell activity
combines egocentric bearing information with allocentric place coding information to calibrate the poSC
cell activity. The calibration signal is then propagated towards the ADN-LMN velocity integrator via
poSC → LMN projections.

A consequence of the architecture of the model is that lesions to the poSC region do not disrupt
ADN directional tunings; rather, they make them insensitive to external cues. Lesions to our ADN
cells, instead, destroy poSC direction selectivity. Impairing HAV cells (which encode vestibular signals)
disrupts ADN activity. These data are consistent with anatomical lesion findings reported in Sec. 2.3.
Experimental results obtained by validating the system on a real robot show effective head-tracking
capabilities over time. The model induces plausible Gaussian-shaped directional tuning curves.

As described in Sec. 2.2, the ensemble activity of biological head-direction cells always rotates con-
sistently. For each pair of directional cells, the difference between their preferred directions is a con-
stant across different environments and despite animal disorientation or cue-based system rotation. The
dynamics of our directional cells is consistent with this property (note that we do not use an explicit
attractor network scheme as [327, 405, 284]). If an external cue induces a shift in the population activity,
the system rotates rigidly as a whole, maintaining the mutual deviations between preferred directions
unchanged.

Some predictions may be formulated based on the model: (i) Lesions to LMN cells would disrupt
the entire directional system; (ii) Lesions to poSC cells would not impair ADN directional firings, rather
would make ADN cells insensitive to allothetic calibration; (iii) Lesions to either ADN cells or HAV
cells would disrupt LMN direction selectivity; (iv) “Calibration cells”, whose activity encodes both vi-
sual directional reference and place coding information, would exist; (v) Lesions to entorhinal place
cells (in particular, to the superficial layer of the lateral entorhinal cortex) would prevent the directional
system from learning relationships between local-views and headings effectively; (vi) As initially sug-
gested by Blair and Sharp (1995) [41], different ADN anticipatory time-delays would provide a “safety
mechanism” for integrating angular velocity.

A limitation of the model is the fact that it does not account for recent experimental results revealing
double-peaked ADN firing curves [40]. Another limitation is the system’s dependence on the initial
state. Indeed, head-direction activity is initialized according to a Gaussian distribution with respect
to an arbitrary absolute direction. That is, an initial stable state is assumed and it does not emerge
as an intrinsic property of the system. A future extension of the model will consist of adding lateral
center/surround connections (similar to an attractor network scheme) in order to allow the system to (i)
settle to a stable state given any initial random activity, (ii) cope with intrinsic noise (in the current model,
synaptic connections are assumed to be noise-free).
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Chapter 5

Studying the Interaction between
Allothetic and Idiothetic Cues to
Control Head-direction Cells

An important issue, addressed by a large body of experimental work [103, 210, 229, 397, 350, 130, 166,
390, 102, 168, 78], concerns the way external and internal signals interact with each other to optimize
spatial behavior. Experiments on insects and rodents have studied the interrelation between visual and
inertial cues by considering either conflict conditions or mutual confirmation situations [98]. Even if
sometimes experimental findings are inconsistent (e.g., [130, 229] vs [397, 70]), two principal results
have received a general consensus: (i) The influence of a visual cue does not depend on a fixed parame-
ter, but reflects the confidence of the animal with respect to this type of information [166]; (ii) For small
divergences between visual cues and egomotion, animals tend to shift their internal representation ac-
cording to external references. Alternatively, for large deviations, they tend to rely on their inertial frame
of reference [207, 98].

5.1 Learning Landmark Stability

In the previous Chapter (Sec. 4.3), we have employed an external landmark (a weak light source) to
calibrate the directional representation. Correlational LTP learning has been applied to incorporate al-
lothetic information into the system, and to keep the tracking error bounded over time (Figs. 4.9 and
4.10). These experiments rely on the assumption that the light cue provides a stable reference and exerts
a strong control over the head-direction dynamics. Here, we address the question of how the influence
of the light cue may vary as a function of its stability during robot training.

5.1.1 Experiment n. 1

Given the same experimental setup as in Chapter 4 (i.e., a square arena with a weak light source L on
one of its walls), we run a series of 15 training trials, of 100 steps each. At the beginning of a trial, the
robot is placed at the center of the arena (the nest), and its orientation is initialized randomly. At each
step, the robot rotates by a random angle from [−90◦, 90◦], and uses the head-direction system to track

41
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Figure 5.1: The calibration system combines two types of allothetic signals: The bearing information provided by visual
cells (VIS), and the place coding information encoded by place cells in the superficial lateral entorhinal cortex (sLEC). These
two informations are combined to drive calibration cell (CAL) activity which is used to calibrate poSC directional cells.

its heading based on idiothetic signals only. Internal and external cues are correlated by updating VIS→
CAL connections (Fig. 5.1) according to

∆wnrn
cv = ν rc rv (1− wnrn

cv ) (5.1)

where nrn is a “special” neuroreceptor for VIS → CAL connections when the robot is at the nest loca-
tion1, wnrn

cv is the synaptic weight from cell v ∈ VIS to cell c ∈ CAL, and rv , rc are their firing activities,
respectively. The learning rate ν is taken equal to 0.4.

We want to evaluate the strength of the correlation between extrinsic and intrinsic signals with respect
to the stability of landmark L during training. Each training trial is characterized by the number of times
the light L is relocated during that session. In particular, if m denotes the trial number, we relocate the
light source m− 1 times. We measure the stability sL of L by

sL = 1−
m− 1

M − 1
(5.2)

where M = 15 is the total number of trials. As a consequence, sL = 1 in the first trial, while sL = 0
when m = M = 15.

The external cue L is relocated by modifying its orientation ϕL relative to an arbitrary frame of
reference whose origin is the center of the arena. The light is always relocated on one of the walls of
the arena. Let ∆ϕL indicate the angle by which the light cue is rotated, and let tL be the time at which
relocation occurs. Both ∆ϕL and tL are randomly selected during a session.

After each 100-step training trial m, we measure the strength Sm of the correlation between external
and internal representations by counting the number of CAL cells that have been strongly associated to
at least one VIS cell:

Sm =
∑

c∈CAL

H
(

∑

v∈V IS

H(wcv − %)− 1
)

(5.3)

whereH is the Heaviside function, and % = 0.8 is a threshold used to define a strong connection. Fig. 5.2
(a) shows Sm (obtained by averaging Sm over 10 experiments) as a function of the light cue stability sL.
As expected, the less stable L, the lower Sm. That is, correlational learning (Eq. 5.1) allows the system
to incorporate allothetic information only if the robot “trusts it” based on its own experience.

1Since, for simplicity, we let the robot rotate on the nest spot, we do not account for sLEC → CAL projections.
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Figure 5.2: (a) This diagram shows Sm (i.e., the mean number of CAL cells that have been strongly correlated to at least
one VIS cell) as a function of the landmark L instability 1 − sL. (b) The mean cross-covariance between θc(t) and θv(t)
representation as a function of 1 − sL. Both (a) and (b) diagrams suggest that the less stable L, the smaller its influence upon
the directional system.

5.1.2 Experiment n. 2

In this experiment, we employ the same training technique used in Experiment 1 to establish VIS →
CAL projections. After training, we run a series of 15 test trials. During the first trial, we employ the
VIS→ CAL projections learned during the first training trial; during the second trial, we employ the VIS
→ CAL projections established during the second training trial; and so on. At the beginning of each test
trial the robot is located at the nest position and given a random orientation. Then, it makes a complete
turn on the spot by steps of 4◦. At each step, CAL cells are driven by VIS cells, and fire according to

rc(t) =

{

0 ∃ c∗ : rc∗(t) > rc(t)
(

1 + exp
(

− β(
∑

j rj(t)w
nrn

cj − 1
2

∑

j rj)
)

)−1
otherwise

(5.4)

where j varies over VIS cells, wnrn

cj represents afferents to receptor nrn, and β is taken equal to 1.
Let θc(t) and θv(t) be the angles encoded by CAL and VIS ensemble activities at step t, respectively.

θc(t) and θv(t) are computed by population coding (Eq. 4.5). In order to evaluate the influence of
landmark L over our head-direction system, we look at the correlation between θc(t) and θv(t). Fig. 5.2
(b) displays the mean cross-covariance between θc(t) and θv(t) as a function of the stability of landmark
L. The diagram has been obtained by averaging over 10 test experiments. The curve can be interpreted as
the strength of the control of external stimuli over the system. Again, the less stable L, the less correlated
θc(t) and θv(t), that is, the less L influences the system.

5.1.3 Experiment n. 3

For this experiment, we take inspiration from neurophysiological tests done by Knierim et al. [166], and
we attempt to reproduce equivalent results with our robotic implementation.

Knierim et al. trained two groups of rats to search for randomly-tossed chocolate pellets in a high-
walled cylindrical arena. A white card, covering approximately 90◦ of the wall, provided the only avail-
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Figure 5.3: Head-direction cells recorded from the robot trained under non disorientation conditions. At the beginning of
each trial, the robot is disoriented and then placed at the nest location. Tuning curves show that head-direction cells rotate
their preferred direction to follow the external reference. This implies a strong influence of allothetic signals over the robot’s
directional system.

able external cue. Rats had 2 training sessions of 15 minutes per day for 1−4 weeks. Some animals
underwent disorientation before each training trial: the aim being to disrupt their internal directional
sense before training and yield an inconsistent relationship between the cue card and the animal’s inertial
system. Rats from another group were not disoriented before training: the objective being to maintain a
perceptual consistency between the experimental arena and the external world, such that animals could
perceive the cue card always in the same location, i.e., as a stable visual reference. After training, rats
underwent several recording trials of 10−15 minutes each. All animals were disoriented before each
recording trial. The cue card was either replaced or maintained at the initial location before each trial.

Given our experimental setup, we run 2 series of 10 training sessions each. Each session is about 15
minutes long. At the beginning of each trial the robot is located at the center of the arena (i.e., the nest).
Before starting exploration, the robot makes a complete turn on the nest spot by steps of 4◦ each. Let
nrn be the neuroreceptor deserved to VIS → CAL connections when the robot is at the nest location. At
each step the robot applies Hebbian learning (Eq. 5.1) to update the strength of VIS → CAL synapses
arriving to nrn. We take a learning rate ν equal to 0.2. After that a 360◦ turn has been completed, the
robot starts exploring the arena randomly2 .

In the first training series, the robot is not “disoriented” at the beginning of each trial: its idiothetic

2During this phase, spatial learning takes place to create a population of place cells (see Part III).
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directional system is not disrupted before entering the arena. Thus, the robot’s inertial frame of reference
remains consistent across different training trials. Alternatively, in the second training series the robot
is “disoriented” before each trial: its idiothetic directional representation is initialized randomly before
entering the arena. As a consequence, with respect to the robot’s inertial system, the external light is not
a stable cue across different sessions.

After training, we run 2 series of 4 recording sessions each. In the first series, we record head-
direction cells from the robot that did not undergo disorientation before training. In the second, we take
the robot that has been disoriented before training. At the beginning of each recording session the robot
is disoriented (by random initializing its directional sense) and entered the arena at the nest location.
Then, the robot tries to orient itself by using the external light as a polarizing cue. Thus, it starts rotating
on the spot by steps of 4◦ and uses the learned VIS → CAL connections to determine the activity of
every cell c ∈ CAL according to Eq. 5.4.

If there exists a maximally active cell c (i.e., ∃c ∈ CAL : rc(t) ≥ ε), then the robot’s directional
system is reset according to the heading encoded by c. Otherwise, the robot cannot polarize its directional
cells based on external information, and maintains its directional sense as randomly initialized at the
beginning of the session.

Fig. 5.3 shows the effects of non disorienting training. The tuning curves of three poSC cells recorded
over the four sessions of the first recording series are shown. The light cue is located east, north, west,
and south-east, at the beginning of each trial, respectively. Results show that the light source has a strong
control over the directional system. Indeed, the preferred direction of head-direction cells tends to rotate
to follow the external reference consistently. Note that all cells shift their preferred direction such that
the mutual deviation between their preferred headings remains constant.

Fig. 5.4 shows the tuning curves of three poSC cells recorded from the robot trained under disori-
entation conditions. Head-direction cells hd1, hd2, and hd3 are not controlled by the light cue. Despite
the fact the light maintains its east location across the first three sessions, the cells’ preferred directions
vary as a function of their random initialization. That is, the robot fails to polarize its directional system
relative to the light cue after being disoriented before recording. Interestingly, between the third and the
fourth session the firing directions of cells hd1, hd2, and hd3 do not change, while the light location
does. Results shown in Figs. 5.3 and 5.4 are consistent with experimental findings on rodents reported
by Knierim et al. [166].

5.2 Studying Conflict Situations

In order to further investigate the relative weight of allothetic and idiothetic stimuli, we study their
mutual interaction in conflict conditions. We take inspiration from experiments on rodents by Etienne
et al. [103]. They examined the homing behavior of golden hamsters, as a function of self-motion and
visual cues, during hoarding trips within a circular arena. Hamsters were guided as directly as possible
from the nest (a box located at a fixed peripheral position) towards a feeding location in the center of
the arena. After uptaking of food3, animals had to return home autonomously. A unique visual cue was
made available, i.e., a weak light source. Other allothetic cues (e.g., tactile and olfactory stimuli) were
eliminated. Different experiments investigated different conflict situations induced by either shifting the
light source from its standard position, or disorienting the animal during food uptake. As a general
result, Etienne et al. found that the larger the conflict between visual and self-motion cues, the smaller
the influence of allothetic information [103]. In particular, they showed that in ±90◦ conflict situations,
hamsters tend to rely mostly on external cues, while they give higher priority to internal signals when the

3When hoarding food, hamsters tend to turn around the feeder location. Collecting food takes up to 30 seconds depending
on subjects.
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Figure 5.4: Effects of disorienting training on head-direction cells. The robot fails to calibrate its directional system with
respect to the allothetic cue. The light cue is perceived such as an unstable landmark and does not influence directional cells.

conflict increases (180◦). Similar results have been reported by later studies on rats [211, 167].

5.2.1 Experiment n. 1

Given our experimental arena, we take the peripheral east location as robot’s nest, and the center of the
arena as feeder position. We evaluate the robot’s homing behavior when a conflict occurs between its
self-generated homing vector and an unstable light L [103]. The task consists of: (i) An outward journey
during which the robot is “guided” from the nest to the feeder4. (ii) A “hoarding” phase: We simulate the
hamster hoarding behavior by letting the robot rotate randomly at the feeder location for th steps, with
th drawn from [10, 30] uniformly. At each step, the robot rotates by an angle from [−90◦, 90◦]. (iii) A
backward journey: The robot uses its internal homing vector to return to the nest.

We run 10 training trials during each of which the robot performs one hoarding excursion. For
simplicity, we let the robot correlate external and internal representations (Eq. 5.1) only during hoarding,
that is when it executes its rotatory behavior at the arena center. In order to provide the robot with an
unstable directional landmark, at the beginning of each training trial the location of L is shifted randomly.
After training, we run a series of 10 test trials. At the beginning of each test, L is located at the location
opposite the nest (i.e., west peripheral position). Then, at the end of the outward journey, L is shifted by
90◦ clockwise, which creates a conflict between internal and external representations.

Fig. 5.5 (a) reports the robot’s homing behavior as recorded during test. Dots represent the peripheral

4Note that, the nest-to-food journey is not exactly the same from trial to trial. Indeed, the robot’s trajectory around the
optimal direct path changes randomly at each excursion.



5.2. STUDYING CONFLICT SITUATIONS 47

*

*
cue

food
nest .... ...

.. .

(a)

0 0

before rotating L after rotating L

(b)

Figure 5.5: (a) Left: L (grey-black star) is an unstable cue during training. During test, L is rotated by 90◦ clockwise at the
end of the journey towards the feeder (center of the arena). In order to return home (grey circle), the robot might follow either
its idiothetic representation (solid arrow), or its allothetic representation (dashed arrow). Right: The white arrow represents the
average homing behavior over 10 testing trials (dots). (b) Left: A sample of poSC cell activity recorded before cue rotation.
Right: the same poSC cell recorded after cue rotation. The preferred direction has not been influenced by L.

positions reached by the robot at the end of the backward journey. The white arrow indicates the average
homing vector. The mean deviation relative to the nest is about −3◦, while the mean dispersion around
it is about 4◦. Fig. 5.5 (b) shows the preferred direction of a cell p ∈ poSC as recorded before and after
cue rotation. As a result, the robot does not rely on landmark L to infer its homing orientation. This is
consistent with our previous results in that an unstable external cue tends to have a slight influence over
the robot’s directional system.

5.2.2 Experiment n. 2

Given the same experimental task, we create a conflict between a stable landmark L and self-motion
information [103]. We train the robot through 10 training sessions by keeping the light L at a fixed
location (west). The aim is to yield a strong correlation between the idiothetic representation and the
information provided by a familiar external cue. In this case, the robot should return home in an opposite
direction with respect to L.

Thereafter, we run 3 test series of 10 trials each. During test, L is turned off during the outward
journey, and switched on during hoarding. In the first test series, L is presented to the robot shifted by
90◦ clockwise with respect to its standard position (Fig. 5.6 (a1)). In the second series, L is shifted 90◦

counterclockwise (Fig. 5.6 (a2)). Finally, in the third series, L is rotated by 180◦ (Fig. 5.6 (a3)).
Results in Figs. 5.6 (a1, a2) suggest a strong control exerted by L: the average homing vector (white

arrow) deviates from the nest direction by reflecting the effect of the directional cue L. In the first test
series (a1), we obtain a mean deviation of about −63◦ with a mean dispersion of about 16◦ around
the mean. In the second series (a2), the mean deviation is about 60◦ with a mean dispersion of about
15◦. Fig. 5.6 (a3) reveals an inverted order of priority between internal and external signals when L is
shifted by 180◦: the robot, in average, returns home by following its self-generated homing direction.
The average deviation relative to the nest is about 10◦ with a mean dispersion of about 12◦. Thus, the
familiar directional cue L influences the robot’s behavior when a ±90◦ conflict occurs. On the contrary,
the influence of L vanishes when the conflict is further increased (180◦).
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Figure 5.6: (A) Light L (grey-black star) remains stable during training. During test, L is switched off when the robot is
moving towards the food location (outward journey). During hoarding, L is presented to the robot shifted by 90◦ clockwise
(a1), 90◦ counterclockwise (a2), and 180◦ (a3). The white arrow indicates the resulting mean homing behavior of the robot.
L has a strong control in (a1) and (a2), whereas it has a slight influence in (a3). (B) In this experiment, the robot undergoes
disorientation as soon as it reaches the feeder location. This induces a strong predominance of the external cue L when shifted
by 90◦ clockwise (b1), 90◦ counterclockwise (b2), and 180◦ (b3).

5.2.3 Experiment n. 3

In the previous experiment, homing strongly depends on external stimuli for ±90◦ rotations of L. Nev-
ertheless, self-generated information still affects the robot’s trajectory remarkably (Figs. 5.6 (a1, a2)).
In this experiment, we ask the question: How does the robot behave in conflict situations when its ego-
motion representation has been partially disrupted? Or, to put it differently: How does the robot weight
external and internal conflicting information when it does not trust egomotion signals?

As in the previous experiment, we let the robot solve the hoarding task during 10 training sessions.
During learning, L is kept at its standard west location. After training, we run 2 series of 10 test trials
each. The light is switched off during the outgoing journey. As soon as the robot reaches the feeder
location, it undergoes “disorientation”: At each of d steps, with d drawn from [50, 100] uniformly, the
robot rotates by ∆θ degrees, with ∆θ drawn from [−90◦, 90◦]5. After disorientation, the light L is
turned on. In the first test series, L is presented to the robot shifted by 90◦ clockwise (Fig. 5.6 (b1)). In
the second, L is rotated by 90◦ counterclockwise (Fig. 5.6 (b2)).

As expected, experimental results suggest that the familiar landmark L exerts a stronger control
when idiothetic signals have been disrupted through disorientation. In the first series, we obtain a mean

5We call this phase “disorientation” because, due to the large number of rotations, the confidence of the robot relative to
idiothetic signals (i.e., λ factor in Eq. 4.11) decreases.
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Figure 5.7: The response of the robot to stable allothetic cues varies as a function of its confidence λ with respect to idiothetic
signals. This diagram shows the deviation Ψ (averaged over 10 trials) between the actual and the self-generated homing vector,
for λ varying within [0, 1], in the case of 180◦ conflict situation.

homing direction of about −91◦ with a standard deviation of 3.3◦. In the second series, the average
homing direction is about 90◦, with standard deviation 6◦.

5.2.4 Experiment n. 3a

Results obtained in Experiments 1, 2, and 3 are consistent with those reported by Etienne et al. when
testing hamsters in similar conflict conditions [103]. In this last experiment, we investigate the 180◦

conflict situation in the case of a disoriented agent (not reported by [103]). The aim is to show that, even
for large divergences between internal and external cues, a stable landmark L may influence the homing
behavior when the robot does not trust egomotion.

The result in Fig. 5.6 (b3) confirms this hypothesis: the mean homing direction reflects a predom-
inance of the external directional information (in contrast to Fig. 5.6 (a3)). We obtain a mean homing
direction which deviates from the nest of about 178◦, with a mean dispersion of about 15◦. Let Ψ be the
divergence between the actual homing direction and the self-generated homing vector. We argue that Ψ
is a function of the robot’s confidence about its idiothetic representation. Fig. 5.7 shows a result obtained
by measuring the mean deviation Ψ (over 10 trials) when varying λ within [0, 1].

5.3 Discussion

In this chapter we have studied the interrelation between extrinsic and intrinsic stimuli to control the
directional allocentric representation provided by head-direction cells. In particular, we have addressed
two questions: How does the control exerted by an external landmark reflect the stability of the cue
[166]? How do animals assign an order of priority to allothetic and idiothetic information in conflict
situations [103]?

To answer the first question we have carried out a series of experiments showing that, by adopting
LTP correlational learning (Eq. 5.1), only stable external cues (i.e., landmarks that remain sufficiently
steady during training) will exert enough control over our directional system. Indeed, an unstable ex-
ternal signal would result in weak correlations between allothetic and idiothetic representations, and



50 CHAPTER 5. Interaction between Allothetic and Idiothetic Cues

would slightly affect the head-direction dynamics. This is consistent with neurophysiological findings
on rodents [350, 166].

To address the second question we have studied the homing behavior of the robot as a function of
conflicting external and internal references. The two categories of signals are combined linearly in order
to control the head-direction dynamics (Eq. 4.11). In particular, we adopt a weighting factor γλ, ξ(t) that
depends on the confidence λ of the robot relative to idiothetic signals at time t, as well as the discrepancy
ξ between the internal and external representation of the robot’s heading at time t. Consistently with
behavioral data and results from single cell recordings [103, 211, 167], our system tends to rely mainly
on allothetic cues for relatively small conflicts, whereas it gives higher priority to self-motion signals
when the conflict increases. Nevertheless, we argue that an important role in weighting directional
signals is played by factor λ, i.e., by how much the agent trusts its egomotion signals. As a natural result,
the model predicts that even in a large conflict situation (180◦) a completely disoriented agent will rely
on stable external landmarks to return home.
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Foreword

As the complexity of the task and the perceptual capabilities of biological organisms increase, an explicit
spatial representation of the environment appears to be employed to support navigation [361]. In rodents,
hippocampal place cells exhibit such a spatial representation property [255]. This has given rise to the
hypothesis that the hippocampus plays a functional role in rodent navigation, and that it provides a neural
basis for cognitive spatial behavior [256].

The presence of location-sensitive cells elicits at least two eminent questions: (i) How is the spatial
selectivity property of these neurons established (i.e., spatial learning)? (ii) How do animals utilize
such a place field space representation to perform navigation in complex task-environment contexts (i.e.,
cognitive navigation)? In this part of the thesis we address the first question, that is, how a population of
hippocampal place cells can be generated based on noisy sensory information. The second question will
be treated in Part IV, in which hippocampally dependent goal-oriented navigation will be studied.

In the following five chapters we study the hippocampal involvement in spatial memory6, and we put
forward a computational model of its basic functional properties.

• In Chapter 6 we provide the biological background: we describe the principal brain areas involved
in space coding and we review the neurophysiological properties of hippocampal place cells.

• In Chapter 7 we review some of the previous hippocampal models. We also present some results
obtained by implementing one of them: the model by Burgess and colleagues (1994) [62].

Contributions: We propose a hippocampal model for spatial learning in which (i) allothetic and idio-
thetic representations are combined to establish stable place cells, (ii) head-direction cells (Part II)
and place cells interact with each other in order to achieve spatial learning (the work described in
this part of the thesis has been published in [13, 14, 16, 15]):

• In Chapter 8 we model the visual pathway of our hippocampal model. We address the issue of
self-localization based on real visual stimulation.

• In Chapter 9 we present the idiothetic pathway of the model (i.e., path integration).

• In Chapter 10 we combine the two above representations in order to form place cells in the hip-
pocampus proper of the model.

As for the head-direction system (Part II) we present results obtained by validating the model with a
real mobile Khepera robot.

6Experimental findings, especially in humans, suggest the hippocampus is involved in a larger class of memory named
episodic memory. However, this thesis focuses on the hippocampal role in space coding. Examples of studies on the hippocam-
pal involvement in episodic memory can be found in [196, 288, 392, 263, 290, 298, 365, 289, 373, 31, 192].
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Chapter 6

Biological Place Cells

A place cell is a neuron whose firing activity is primarily correlated with the animal’s spatial location1 .
A place cell shows action potentials only when the animal is in a specific region of the environment,
which defines the place field of the cell. Since the spike frequency of a place cell i encodes a specific
exocentric location ~pi (the center of the place field), the animal may rely on the ensemble place cell
activity to achieve self-localization. In other words, the place cell population provides an allocentric
space code supporting the animal’s cognitive behavior. Due to this appealing property, place cells have
been the subject of a huge body of research. Nowadays, one of the most studied brain regions is the area
in which place cells were first discovered by O’Keefe and Dostrovsky in 1971 [255]: the hippocampus.

6.1 Anatomical Background
Location-sensitive neurons have been recorded from the following brain areas of freely-moving rats: (i)
The hippocampus proper [255, 251, 254, 260, 209, 271, 258, 243, 240, 357, 212, 324, 394, 257, 194,
403, 166, 195, 253, 227, 132, 133, 329, 25, 216], (ii) the dentate gyrus [162], (iii) the medial entorhinal
cortex [23, 278, 228], (iii) the subiculum [23, 244, 323, 319], and (iv) the parasubiculum [349]. Although
neurons in all these areas exhibit similar spatial correlates, their firing does not always rely upon the same
determinants, which results in different neurophysiological properties (Sec. 6.2).

The presence of place cells in the above regions suggests that these structures might form a neural
circuitry to support spatial learning. To deduce their basic functionalities, it is worth characterizing their
anatomical interconnections. Fig. 6.1 is a simplified representation of the mutual projections between
space code related areas2 [8, 399, 400, 397, 60]. Note that, since head-direction cells play a fundamental
role in spatial learning, the regions involved in the directional representation (see Chapter 2) have been
included in the scheme.

The hippocampal formation, in rodents, occupies a large volume of the corresponding cerebral hemi-
sphere, and encompasses the thalamic area (see Appendix A for some anatomical images). In the early
1970s, the hippocampal anatomical organization was understood as a lamellar structure, formed by sev-
eral transverse slices stacked along the longitudinal hippocampal axis [10]. These slices were supposed
to have stereotyped cytoarchitecture and connection schemes, and to operate as independent functional

1In particular, to the location of the animal’s head.
2Connection schemes in Figs. 6.1, 6.2 and 6.3, are not intended to be exhaustive.
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Figure 6.1: Anatomical interconnections between brain areas related to space representation (for sake of clearness, the
displayed mutual projections are a subset of those reported in the text). Glossary: EC: entorhinal cortex, DG: dentate gyrus, SC:
subiculum, paSC: parasubiculum, prSC: presubiculum, poSC: postsubiculum, peRH: perirhinal cortex, paHI: parahippocampal
cortex (postrhinal cortex), ADN: anterodorsal thalamic nucleus, LMN: lateral mammillary nuclei, AM: amygdala, NA: nucleus
accumbens, VTA: ventral tegmental area. The hippocampus proper consists of CA3-CA1 areas. The hippocampal formation
(shaded area) includes the hippocampus proper, DG, EC, SC, paSC, and prSC. Adapted from Burgess et al. [60], Redish and
Touretzky [285], Amaral and Witter [8], and Witter [397].

units. According to this theory, processing in the hippocampal formation would take place along the
longitudinal axis only [10]. However, recent anatomical data have refuted the lamellar hypothesis and
indicated that the hippocampal formation is a complex three-dimensional structure with functional dif-
ferentiations along both longitudinal and transversal axis [8, 397].

The hippocampal formation (darkgrey area in Fig. 6.1) contains the hippocampus, the entorhinal
cortex (EC), the subiculum (SC), the parasubiculum (paSC), and the presubiculum (prSC), whose dorsal
part forms the postsubiculum (poSC) [8]. The hippocampus (double C-shaped structure in Fig. 6.1)
includes the dentate gyrus (DG) and the hippocampus proper (or cornu ammonis CA). The latter consists
of 4 subregions CA1-CA4, but CA1 and CA3 are the most distinguishable areas.

Hippocampal afferents. Two major inputs enter the system: (i) Signals from neocortical areas con-
verge onto the entorhinal cortex which in turn projects to the hippocampus via the perforant path. These
signals carry information coming from most of the unimodal and multimodal associative areas. As a
consequence, the hippocampal formation is the recipient of highly processed multimodal sensory infor-
mation [289]. (ii) Inputs from subcortical areas reach the hippocampus via the fornix fiber bundle. Sig-
nals from the thalamus, the hypothalamus, the brainstem, and the amygdala, probably concern arousal,
emotional, and autonomic information [60]. The subcortical cholinergic and GABA-ergic inputs from
the septal region [142] modulate the ensemble hippocampal activity, and seem to be responsible for
generating the hippocampal theta rhythm [64, 219] (Sec. 6.4).

Intrinsic hippocampal circuit. Fig. 6.2 is a simplified scheme of the intrinsic hippocampal connec-
tions [8, 5, 397, 60]. In particular, we focus on the propagation of neocortical inputs through the hip-
pocampal formation. (i) As a first step, the highly processed information from neocortical areas reaches
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Figure 6.2: The intrinsic circuitry of the hippocampal formation (prSC and paSC are not included in this connection scheme).

the entorhinal cortex. Entorhinal cells, via the perforant path, project to DG granule cells, CA3 and CA1
cells, and subicular cells. Furthermore, EC exhibits intrinsic connections. (ii) The dentate gyrus sends
efferents to CA3 via the mossy fibers. Synaptic projections from DG to CA3 are very selective: each
granule cell projects approximately onto 14 pyramidal cells only [5]. DG has also intrinsic projections:
granule cells generate collateral synapses that terminate on the polymorphic DG region [8]. (iii) CA3
pyramidal cells form a recurrent network through the Shaffer collaterals, but the latter fiber bundle is
also used to synapse CA1 and subicular cells. (iv) CA1 neurons send their output to entorhinal as well
as subicular cells via the angular bundle [6]. (v) Finally, SC projects onto the entorhinal cortex.

As indicated in Fig. 6.2 by the thick arrow, the hippocampal circuit can be coarsely approximated
by a feed-forward loop [8]: information enters the loop via EC, proceeds towards DG, then to CA3 and
CA1, and finally arrives to SC which closes the loop by projecting to EC.

Hippocampal efferents. The subiculum forms the major output of the hippocampal formation [8, 397]
(nevertheless, CA3 and CA1 regions also send an output directly to subcortical areas, e.g., the lateral
septum [344]). Until the mid-1970s it was believed that the hippocampal output was predominantly
carried by the fornix. Though, recent studies have shown that an important pathway for the hippocampal
outflow consists of the non-fornical projection to the deep layers of the entorhinal cortex (dEC). From
dEC, information is sent to a variety of cortical areas [397, 153].

The entorhinal cortex [278, 397] is a six-layered structure divided into superficial (I,II, and III) and
deep layers (IV, V, and VI)3. We will refer to the former as sEC, and to the latter as dEC. In rats, in which
the entorhinal cortex occupies the rear end of the cerebral hemisphere, a distinction is also made between
lateral and medial areas of the entorhinal cortex, LEC and MEC, respectively (Fig. 6.3).

EC cortical afferents. As previously mentioned, the entorhinal region is the main “cortical gate” of
the hippocampal formation, in the sense that it receives sensory signals from the neocortex and conveys
such information to the hippocampus via the perforant path [8, 278, 397]. Cortical afferents to the
entorhinal cortex reach both superficial and deep areas (Fig. 6.3 (a)): (i) Afferents to sEC form the main
input source for the information subsequently sent to the hippocampus. An eminent cortical input to sEC
is via the perirhinal (peRH) and parahippocampal (paHI) cortices4 [397]. These afferents distribute to

3Superficial and deep regions are separated by the lamina dissecans, a cell-poor area generally associated to layer IV [153].
4The parahippocampal cortex is well identified in primates, whereas a precise parahippocampal homologous has not been

delineated in rodents. Nevertheless, Burwell et al. [63] have suggested that the primate parahippocampal cortex might be the
equivalent of the postrhinal cortex in the rat.
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Figure 6.3: A simplified connection scheme representing a subset of the afferent (a) and efferent (b) EC projections described
in the text (based on results reported by [398, 8, 80, 278, 401, 397, 153]).

layers I and III of both LEC and MEC. The perirhinal and parahippocampal cortices convey information
from most of the associative areas (visual, auditory, and somatosensory), as well as from the parietal,
temporal, frontal, and retrosplenial lobes. Another prominent input to the rodent sEC originates from
the olfactory system [175]. This input affects layers I and II of both LEC and MEC5. (ii) The deep
entorhinal cortex receives cortical afferents from the limbic system [80], the retrosplenial cortex (which
projects almost exclusively onto MEC) [401, 397], and from the frontal cortex [60].

EC cortical efferents [80, 153]. The entorhinal cortex projects primarily to perirhinal (peRH), infral-
imbic, prelimbic, orbitofrontal, and olfactory cortices. Minor EC projections reach the temporal, frontal,
retrosplenial, occipital, and parietal areas. Fig. 6.3 (b) is a highly-simplified representation of the laminar
segregation of EC cortical projections. As reported by Insausti et al. [153], neuroanatomical tracing ex-
periments show that projections to temporal, frontal, occipital, retrosplenial, and parietal regions mainly
arise from layer V of EC. Efferents to peRH originate from all layers, but predominantly from layers II
and III of LEC. Olfactory structures receive inputs from all EC layers, albeit layers III and V dominate
in the rostral and caudal EC parts, respectively. Finally, all EC layers project to prelimbic and infralim-
bic cortices, with layers V and VI being prominent for prelimbic targets, and layer III dominating the
efferent source to infralimbic areas.

EC hippocampal afferents. The hippocampus proper projects to the entorhinal region via CA1 only
(an early hypothesis about the existence of CA3 projections to EC [344] has been refuted by later exper-
imental data [8]). The subiculum (SC) projects to EC as well. Concerning the laminar segregation of
the hippocampal afferents to EC, it was early reported that only the deep layers of the entorhinal cortex
were reached by CA1 and SC projections [344, 137]. However, subsequent studies [397] have indicated
that layers I-III of EC (especially of the MEC) are innervated by an important projection from CA1 and
SC (Fig. 6.3 (a)). Another important input to sEC comes from presubicular and parasubicular cortices.
Presubicular afferents terminate predominantly in layers I and III of MEC, whereas parasubicular inputs
mainly reach layer II of both LEC and MEC.

EC hippocampal efferents. As previously mentioned, EC projects to the hippocampus via the per-
forant path. In particular, the perforant projection arises from the superficial layers II and III [398, 278].
Layer II mainly innervates the dentate gyrus and CA3, but also sends collaterals to the subiculum [397].
Layer III predominantly projects to CA1 and subiculum. Electrophysiological data indicate that the di-

5Only the caudal region of MEC might not be reached by olfactory afferents.
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rect influence of sEC upon CA3-CA1 regions is as strong as the influence relayed via DG [402, 278].
Also, EC sends a (weak) output to the presubicular and parasubicular cortices [398, 401].

EC intrinsic projections. Internal links connect the deep layers of the entorhinal cortex (dEC) to the
superficial zone (sEC) [8]. In addition, the lateral entorhinal cortex (LEC) strongly projects to the medial
entorhinal area (MEC) [278].

The subicular complex consists of three principal subregions, namely the subiculum (SC), the pre-
subiculum (prSC), and the parasubiculum (paSC).

Subicular afferents. SC receives input projections predominantly from CA1 and sEC [6]. The pre-
subiculum (prSC) receives afferents from the subiculum, the posterior parietal as well as the temporal
lobes, the retrosplenial cortex, the anterodorsal thalamic nucleus, the laterodorsal thalamic nucleus, and
the lateral mammillary nuclei. The parasubiculum (paSC) is reached by projections from the subiculum,
the presubiculum, and the retrosplenial cortex [60].

Subicular efferents. prSC and paSC project to layers III and II of EC, respectively [8]. SC projects
to both LEC and MEC, prSC, paSC, the medial prefrontal cortex, the retrosplenial cortex, the septal
complex, the nucleus accumbens6 (NA), the mammillary nuclei, the amygdala (AM), the hypothalamus,
and the thalamic nuclei [8, 397].

The parietal cortex (in particular its posterior region) plays an important role in spatial cognition and it
strongly interacts with the hippocampal formation. While the latter exhibits an allocentric representation
of space, parietal lobes seem to be implicated in representing egocentric spatial frameworks (see [60] for
a review concerning parietal-hippocampal interactions). One of the most convincing hypotheses about
the parietal-hippocampal interaction suggests that information coming from different receptors (e.g.,
eyes) reaches the parietal lobes (via the sensory cortices) in which is represented by different abstract
egocentric frameworks. Then, these multiple egocentric representations converge onto the hippocampal
formation in which are translated into an allocentric spatial reference frame. According to this theory,
the parietal cortex and the hippocampus would cooperate for solving spatial tasks by addressing the
egocentric and allocentric components of the task, respectively [374, 60, 31, 192].

Parietal afferents. The posterior parietal cortex (PP) combines multimodal allothetic signals (e.g.,
visual, auditory, and somatosensory inputs) as well as multimodal idiothetic information (e.g., vestibu-
lar, proprioceptive, eye-position and eye-velocity signals) [60]. Indeed, it receives cortical inputs from
sensory-motor, visual, and somatosensory areas. Furthermore, PP receives projections from the posterior
cingulate cortex (retrosplenial cortex), the temporal cortex, the parasubiculum, the postsubiculum, the
laterodorsal (LDN) and lateroposterior (LPN) thalamic nuclei [282]. Finally, the hippocampal formation
projects onto the parietal lobe via the entorhinal cortex [397].

Parietal efferents. The posterior parietal cortex projects to the posterior cingulate cortex, the para-
subiculum, the postsubiculum, and the superior colliculus [60]. Finally, the interaction between PP and
the hippocampal formation occurs via the perirhinal and parahippocampal (postrhinal) cortices, which
receive a direct input from PP and project to EC [63].

6.2 Neurophysiological Properties of Place Cells

Let i be a place cell whose firing activity ri(~p) is a function of the animal’s current position ~p. The
mean spiking frequency distribution of i forms a two-dimensional place field with a peak at the preferred
location ~pi and with smoothly falling off edges in all directions [255]. Fig. 6.4 shows two samples of
place fields recorded from CA3-CA1 regions of a freely-moving rat.

6In particular, SC projects to NA via the fornix fiber bundle. Note that, also the hippocampal CA1 region contributes to this
projections [282].
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(a) (b)

Figure 6.4: Two samples of CA3 (a) and CA1 (b) place fields recorded from a freely-moving rat in a square arena. The red
region indicates the area in which the cell is maximally responding. By contrast, when the animal is visiting a dark-blue region,
the cell remains silent. Adapted from O’Keefe and Burgess 1996 [253].

A typical hippocampal place field encodes a region a few times the animal’s size [60]. Such an impre-
cise single-cell coding is compensated for by the ensemble place cell representation R(t) = {r i(t) | i}.
Place cells tend to cover the environment densely and uniformly, which results in highly overlapping
place fields [254, 357]. As a consequence, accurate space coding may be achieved by taking into account
the ensemble, rather than single-cell, firing activity. Spatial locations can be determined by appropriately
averaging the population place cell activity (i.e., population vector decoding) [121, 243, 241, 394, 299].

A large body of behavioral, neurophysiological, and neuroanatomical studies, has been done over
the last three decades in order to (i) understand the nature of the space coding property of hippocampal
place cells (e.g., how are sensory inputs processed to produce spatial code?), (ii) study the influence
of environmental manipulations upon the hippocampal representation, (iii) investigate behavioral en-
vironmental determinants, (iv) identify the specific functionalities of anatomical areas through lesion
experiments. Fig. 6.5 shows the variety of environmental setups employed to perform behavioral and
neurophysiological tests: (i) Water maze [233, 236, 307, 237, 385, 25], (ii) cylindrical and rectangular
open-field arenas [224, 76, 101, 243, 240, 238, 324, 394, 314, 166, 195, 132, 133, 253, 4, 282], (iii) hole
board circular platform [22, 24, 208], (iv) T, Y, and “+” mazes [251, 254, 24, 271, 258, 403, 195], (v)
radial arm maze [220, 272, 209, 357, 229, 194, 403, 226, 195, 227], (vi) linear, and rectangular tracks
[257, 194, 132, 329, 330, 25, 216].

All these experiments have produced a huge amount of data providing insights about spatial learning
capabilities of rodents. Below, is a review of some of the most relevant properties emerged from the
above studies7 .

6.2.1 CA3-CA1 Pyramidal Place Cells

Tuning shape of place fields. A typical place field can be coarsely approximated by a two-dimensional
single-peak Gaussian surface [242, 60]. However, cells encoding peripheral locations show crescent-
shaped fields hugging the arena walls [243]. Place cells may also exhibit multi-peak fields within a
single environment8 [254, 209, 258, 281, 394].

Rapid learning of place fields. Establishing a place field representation in a novel environment takes
a relatively short time. Early recording experiments [147] showed that no experience is necessary for
tuning up place cell firing: most of the observed cells exhibited place coding as robust on the first visit

7For an experiment-by-experiment review, see [282]. For a review of early experiments on rodents, refer to [256, 114].
8However, multi-peak place fields have been observed only in a very small percentage of cases.
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Figure 6.5: Experimental mazes: (a) Morris’s water maze, (b) hole board circular platform, (c, d) cylindrical and rectangular
enclosed arenas, (e, f, g) T, Y, and “+” mazes, (h) radial 8-arm maze, (i, j) linear and rectangular tracks.

to their field as on subsequent visits. Nonetheless, later experiments [394, 18] suggest that at least 10 to
30 minutes of exploration are necessary in order to generate stable place fields. Also, some cells seem to
develop their firing fields more quickly (a few minutes) than others (30 minutes) [346].

Experience-dependent place field reshaping. Recent neurophysiological findings [215, 216] show
that, as the animal experiences several times a route, CA1 cells tend to asymmetrically expand their
(initially symmetric) field and to shift their field center backwards with respect to the rat’s direction of
motion. Such an asymmetric expansion property does not persist: (i) Across different environments. Let
i be a CA1 cell whose place field has been “expanded” in an experienced route. If i will exhibit a place
field in a novel route, the field will be initially symmetric and it will re-expand based on the experience
in the new environment. (ii) Across different sessions in the same apparatus. The effects of place field
expansion disappear at the begin of each daily recording session.

Place field directionality. Experimental data show that place cells have non-directional place fields
(i.e., their firing activity does not depend on head direction) when the animal randomly moves over two-
dimensional open environments [209, 239, 195, 253]. On the other hand, data show that place cells
have directional place fields when the rat moves along fixed trajectories, such as in linear track mazes
[132, 215], rectangular track mazes [216], radial narrow arm mazes [209], “+” mazes [195], and fixed
paths within open field environments [195].
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Place field distribution and absence of neural topology. CA3-CA1 firing fields tend to cover the
whole environment uniformly, without differentiating areas with respect to their potential relevance (e.g.,
feeder location) [254, 394]. Experimental findings show that a given place cell i can have place fields
in several but not all environments [177]. In particular, results suggest that i has a mean probability of
0.3 to exhibit at least one place field in a given arena [357]. As a consequence, a very large number of
cells participate, in average, to the representation of an environment. This results in a dense population
of highly overlapping place fields [367]. Importantly, CA3-CA1 place cells are not topographically
organized, in the sense that there is no relationship between the physical place field topology and the
anatomical place cell arrangement9 [254, 177, 357, 240]. Thus, two cells i and j coding for neighboring
locations ~pi and ~pj , respectively, are not necessarily anatomically adjacent.

Uncorrelation between place field topologies across environments. Experiments involving single-
cell recordings in different environments show that the spatial relationships between place cells are not
preserved across environments [177, 243, 240, 357, 278]. Let i and j be two place cells encoding two
neighboring locations ~p 1

i and ~p 1
j , respectively, in the first environment. If i and j are also active in

the second environment and code for positions ~p 2
i and ~p 2

j , respectively, in general: (i) ~p 1
i 6= ~p 2

i and
~p 1

j 6= ~p 2
j , (ii) ~p 2

i and ~p 2
j are not neighboring locations.

Place code replaying during sleep. Recording hippocampal cells during sleep shows that (i) cells
that have been activated during the last session are more active during subsequent sleep episodes than
others [266], (ii) cells with overlapping place fields during the last session (i.e., cells with temporally
correlated firing) exhibit correlated reactivation during sleep [395, 329].

Differences between dorsal and ventral hippocampus. Although, place cells have been mostly
recorded from the dorsal hippocampus, location sensitive neurons have also been found in the ventral
(temporal) hippocampus [275]. However, spatial selectivity seems to occur more strongly and frequently
in the dorsal area than in the ventral region of the hippocampus [163]. Also, typical ventral place fields
are larger than receptive fields recorded dorsally [207].

6.2.2 Dentate Gyrus’ Place Cells

Neurophysiological experiments with the radial arm maze show that DG’s granule cells show clean
location selectivity [162]. Similar to pyramidal cells, granule neurons exhibit directional place fields
with the radial arm maze, and there exists an important relation between the DG cell firing and the theta
rhythm [330] (Sec. 6.4).

6.2.3 Subicular Place Cells

In contrast to CA3-CA1 place cells, SC neurons have the property of maintaining a similar place field
topology across distinct environments: (i) When recorded in two geometrically different arenas (e.g., a
square box and a cylinder) providing diverse visual cues (e.g., different wall colors), a typical cell i ∈
SC exhibits similar firing patterns (i.e., field location, firing rate, and field size) in the two recording
chambers [323, 319, 321]. For instance, if i codes for a location ~p 1

i near the east wall of the cylinder, i
will also respond maximally when the animal is at a location ~p 2

i near to the east wall of the square box.
(ii) When recorded in two square environments of different size, a cell i ∈ SC tends to show similar
overall firing patterns such that its place field tends to expand or shrink to fit the size of the current
environment [321].

SC cells have broader receptive fields than place cells in the hippocampus proper. Moreover, SC
cells show directional tuning even in situations in which CA3-CA1 do not (e.g., open-field spatial tasks)
[323]. Also, subicular cell activity seems to be strongly modulated by self-motion information [207].

9As reported in Sec. 2.2, head-direction cells have the same property [353, 348, 318, 405].
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6.2.4 Entorhinal Place Cells

Available neurophysiological data on spatially selective cells in EC mainly concern the superficial layers
of the medial entorhinal cortex (MEC) [278]. In contrast to CA3-CA1 place cells (which have a very
low firing rate outside their firing fields), entorhinal cells tend to be noisier and to fire relatively rapidly
over the entire environment. Nevertheless, their firing activity is maximal only at a single location. Like
CA3-CA1 representation, MEC place fields are evenly distributed and tend to cover the environment
uniformly. Also, physical place field topology is not preserved at the anatomical level (i.e., two MEC
cells encoding adjacent locations are not necessary adjacent neurons).

Similar to SC, MEC exhibits place cells that are not affected by changes in the environmental shape
(e.g., from square to circular arenas). Thus, MEC place fields are not independent across different
environments. Rather, moving the animal from a square to a cylindrical chamber, yields highly related
MEC firing topologies. Also, a MEC cell that is active in the first recording apparatus is likely to be
active in the second as well. This is in contrast to CA3-CA1 place cell behavior: for instance, a cell
i ∈ CA3-CA1 that is active in the first environment, might either become silent or encode a completely
unrelated location in the second arena [278].

6.3 Anatomical Lesion Data

Lesion studies provide some clues about the functionalities of the anatomical areas involved in spatial
learning and navigation:

Lesions to the hippocampus. Data show that hippocampal rats exhibit impaired cognitive navigation (e.g.,
they are incapable to solve the hidden-platform water maze). However, hippocampal animals seem ca-
pable to perform simpler spatial behavior like taxon navigation (e.g., they can learn the visible-platform
water maze) [236, 237]. In addition, more recent studies show that hippocampal animals may learn
the hidden-platform water maze under particular conditions [386]. Hippocampal lesions impair spatial
learning in the radial arm maze [156]. Finally, damaging the hippocampus does not seem to disrupt path
integration in rats [4].

Lesions to the fimbria-fornix10 . Similar to hippocampal animals, fornix-lesioned rats cannot learn the
hidden-platform maze, whereas they can solve the visible (or cued) platform task [93, 341, 385]. Also,
lesions to the fimbria-fornix impair spatial performances in the Y-maze task [150] as well as in the radial
arm maze [156].

Lesions to the dentate gyrus (DG). Damaging DG produces deficits for learning the hidden water maze.
Nevertheless, lesions done several weeks after training (e.g., 12 weeks) do not prevent the animal from
solving the task [340, 208]. Animals with DG lesions are impaired to solving the hole-board circular
platform task as well as the radial arm maze [208].

Lesions to the caudate nucleus. Experimental data show that damaging the caudate nucleus impairs nav-
igation to both visible- and cued-platform in the water maze (i.e., taxon navigation) [264, 203], and also
impairs navigation in the radial arm maze (in particular, impairing praxic navigation) [272].

Lesions to the subiculum (SC). Animals with SC lesions exhibit random-like spatial behavior in the water
maze [237].

Lesions to the entorhinal cortex (EC). EC damages produce deficits in solving spatial learning tasks and
also tend to diminish spatial selectivity of hippocampal pyramidal cells [220, 261, 307, 127, 278].

Lesions to the nucleus accumbens (NA). Damaging NA impairs spatial behavior in the hidden-platform

10Fimbria-fornix lesions mainly disrupt (i) the cholinergic input to the hippocampus, (ii) connections from the subiculum
(SC) to the nucleus accumbens (NA), (iii) connections from the postsubiculum (poSC) to the lateral mammillary nuclei (LMN).
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maze but not in the visible-platform maze [341]. Moreover, combined hippocampal and accumbens le-
sions produce a decrease of the animal’s locomotion [387].

Lesions to the posterior parietal cortex (PP). Animals with posterior parietal lesions are impaired for
solving visible- as well as cued-platform mazes [174]. Also, data on humans and monkeys show that PP
lesions produce deficits in spatial cognition (see [60] for a data review).

Lesions to the posterior cingulate cortex. Lesions to the retrosplenial cortex prevent animals from di-
rectly approaching a hidden escape platform [340].

Lesions to the postsubiculum (poSC). Damaging poSC yields deficits in solving the radial arm maze as
well as the water maze [352].

Lesions to the anterodorsal thalamic nucleus (ADN). Lesions to ADN severely disrupt navigation capa-
bilities in the water maze [341].

6.4 The Theta Rhythm

The hippocampal EEG exhibits two characteristic patterns depending on the animal’s ongoing behavior:
(i) During locomotor activity (e.g., walking, running, swimming, jumping) the hippocampus is timed by
a regular sinusoidal signal of 7 − 12Hz termed theta rhythm [135, 219, 257, 330]. Recent experiments
show that the theta rhythm is also observable during passive locomotion of the animal [119]. Also, the
theta rhythm occurs during sensory scanning as well as in REM sleep [65]. (ii) During non-motion
behavior (e.g., eating, drinking, grooming) the hippocampal EEG exhibits a rather irregular activity with
large amplitude and broad frequency spectrum [375, 66].

There exists a phase correlation between the theta rhythm and hippocampal place cell firing [257,
330]. Let i be a place cell. As the animal goes through the place field of i on a linear path, the theta
phase ϕi at which i discharges shifts systematically: Every time the rat enters the field, i starts firing
at the same phase ϕl

i late in the theta period. Then, as the animal runs through the field, i tends to fire
earlier and earlier in the cycle. If ϕe

i is the firing phase of i when the rat exits the field, the relation
ϕl

i −ϕe
i ≤ 360◦ holds [257]. This phase shift phenomenon is termed phase precession. Such a temporal

firing property of a place cell i provides more information than the solely firing rate ri: measuring the
phase ϕi allows us to estimate the position of the animal inside the place field of cell i [62].

Both CA3 and CA1 cells exhibit phase precession. All place cells start firing at the same theta phase,
and, in average, precession occurs over 5 to 10 theta cycles [257, 330, 49]. DG granule cells (projecting
to CA3 cells) undergo phase shifting as well, but they tend to precess in a small number of theta cycles
than CA3-CA1 cells [330].

Neuroanatomical results suggest that the medial septum might be involved in modulating temporal
processing in the hippocampus. In particular, the cholinergic and GABA-ergic septal efferents seem
to be responsible for driving the theta rhythm [135, 64, 219, 49]. Lesion data confirm this hypothesis:
damaging the medial septum disrupts the theta rhythm [396].

6.5 Hippocampal Synaptic Plasticity

To accomplish its role in cognitive behavior, the hippocampus has to provide rapid on-line storage of
spatio-temporal correlations extracted from its highly processed inputs. How is information stored in the
hippocampus? Which are the mechanisms underlying hippocampal learning? Activity-dependent synap-
tic plasticity in the hippocampal formation offers a suitable neurochemical system for implementing
associative learning [235].
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Long-term potentiation (LTP) is generally used to indicate the synaptic modification which is the
basis of hippocampal learning [44]. LTP is defined as a persistent enhancement of the synaptic efficacy
induced by electrical stimulation [235]. The resulting synaptic modification persists at least one hour,
but it can last for several days in certain conditions [43]. The best understood mechanism underlying
synaptic long-term potentiation is known as NMDA-mediated LTP. NMDA (N-methyl-D-aspartate) is
a postsynaptic glutamatergic11 receptor whose activation induces LTP (by leading a dendritical flow of
Ca2+ ions) [56].

LTP can be understood as a Hebb-like mechanism [145]: it is local and temporally correlational, that
is, it depends on the firing interrelation between the presynaptic neuron i and the postsynaptic neuron j
[214, 45, 58, 206]. Let wji denote the strength of the synapse from i to j. In hippocampal slices, LTP
occurs (i.e., wji is enhanced) only if the activity of i precedes the activity of j by less than approximately
200ms [183, 1]. On the other hand, if the postsynaptic neuron j precedes the presynaptic neuron i, either
wji is unchanged (no LTP) or long-term depression (LTD)12 occurs [85]. Another important property of
NMDA-dependent LTP is the fact that it is asymmetric [1], in the sense that when i precedes j, only the
efficacy wji is potentiated whereas the connection wij is not changed.

Experimental findings (mainly from pharmacological studies) strongly support the idea that the hip-
pocampal NMDA-mediated LTP is relevant for spatial learning. Blockade of NMDA receptors results in
impaired spatial learning capabilities [234]. Animals with malfunctioning NMDA receptor are unable to
solve the water maze task [326, 372]. Mice that have been genetically engineered to have deficient LTP
exhibit instable CA1 place fields between recording sessions [292] and are severely impaired to learn the
circular platform escape task [19].

To conclude, recently it has been postulated that NMDA-dependent hippocampal synaptic plasticity
plays a more general role in episodic memory rather than merely providing a basis for associative spatial
learning [235].

6.6 Which are the Hippocampal Place Field Determinants?

As for head-direction cells (Sec. 2.4), several studies have been done to identify which information
primarily determines place cell activity (e.g., distal vs local cues) [254, 240, 243, 258, 50, 278, 32, 403,
253, 79]. In particular, research has focused on the interrelation between allothetic and idiothetic inputs
[148, 324, 277, 166, 390, 322].

Distal vs local cues. Neurophysiological data show that hippocampal place fields strongly depend on
distal visual cues [254, 220, 258, 278, 403, 79]: rotating distal landmarks induces corresponding place
field rotations. In general, low control is exerted by local landmarks (e.g., a cylinder array inside the
arena) [79]. However, whenever a reward location is directly identified by one or several local cues,
place fields tend to account for local landmark information [76, 32, 33, 133, 282]. Also, local non-visual
allothetic cues have a strong influence upon place fields of blind and deaf rats [148, 306].

Geometrical determinants. The geometry of the environment seems to influence hippocampal place
cell activity directly. Recordings data show that rescaling the experimental arena may result in rescaled
place fields [240]. Also, animals placed in rectangular arenas with high cue-free walls develop place
fields reflecting metric information [253]. The location encoded by the firing peak is determined by the
distance to two orthogonal walls, or by the proportion of the distance between opposite walls. Place
fields become stretched or exhibit multiple peaks when the environment is linearly stretched. O’Keefe
and Burgess [253] suggest that this is due to the fact that place fields are normally determined by two or

11The glutamate is the main excitatory neurotransmitter in the hippocampus.
12Long-term depression yields a persistent decrease of the synaptic efficacy.
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more independent metric subcomponents that become pulled apart when the geometry of the environment
is changed.

Idiothetic determinants. Despite their dependence on external signals, place cells exhibit clean lo-
cation selectivity even when allothetic cues are absent. This suggests that hippocampal cells are also
influenced by internal movement-related signals, since these are the only available cues in the absence of
environmental landmarks. Experiments show that removing visual landmarks does not perturb the activ-
ity of hippocampal cells, which continue to show stable place fields [254, 148, 271, 240, 258, 212, 278].
Also, in visually symmetric environments (e.g., a high-walled circular arena with two identical cue cards
placed in two diametrically opposite positions), most place cells have asymmetric firing patterns, i.e.,
they exhibit distinct place fields in locations that are visually identical [324]. A strong support for the
idiothetic basis for place fields comes from the fact that (i) place cells maintain unchanged place fields if
light is extinguished, (ii) when the animal is introduced in the arena in complete darkness, place cells are
established and persist in subsequent light conditions [277, 194]. Another hint in the favor of the con-
tribution of self-motion signals (e.g., efference copy of motor commands), is the fact that hippocampal
place cells become silent under conditions of movement restraint [209, 108]. Finally, it has been shown
that place fields can be controlled by vestibular as well as optical-flow signals explicitly activated by the
experimenter [322].

Dependence of place fields on the interrelation between entry position and salient allothetic cues.
Experiments in visually symmetric environments suggest that the location at which the animal is placed at
the beginning of a recording session (i.e., the entry position) plays a fundamental role in controlling place
fields and prevents CA3-CA1 cells from doubling their firing patterns [324]. This supports the idea that
a mnemonic process relying on internal cues might be employed by the animal to disambiguate vision.
In particular, experimental data show that visual cues and the entry point are combined to influence place
field locations [324].

Relationship between the stability of distal cues and place cell control by allothetic signals. Both
behavioral and neurophysiological findings [32, 166, 159, 158] indicate that the more stable an allothetic
cue is perceived by the animal, the higher its influence upon place cell dynamics. Consistently, head-
direction cells are strongly controlled only by orienting cues that remain stable across sessions [166]
(Sec. 2.4 and Chapter 5). When environmental manipulations (e.g., cue card rotations) occur within
the same recording session (rather than between separate sessions), place cells tend to be controlled by
slightly changing cues (e.g., small cue rotations). By contrast, major environmental changes (e.g., large
cue rotations) occurring suddenly do not induce corresponding place field updates [293]. Similar results
have been found when studying rodents’ homing behavior in conflict situations between idiothetic and
allothetic signals [103, 98] (Chapter 5).

Place field changes induced by adding a barrier into the arena. Once the animal has experienced
an environment (i.e., it has established a place field representation), introducing an either opaque or
transparent high barrier affects the activity of those cells whose place field intersects the obstacle [240].
In particular, the activity tends to diminish and place fields to be disrupted. However, the influence of the
barrier vanishes whenever its height is such that the animal’s motion is not affected. This suggests that
locomotion-related information is relevant for establishing and maintaining place fields.

Dependence of the place field representation on reward locations. As previously mentioned, place
fields tend to distribute uniformly over the space independently from reward-related locations [254, 394].
Nevertheless, pyramidal cells whose activity becomes correlated to a reward location have been observed
[209, 391, 51, 239]. Data concerning this dual pyramidal cell behavior are still controversial: Speakman
and O’Keefe [334] report that hippocampal place fields are independent from the target (i.e., they do not
change when the target location changes). By contrast, the experiment by Breese and colleagues [51]
shows the presence of cells whose first-order correlate is the reward location (i.e., they change their place
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field as the target location varies)13 . Finally, Kobayashi and colleagues [169] report that hippocampal
cell firing is independent from the reward in most of the cases (80%), whereas the remaining cells tend
to gradually shift their field location towards the goal location.

Latent spatial learning. The previous issue is closely related to the concept of latent learning, that
is the fact that a rat establishes a representation of the environment even in the absence of any explicit
reward [361, 256]. Whenever a neither hungry nor thirsty animal is put in a novel environment, it tends
to learn it (i.e., to build a representation) motivated by exploration only. As a result of latent learning,
when a feeder location is added into an environment previously experienced by the animal without any
reward and the animal is made hungry, target-oriented navigation is learned very quickly (i.e., the animal
learns immediately how to reach the reward location from any point in the environment)14 .

Place field remapping. The hippocampus can develop more than one place field representation for
the same environment [258, 277, 50, 322, 166]. Remapping can take place between and within sessions
whenever the current spatial representation becomes inconsistent with respect to the perceptual context
(e.g., replacing a familiar white card with a new black card [50]). Note that a change in the perceptual
context might occur without any change in the environment: if the animal perceives a world which is no
longer congruous with its internal spatial code, a new place field map might be developed [166]. Also,
hippocampal remapping can result from a change in the behavioral task performed by the animal in a
totally familiar environment [195].

Non-spatial place cell correlates. Location may be considered as the first-order correlate of place cell
firing [243]. Nevertheless, other factors, like animal’s speed, orientation, and rotation, may also influence
the activity of pyramidal cells [209, 391]. Furthermore, CA3-CA1 cells have been studied in non-spatial
tasks such as odor as well as auditory discrimination [92, 263, 298]. These experiments involve stimulus-
response-reward learning, e.g., animals have to learn to go to a specific reward location given a specific
set of odors [92]. Results show that pyramidal cells are involved in this kind of non-spatial mnemonic
process. Moreover, experimental data acknowledge the influence of the context on pyramidal activity: a
cell responding to a stimulus in a specific task, might not encode the same stimulus in a different context
[298]. The fact that place cells may be task-sensitive has been explicitly demonstrated by a series of
experiments in which rats were trained to solve different tasks within the same environment [195]. As a
result, each task was associated to a different place cell representation (e.g., a cell might have different
place fields in different tasks). In addition, in a complex task, place cells may encode specific components
belonging to the behavioral sequence for solving the task [92, 391, 298, 133]. For instance, in the odor
discrimination experiment, a place cell might encode the sniff port location when the animal approaches
that region to sample the odor, but not when the rat passes through that same region to reach the reward
location after sampling [263].

These findings indicate that the hippocampus might play a more general role than merely being
responsible for spatial learning. Indeed, hippocampal pyramidal cells might be involved in a more general
class of memory (e.g., episodic memory) related to perceptual, behavioral, and reward-related variables
[196, 91, 389]. Nevertheless, space might provide the contextual framework necessary to encode events
[256, 247, 388].

13Note that, the fact that a cell i encodes the target location ~pgoal does not imply that i works as a goal cell driving the animal
towards ~pgoal from any other position.

14Tolman [361] interprets latent learning as a form of learning which occurs without any obvious reinforcement and which
is not explicitly displayed by the animal until when it is stimulated to do it.
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Chapter 7

Modeling Spatial Cognition:
State of the Art

The ability of animals to navigate in complex task-environment contexts has been the subject of a large
body of research over the last decades. Due to its spatial representation properties (Chapter 6), the
hippocampus has been studied and modeled intensively. In the first part of the chapter (Sec. 7.1), we
review the principal theories attempting to explain the hippocampal role, and we describe some models
of the mechanisms beneath place cell firing.

Another subject that has received a large interest is the ability of animals to navigate based on self-
motion information only. This navigation mechanism, termed path integration1 , implies that the animal
maintains a continuously updated vector pointing home. It allows, for instance, desert ants to forage
250 meters far away from the colony along winding routes, and then to return home along direct paths
[381]. In the second part of this chapter (Sec. 7.2), we review several models explaining such a route-
based mechanism. Some of these models identify the hippocampus as having a fundamental role in path
integration.

7.1 Modeling Hippocampal Activity

The multivariate properties of the hippocampus have given rise to a large number of theories to explain
its functionalities. The question these theories attempt to answer is: What does the hippocampus actually
do? The hypotheses proposed during the last century are as differentiated as the hippocampal properties:
(i) Early theories by Papez in 1937 [265], and Isaacson in 1974 [154], attribute to the hippocampus the
function of mediating emotions. (ii) Olton and colleagues in 1979 [259] differentiate between refer-
ence memory (i.e., between-task information) and working memory (i.e., within-task information), and
postulate that the hippocampus is primary involved in working memory. (iii) Gray in 1982 [134] puts
forth a theory in which the hippocampal-subicular circuit acts as a predictor-comparator system: the hip-
pocampus would predict future states and the subiculum would compare them with subsequent sensory
information. (iv) Hirsh in 1974 [149] proposes a theory according to which the hippocampal activity
underlies context retrieval: the hippocampus would provide the context to support stimulus-response

1Path integration will be the topic of Chapter 9.
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learning. Nadel and Willner in 1980 [246] and Jarrard in 1993 [157] also postulate a role for the hip-
pocampus in contextual conditioning. (v) Marr in 1971 [196] formalizes an alternative view in which
the hippocampus is seen as an auto-associative memory. This theory holds that the hippocampus is a
temporary memory device capable of storing and retrieving patterns of neocortical activity. (vi) O’Keefe
and Nadel in 1978 [256] put forth the cognitive map theory for the hippocampus. This theory identifies
the hippocampus as the rodent brain region providing a cognitive representation of the environment.

The two latter hypotheses have mainly influenced researchers studying the hippocampal function-
alities over the last years. Indeed, both theories have served as a framework for associative-memory
models [182, 392, 290, 365, 289, 373, 184, 328, 366, 280] as well as cognitive map models [296, 317,
363, 62, 377, 308, 61, 285, 117, 369]. In particular, Recce and Harris (1996) [280] have argued that the
associative-memory theory by Marr [196] and the cognitive map theory by O’Keefe and Nadel [256] are
consistent with each other. Indeed, learned neural representations encoding the agent’s spatio-temporal
knowledge of given task-environment contexts can be thought of as episodic-like memories, thus the
auto-associative functionalities of the hippocampus can be used to store and retrieve this information.
We agree with such an unified view of the hippocampal role. However, we emphasize the importance of
place cell activity in spatial learning, which supports the cognitive map theory by O’Keefe and Nadel.
Since we mainly focus on space representation based on hippocampal activity, we review some of the
most relevant models attempting to explain the mechanisms underlying place cell firing. Note that, in all
the approaches described below, place coding supports goal-oriented navigation. For sake of clearness,
in this chapter we do not discuss the navigation part of these models. They will be reviewed in Part IV,
in which goal-directed behavior of animals is considered.

7.1.1 Sharp (1991)

In this model place fields are generated based on local-view pattern classification by competitive learning
[317]. The system consists of a three-layer neural network in which all units of a layer project to all units
of the above layer through Hebb-like synapses.

Cells in the first layer act as metric sensory cells responding to specific stimuli (e.g., distance to a
cue). The input layer involves two types of units: Type 1 cells fire as a function of the distance to specific
external cues. Type 2 cells encode the distance of a cue as well as its angle relative to the agent’s heading.
Thus, the activity of type 2 cells depends on the agent’s current location and orientation. Both types of
sensory units become responding to a specific visual cue by a stochastic assignment done the first time
the agent enters an environment.

Each cell i in the middle layer receives afferent projections from all units j in the sensory cell layer.
Connection weights wij are initialized randomly such that they are all positive and their sum is normal-
ized. The activity ri of a cell i is given by

∑

j wijrj , where rj ∈ {0, 1} is the firing rate of an input cell
j. There are 60 cells in the middle layer, divided in three winner-take-all clusters [296]. Only one cell i∗

per cluster will fire at any time, such that i∗ receives the largest input
∑

j wi∗jrj . Synaptic weights wi∗j

to each winner cell i∗ are strengthened by Hebbian learning. Sharp associates the middle layer of the
model to the entorhinal cortex.

The pattern of activity of cells in the middle layer (i.e., 3 active cells at any time t) is propagated to
the output level of the model: the hippocampus. In this level, there is only one cluster of 20 cells whose
firing activity is determined according to the same winner-take-all scheme defined above. Also, synaptic
enhancement occurs as before. Below is a representation of the model:
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Sharp reports results obtained by simulating a circular environment with 8 evenly distributed land-
marks on the edge of the arena. At each step the simulated rat computes distances and angles of all 8
cues relative to its current position and heading, respectively. This information is used to drive cells in
the first layer of the model, and is propagated through the network to generate hippocampal place cell
firing. Reported receptive fields are similar to real hippocampal place fields. A limitation of the model
is that it does not capture data from experiments in the absence of visual landmarks (e.g., when light
is extinguished) suggesting that rats are able to maintain place fields even without visual information
[277, 194] (Chapter 6).

7.1.2 Burgess, Recce, and O’Keefe (1994)

Burgess, Recce, and O’Keefe put forth a hippocampal model in which allothetic sensory information
activates a neural layer of entorhinal cells (EC), and then propagates through the network to form place
fields in CA1-CA3 and in the subiculum (SC) [62, 61].

At the sensory level, there is a population of cells with broad tuning curve responses to the distance
of external cues. A discrete set of landmarks, arranged around the edge of a square arena, is considered.
For each landmark l, 15 sensory cells i respond maximally to different distances from l. Each cell i has
a triangular tuning curve peaked at the preferred distance dl

i from l:

ri =

{

0 |dl − dl
i| ≥ 6D

b(7D − |dl − dl
i|)/2Dc otherwise

where ri is the activity of cell i, dl is the current distance of landmark l, D is a unitary distance-step of
14 cm, and bxc indicates the integer part of x. Thus, for each landmark l, the information of its distance
to the agent is distributed over the ensemble activity of the sensory cell array associated to l.

Each cell e ∈ EC receives hardwired projections from two sensory cells i and j, and multiplies their
firing rates to produce an approximate radial-basis function place field. In particular, each cell e is driven
by a pair of sensory cells i and j such that: (i) i and j respond to two distinct cues li and lj , respectively,
(ii) the tuning curves of cells i and j overlap near to the centroid location with respect to li and lj . The
activity of cell e is taken equal to re = brirj/2c.

EC cells project to the CA1-CA3 layer of the model through binary connections. The input to a
cell p ∈ CA1-CA3 is the sum of the spikes fired by its afferent EC neurons. A connection wpe is
switched on whenever the pre- and postsynaptic cells fire at the maximum spike frequency in the same
time step (i.e., Hebbian learning). Cells in the CA1-CA3 layer are arranged in 5 clusters of 50 units
each, and competitive learning [296] is applied within each cluster: At each time step, only the four cells
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with the largest input fire a number of spikes proportional to their input, the others remain silent. As a
consequence of competition, CA1-CA3 cells have smaller place fields than EC cells.

CA1-CA3 units project to SC cells through connections that are formed according to the same Heb-
bian learning scheme as before. Competitive learning also occurs within the SC layer. However, SC cells
are arranged in 10 groups of 25 each, that is, each SC cell has to compete with fewer cells than each
CA1-CA3 cell. This results in larger SC place fields. Below is a functional representation of the model:
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The model produces plausible EC, CA1-CA3, and SC place fields. Also, due to the metric infor-
mation (i.e., distance to cues) used to determine the place cell dynamics, neurons in the model exhibit
stretched (or multi-peaks) tuning curves when the environment is linearly stretched, which is consistent
with experimental data [253].

The system incorporates the phase-coding relationship between place cell firing and the theta rhythm
θ (Sec. 6.4). The frequency of θ is taken equal to 10Hz, and each time step is equal to 1/30 s. Each
θ cycle is divided in early, middle, and late phase. In the model, phase precession is generated at the
level of EC firing: For each pair of cues li and lj driving a cell e ∈ EC, the agent estimates the angle α
between its heading and the average direction of the two landmarks. If α is ahead of the agent then cell e
fires at a late phase of θ, if α is behind then e fires early, otherwise e fires at a middle phase. This results
in a firing activity such that a place cell active at a late θ phase, for instance, has a field centered ahead
of the agent. This is consistent with the phase precession phenomenon described in Sec. 6.4.

A limitation of the model is that external landmarks are assumed to be perfectly distinguishable, and
that a prewired sensory system underlies place cell formation. Also, the approach does not take into
account idiothetic information (i.e., path integration) in order to enable the simulated agent to exhibit
stable place fields in the absence of external cues.

In Fig. 7.1 we show some results obtained by implementing a slightly modified version of the model
by Burgess, Recce, and O’Keefe. The only difference concerns the fact that we do not employ precon-
figured connections between sensory cells and entorhinal cells. Rather, they are built incrementally by
a simple unsupervised learning mechanism: For each location explored by the agent, simultaneously
active sensory cells associated to pairs of landmarks are connected together to a newly recruited EC cell.
A place is considered adequately represented whenever the number of EC cells encoding that position
reaches a fixed threshold. This allows the system to bound the number of EC cells recruited during
exploration.
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(a) (b)

(c) (d)

Figure 7.1: Some results obtained by implementing a modified version of the model by Burgess, Recce, and O’Keefe [62].
(a) The simulated 60×60 cm arena with 16 cues evenly distributed around its edge. Results: (b) Sample of entorhinal receptive
field. (c) Place field recorded from the CA1 layer of the model. (d) Place field of a subicular cell.

7.1.3 Wan, Redish, and Touretzky (1994, 1997)

Wan, Redish, and Touretzky formulate a comprehensive theory of rodent navigation based on the interac-
tion among separate modules encoding head-direction, path integration, and place recognition [377, 286,
285, 283]. Each of these representations mediates associations of internal and external stimuli. Below is
a diagram of the model:
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First, visual input consists of triplets (Ti, di, θi). Thus, the agent is assumed to be able to identify the
type of visual landmark Ti, and to compute its egocentric polar coordinates di, θi. This latter information
is combined with the head-direction signal Φh to compute the allocentric landmark bearing φi. The
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information (Ti, di, φi) forms a local view relative to landmark i. Second, a representation (xp, yp) of
the animal’s position ~p within an internal coordinate system is updated by path integration. Third, place
code is established by means of radial-basis units tuned to (i) the type, distance, and allocentric bearing
(Ti, di, φi) and (Tj , dj , φj) of pairs of distinct landmarks i and j, respectively, (ii) the retinal angle
αij = θi − θj between landmarks i and j, (iii) the path integration coordinates (xp, yp). The activity
A(u) of a place unit u is computed by a “fuzzy conjunction” of these three informations in which terms
drop out when the corresponding input is not available (e.g., in the dark A(u) depends solely on path
integration). More precisely, A(u) is given by A(u) = C(u) · L(u), where C(u) is a two-dimensional
gaussian tuning to path integrator coordinates centered at (xu, yu), and L(u) is a product of univariate
gaussians of the inputs provided by the local view module (each input consists of (Ti, di, φi), (Tj , dj , φj),
and αij).

Training proceeds as follows: The first time the agent enters an unfamiliar environment it is told its
head-direction Φh and its path integrator coordinates (xp, yp). For each newly explored position (x′p, y

′
p)

(i.e., each position that is not already encoded by existent place units), a new place unit u ′ is recruited
such that: (i) Its response function C(u′) is tuned to the path integrator coordinates (x′

p, y
′
p); (ii) Two

visible landmarks i and j are randomly selected, and the unit’s response functions encoding (d i, φi)
and (dj , φj) are tuned to these values; (iii) Two different landmarks k and l are chosen, and the unit’s
response function encoding αkl is tuned to the bearing difference θk−θl. This process is iterated for each
newly visited position. After training, all multiple representations converging to the place code interact
with each other to maintain a consistent space knowledge.

Computer simulations reported by the authors replicate several neurophysiological as well as behav-
ioral experiments. A limitation of the model is the fact that during training (i.e., when tuning place units)
the path integrator is assumed to be coherent over time. Indeed, there is no mechanism to correct the
path integration coordinates (xp, yp) simultaneously with tuning place cells during exploration.

7.1.4 Schölkopf and Mallot (1995)

In this model, a topological representation of the environment is built incrementally by generating a view
graph [308]. The input of the model is constituted by sequences of views and movements. Vertices of
the graph correspond to views, while edges connect distinct views that are experienced by the agent
in immediate temporal sequence. Also, each arc of the graph from node i to node j is labeled by the
egocentric movement (e.g., go left) necessary to the agent to perceive the view vj associate to node j
when seeing vi in node i. Once the view graph has been learned, places can be easily recovered from the
topological view representation.

Schölkopf and Mallot propose a neural network architecture to implement their view-graph model.
Below is a sketch of the network:
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The network consists of an input layer, a map layer, and a movement layer. Views j in the input
layer must be linked to units i in the map layer. This is achieved by updating weights ρij . After learning,
perception of a view will be represented by the activity of the associated map unit, i.e., the unit whose
input weights are most closely tuned to the presented view. In order to learn topology, units i and k in
the map layer are interconnected by a link αki, whose strength is set according to the temporal sequence
of the views represented by these units. Then, movement labels are learned in terms of modulatory
connections βαkim from cells m in the movement layer to links αki in the map layer. Three movement
units m are considered (encoding left, right, and back2 actions), and, during learning, modulatory links
βαkim are updated.

The authors provide computer simulation results obtained by validating the model in a corridor maze
in which places correspond to junction locations. A nice property of the model is that, since movement
information to go from one place to another becomes stored in the topological graph, the space code can
be maintained even without any visual input. An intrinsic limitation of the approach is that all views
taken by the agent are assumed to be perfectly distinguishable.

7.1.5 Trullier and Meyer (1997)

In this model, the hippocampus is seen as an hetero-associative network that learns temporal relationships
between successive configurations of stimuli [370, 368, 369]. Thus, exploration is a process by which
the agent experiences sequences of places. Learning occurs to store these sequences onto a topological
graph by transforming temporal relationships into spatial relationships. The authors assume that CA3 is
the anatomical locus for this topological graph.

Nodes of the graph represent visited places, and edges connect sequentially experienced locations.
Similar to Schölkopf and Mallot [308], head-direction information is used to label the edge between
nodes i and j with the direction of movement experienced when arriving in j from i. In order to create
the graph incrementally (i.e., to add new nodes as exploration proceeds), the authors adopt a mechanism
by which the animat can recruit place cells according to the local complexity of the environment. They
consider wall corners as landmarks, and assume that the agent is always capable to recognize them
perfectly. Place cells p are tuned to the distances to a certain number n of landmarks

actp =
n
∏

i=1

exp
(

− (di − d∗i )
2/σ2

)

where: di, 0 ≤ di ≤ 1, is given by di = exp(−di) with di being the distance between the current
agent’s location and landmark i; d∗i , 0 ≤ di ≤ 1, is given by d∗i = exp(−d

∗
i ) where d

∗
i is the distance

between the location where cell p has been recruited and landmark i; σ defines the size of the place field
of cell p. When a landmark i is not visible, di is arbitrarily set to −0.1. Thus, newly recruited place cells
encode the distances between the agent and visible landmarks. A limitation of this approach consists of
the no sensory aliasing assumption (i.e., landmarks are assumed to provide unique visual cues), and the
orientation independence of the simulated views.

7.1.6 Gaussier et al. (1998)

In this model, place recognition relies on the identification of at least two visual landmarks within a
panoramic scene, and on the estimation of their allocentric azimuth relative to an absolute direction (e.g.,

2The topology of the maze is such that the agent can only move forward taking either left or right actions.
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north) [118, 117]. The activity of a place cell i when the robot is at location (x, y) is given by

acti = 1−
1

πNi

Ni
∑

k=1

Vik · f(|Θik − θk|, vk) (7.1)

where: Ni is the number of landmarks; Θik is the azimuth of landmark k as memorized when cell i has
been created; θk is the azimuth of landmark k as measured from the current position (x, y); Vik is equal
to 1 if landmark k was visible when cell i has been created, 0 otherwise; vk is equal to 1 if landmark k is
visible from the current position (x, y), 0 otherwise; the angular difference |Θik − θk(x, y)| is computed
modulo π; the function f is defined according to

f(θ, vk) =

{

θ vk = 1
π vk = 0

Eq. 7.1 results in a place cell activity acti that tends to 1 when all the azimuths θk relative to the agent’s
current position are similar to the azimuths Θik learned when cell i has been created. At any time t,
the recognized place is the one associated to the most active cell i∗, i.e., i∗ = argmaxi (acti). During
exploration, the simulated animal adds a new place cell i: (i) If it encounters an interesting place (e.g.,
a food source), (ii) if it is at a poorly represented location (i.e., acti∗ < T , where T is a recognition
threshold), (iii) at the end of an obstacle avoidance behavior.



7.2. PATH INTEGRATION: PREVIOUS HYPOTHESES 77

7.2 Path Integration: Previous Hypotheses

The hypothesis according to which animals might navigate by integrating internally-generated motion
signals was first suggested by Darwin and Murphy in 1873 [81, 245]. Barlow, in 1964, reviews the early
literature concerning inertial navigation, and elucidates the physical principles that might be the basis of
this capability of animals [21].

The first model attempting to explain the mechanism underlying path integration was proposed by
Jander in 1957 [155]. In this section, we give a brief overview of the models that have been postulated
since the pioneer Jander’s hypothesis. They have been classified according to the following taxonomy: (i)
Mathematical approaches modeling path integration quantitatively [155, 224, 238, 28, 112]; (ii) Models
based on the connectionist paradigm [199, 200, 141, 210, 363, 377]; (iii) Approaches focusing on the
neurophysiological plausibility of the functional and anatomical aspects involved [207, 301, 319, 285].

7.2.1 Mathematical Models

7.2.1.1 Jander (1957)

Jander [155] postulates a model in which a time-weighted angular integration over time yields the repre-
sentation of the current homing direction θh(t)

θh(t) =
1

t− t0

∫ t

t0

θ(t′) dt′ (7.2)

where t0 is the time at which the journey starts, and θ(t′) is the instantaneous animal’s bearing relative to
an external reference direction φ. The distance of the animal to the starting point is not computed by the
model. Note that, since the model measures the duration of each segment rather than its metric length,
it assumes a constant translational speed of the animal. Below is an example of three-leg trajectory T
(from point A to point B) to illustrate Eq. 7.2 in a discrete fashion.

 φ

 θ2   = 55 o

 θ3   = 10 o

 θ1   = 160
o

∆t2

A

∆t3

B  θh   = 86.9
o

∆ 1t   = 14

   = 8 

   = 10 

θh =
1

∑

i ∆ti

∑

i

θi ∆ti

=
θ1 ∆t1 + θ2 ∆t2 + θ3 ∆t3

∆t1 + ∆t2 + ∆t3
= 86.9◦

According to Eq. 7.2, the animal has to memorize the duration ∆ti as well as its bearing θi for all
segments i ∈ T in order to estimate the final homing direction θh. That is, the process is not iterative,
in the sense that the system needs to backtrack the entire history (from B to A) to compute the time-
weighted average defined by Eq. 7.2.

Jander’s model does not provide the geometrically correct solution to “close the polygon”. In the
above example, the correct homing direction would be θh = 84.4◦, that is, the algorithm yields an error
of 2.5◦. Although the biological path integrator is also affected by systematic biases [314], Eq. 7.2 does
not reproduce the type of errors observed in experiments with ants and other species [384].
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7.2.1.2 Mittelstaedt and Mittelstaedt (1973)

Mittelstaedt and Mittelstaedt [222] put forward a model in which the homing vector ~h(t) (i.e., both
direction and distance to home) is encoded by the animal’s coordinates x(t), y(t) within a Cartesian
allocentric frame

x(t) =

∫ t

t0

v(t′) cos(θ(t′)) dt′

y(t) =

∫ t

t0

v(t′) sin(θ(t′)) dt′ (7.3)

where v(t′) and θ(t′) are, respectively, the speed and the heading (relative to an arbitrary axis φ) of the
animal during the time increment dt′.

This theory, termed bicomponent due to the trigonometric decomposition of the animal’s movement
(Eq. 7.3), was first introduced in 1962 by H. Mittelstaedt to model the orientation control system in
insects [221]. Then, in 1973, it was employed to explain path integration in insects [222], and finally it
was applied to vertebrates in 1980 [224].

Eq. 7.3 is the error-free trigonometric solution (ideal path integration) to compute the current animal’s
position by vector integration in allocentric space [201]. The homing direction is given by θh(t) =
arctan y(t)/x(t), and the distance to home by lh(t) =

√

(x(t)− x(t0))2 + (y(t)− y(t0))2. Below
is the same three-leg sample trajectory T used above, with the discrete solution for θh(t) and lh(t)
according to Eq. 7.3:

 φ

 θ2   = 55 o

 θ3   = 10 o

 θ1   = 160
o

   = 13.1hl

A

B  θh
o

d   = 8

d   = 10

1d   = 14

2

3

   = 84.4

θh = arctan

∑

i vi sin(θi)∆ti
∑

i vi cos(θi)∆ti

= arctan

∑

i di sin(θi)
∑

i di cos(θi)

= 84.4◦

lh = |~h(t)| = 13.1

Thus, the model represents the correct geometrical solution to generate the homing vector ~h. Sys-
tematic errors affecting the biological path integrator, as observed by behavioral experiments [201], are
not accounted by the model. Rather, Mittelstaedt and Mittelstaedt assume that the drift in the homing
process accumulates over time as a result of non-systematic errors (i.e., random noise), but the latter are
not explicitly modeled by the system.

Finally, unlike Jander’s model, Eq. 7.3 has an iterative solution: the homing vector ~h(t + ∆t) can be
computed entirely based on ~h(t), the vector at the previous time increment, without a complete backtrack
through the animal’s trajectory. Indeed,

x(t + ∆t) = x(t) + v(t) cos(θ(t))∆t

y(t + ∆t) = y(t) + v(t) sin(θ(t))∆t (7.4)
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7.2.1.3 Müller and Wehner (1988)

Müller and Wehner [238] start from the hypothesis that the trigonometric vector decomposition proposed
by Mittelstaedt and Mittelstaedt [222] requires computational capabilities that might be unlikely for
simple organisms as ants. Thus, they propose an iterative method that provides an approximate solution
by reformulating the original angular-integration hypothesis postulated by Jander.

The animal’s trajectory is discretized in unit-length time steps. Let θh(t) and lh(t) be the allocentric
homing direction and the distance from the starting point, respectively, at time t. Let δ denote the angular
deviation (in degrees) between the animal’s heading at time t and at time t+1, i.e., δ = θ(t+1)− θh(t).
The iterative process to compute lh(t + 1) and θh(t + 1) is defined according to

lh(t + 1) = lh(t) + 1−
|δ|

90

θh(t + 1) = θh(t) + k
(180 + δ)(180 − δ) δ

lh(t)
(7.5)

where k = 4.009 × 10−5deg−2 is an empirically tuned constant to fit data concerning cataglyphis fortis
ants. The following example illustrates the method.
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At each time step, the angular difference δ between the current animal’s heading and the estimated
homing direction is shown. The final homing vector ~h, whose polar components are θh and lh, approxi-
mates the geometrically correct solution. The direction error is approximately of 25.6◦, and the estimated
A-B distance exceeds the correct value by an error of about 3.1.

The distance-weighted mean-direction algorithm proposed by Müller and Wehner (Eq. 7.5) success-
fully accounts for systematic biases in path integration. It fits several experimental data concerning
homing capabilities of ants [238], as well as other insects and arthropods [382]. The model also provides
a good approximation for the homing behavior of rodents, in particular of golden hamsters [314].

7.2.1.4 Benhamou et al. (1990)

Benhamou et al. [28] reconsider the trigonometric decomposition hypothesis by Mittelstaedt and Mittel-
staedt [222] and reformulate it by (i) adding Gaussian noise to the system, (ii) encoding the translational
and angular components of motion within an egocentric rather than allocentric coordinate system.

Let lh(t) be the distance to the starting point as estimated by animal, i.e., lh(t) = |~h(t)|, and let θh(t)
indicate the egocentric homing direction, i.e., the angle between the current animal’s heading and the
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starting location. Thus, the homing vector ~h(t) is represented within an animal-centered polar reference
frame. The animal’s trajectory is seen as a discretized sequence of movements. At each step, the animal
either rotates by an angle α, or makes a translation of length d. After a rotation α(t) at time t and a
translation d(t + 1) at time t + 1, the egocentric polar representation of the animal’s location is given by

lh(t + 1) =
(

l2(t) + d2(t + 1)− 2 l(t) d(t + 1) cos(θh(t)− α(t))
)

1

2

θh(t + 1) = arctan

(

sin(θh(t)− α(t))

cos(θ(t)− α(t))− d(t + 1)/lh(t)

)

+ k π (7.6)

where k = 0 if the denominator is positive, and k = 1 otherwise.
Note that Eq. 7.6 provides a stochastic version of the geometrically correct trigonometric solution

(i.e., systematic errors are dismissed by the model). Indeed, the model relies on the assumption that errors
in the path integration process are not intrinsic in the updating computational process; rather, they are
induced by inaccurate measurements of angular and translational components. Benhamou et al. suppose
that Gaussian noise affects the estimate α of the angular displacement as well as the estimate d of the
step length. Below, is the sample trajectory T and the homing vector as computed by Eq. 7.6:

   = -105 α 1
o

+-1d   = 14 ε

+-d2
   = 8 ε

+-d3
   = 10 ε

hl

B
 α 2   = -45 o

A

h θ

Benhamou et al. assume that translation estimation relies on idiothetic signals only, whereas rotations
may be assessed based on both idiothetic and allothetic stimuli. Interestingly, the model predicts that
(i) errors occurring only in the translation estimation do not affect the animal’s homing performance,
(ii) errors in the allothetic-based rotation assessment do not disrupt path integration, (iii) noise in the
idiothetic-based estimation of angular movements strongly impairs the accuracy of the homing behavior.
The prediction that linear errors have low influence compared to (idiothetic) angular errors might explain
the fact that rodents seem to discount linear translation information when displaced passively [224], as
well as the fact that they exhibit a poor capability of estimating the length of short, straight journeys
[314]. Rodents might simply neglect linear information since the latter is not of eminent importance for
their homing capabilities.

7.2.1.5 Fujita et al. (1990)

Fujita et al. [112] also suggest that a trigonometric decomposition within an egocentric framework
underlies path integration. However, in contrast to the previous model, they propose an approximate
solution to assess the components of motion, based on the assumption that computing the exact solution
is beyond the capabilities of many organisms.
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Fujita et al. first derive a set of equations providing the ideal solution to compute, at each time t, the
egocentric homing vector ~h(t) in polar coordinates (lh(t), θh(t)). Those equations are the deterministic
version of Eq. 7.6 employed by Benhamou et al., and generate the vector (lh(t), θh(t)) recursively in
terms of its previous components (lh(t− 1), θh(t− 1)).

As a second step, the authors proceed to a simplification of the above equations, by assuming that (i)
the agent has traveled for a large distance from the origin before the first turn, (ii) the navigator does not
approach the origin too closely during a winding route. Given that, the following solution is provided

lh(t + 1) = lh(t)− d(t) cos(θh(t))

θh(t + 1) = θh(t) + d(t) sin(θh(t)/lh(t))− α(t) (7.7)

where d(t) and α(t) are the amplitude of the translation and of the rotation at time t, respectively. The
authors observe that Eq. 7.7 constitutes the correct solution for ~h(t+1) in the case of step-size zero, that
is, in the case of continuous integration of movements over time.

As a final step, Fujita et al. linearize Eq. 7.7 by approximating the sine/cosine functions as follows:

sin(x) =







(−2/π)x − 2 −3π/2 ≤ x < −π/2
(2/π)x −π/2 ≤ x < π/2
(−2/π)x + 2 π/2 ≤ x < 3π/2

(7.8)

cos(x) =







(2/π)x + 1 −π ≤ x < 0
(−2/π)x + 1 0 ≤ x < π
(2/π)x − 3 π ≤ x < 2π

(7.9)

Fujita et al. report that their linearly approximate solution produces highly accurate estimates for the
homing vector ~h(t). Nevertheless, they also observe that the model is not intended to emulate animals’
path integration realistically. Indeed, their results do not fit experimental findings concerning ants’ path
integration capabilities.

7.2.2 Connectionist Models

7.2.2.1 McNaughton et al. (1991)

McNaughton et al. [210] suggest the first neural machinery capable to integrate internally generated
signals over time. In their model, a linear associative network is employed to replace mathematical
integrals of variables.

We have already discussed the method in Sec. 3.1, since the model focuses on the integration of angu-
lar velocity to establish an allocentric directional representation. Nonetheless, McNaughton et al. argue
that the postulated mechanism might also be applied to maintain a representation of distance traveled. In
other words, they suggest that their model might provide a neural basis for the more general process of
path integration. In Sec. 7.2.3 we describe how this theory has been further developed by McNaughton
and colleagues [207, 301].

7.2.2.2 Touretzky et al. (1993)

Touretzky et al. [363] start from O’Keefe’s hypothesis (1991) [252] suggesting that rodents might encode
the angle θ and the distance l to a location as the phase and the amplitude, respectively, of a sinusoidal
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temporal function f(t), namely a phasor3 . Touretzky et al. propose a neural model to represent a phasor
f(t) by the sinusoidal activity of a population of neurons arranged in an array A of N elements. The
continuous temporal signal f(t) is encoded by the discretized representation provided by A:

f(t)

t

Sinusoidal array A

θ

l

The value of each element i ∈ A encodes the amplitude of the sinusoidal wave sampled at point
2πi/N . When representing a vector (l, θ), the level of i is given by

f(l, θ, i) = l · cos(θ + 2πi/N) (7.10)

The precision of the representation depends on the angular resolution 2π/N . The authors report that
N = 24 (i.e., a precision of ±7.5◦) yields a sufficiently accurate approximation.

To encode the amplitude defined by Eq. 7.10, each element i ∈ A consists of a population of noisy
spiking neurons whose average activity provides the f(l, θ, i) value. Since neural firing can not be
negative, the activity pattern is shifted by means of a baseline b in order to represent the negative part of
the sinusoidal wave. Thus, the activity r(i) of a neuron in the ith element is defined according to

r(i) = b + k · f(l, θ, i) (7.11)

where k is a constant gain factor. For their simulation, the authors take b = 40 spikes/sec, which results
in a firing range of [0, 80]Hz.

Touretzky et al. employ their sinusoidal array representation to manipulate vectors in a phasor form.
Vector translation, in a phasor-based coordinate system, is simply achieved by addition of sinusoidal
waves (e.g., f(t) = f1(t) + f2(t)). Therefore, in the sinusoidal array model, vector translation consists
of simple element-wise addition of firing rates, e.g., r(i) = r1(i) + r2(i) − b, ∀i ∈ A (the baseline b
normalizes the activity). Similarly, vector subtraction is achieved by rotating the negated vector by 180◦,
e.g., r(i) = r1(i) + r2(i + N/2modN) − b, ∀i ∈ A. Rotating a vector f(t) by α radians in phasor
coordinates corresponds to f(t+α). In the model, this operation is performed by rotating the sinusoidal
array A by means of an additional module, namely a shifter circuitry.

In order to validate their system, Touretzky et al. have simulated two experiments with gerbils
reported by Collett et al. [76]. In these tasks, an allocentric memory vector ~v1 describes the angle and
distance of a landmark from a feeder location. A second vector ~v2 encodes the landmark position relative
to the animal’s current location. Thus, to solve its task the animals has to infer the goal position by vector
subtraction within an allocentric directional framework, that is ~vgoal = ~v1 − ~v2. The sinusoidal array
model has been employed for that purpose.

3Phasor representation of vectors in polar coordinates: Any vector ~v = (l, θ) can be temporally represented as a sinusoidal
wave f(t) = l · cos(ωt + θ), where l defines the wave amplitude, θ the phase, and ω the frequency. Function f(t) is called
phasor. The main advantage of the phasor representation is that vector manipulation (translation, rotation) is straightforward:
Translation is accomplished by addition of sine waves, and rotation is achieved by phase shifting.
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Note that, the model by Touretzky et al. does not focus on the mechanism for integrating movements
over time (i.e., dead-reckoning). Rather, it provides a neural implementation suitable for manipulating
vectors in allocentric space. Since path integration is a vector-based navigation process [380], we have
introduced the model within this section.

7.2.2.3 Hartman and Wehner (1995)

Hartman and Wehner [141] put forth a modular neural architecture to emulate the navigation capabilities
of Cataglyphis ants. Each neural component specifically addresses a computational aspect of dead-
reckoning (e.g., integration of angular displacements over time), such that the entire system works as a
neural path integrator.

The model is based on the idea of traveling activity patterns for representing a temporally changing
variable x(t): Given a population of neurons, the ensemble activity, at each time step, forms a stable
state that encodes the current value of x. Such a blob of activity, then, travels over the neural population
according to the variations of the variable. The neural implementation consists of a chain of mutually-
coupled excitatory units. The stability of the traveling peak as well as its width are determined by two
sets of inhibitory neurons projecting offset connections to the left and to the right, respectively. Below is
a scheme of the model:

. . . . . .

. . . . . .

. . .. . .

To shift the activity blob (grey neurons) one-step leftward, an extern current is injected into inhibitory
neurons projecting to the right. Similarly, to induce a rightward shift, neurons inhibiting to the left are
maximally activated.

Hartmann and Wehner employ traveling activity patterns to (i) assess the length of a path s =
∑

i ∆si

by integrating linear displacements ∆si = vi ∆ti over time (where vi is the translational velocity), (ii)
measure rotations α =

∑

i ∆αi by summing angular increments ∆αi = ωi ∆ti over time (where ωi is
the angular velocity). The accuracy of the integration process depends on the number of units forming
the chain, that is, on the discretization produced by the neural representation.

Let θh(t) and θ(t) be the homing direction and the animal heading at time t, respectively, with
respect to an allocentric arbitrary reference φ. Let lh denote the distance to the nest. Then, locomotion
in direction θ by a linear path s results in a new animal’s position encoded by (lh(t + 1), θh(t + 1)).
As we have seen before, this new polar coordinates may be computed by either exact or approximate
trigonometric decomposition.

The model involves a neural chain to integrate the nest distance lh, and two cyclical neural chains
encoding the homing angle θh and the direction of motion θ, respectively. The width of the blobs repre-
senting θh and θ is taken equal to w(θh) = w(θ) = 90◦. In order to perform goniometric computation
(i.e., to assess the difference δ = θ− θh), a third cyclical chain C+ is considered whose ensemble activ-
ity encodes the overlap between the θ-peak and the θh-peak. In particular, the number of active neurons
in C+, i.e., #C+, is proportional to δ. That is, #C+ encodes a goniometric computation. Further-
more, #C+(δ) may be considered as a first-order approximation of the positive part of a cosine function
cos(δ):
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#C+

δ-180 -90 0 90 180

By rotating the θh chain relative to the θ chain properly, three more populations, C−, S+, and S−,
may be considered to provide a first-order approximation for the negative part of a cosine, and the positive
and negative parts of a sine function, respectively.

Hartmann and Wehner show that by adjusting the network parameters properly (in particular the
peak widths w(θh) and w(θ)), the model reproduces the navigation behavior of Cataglyphis ants very
accurately. In addition, they observe that parametric changes also enable their neural machinery to
compute geometrically correct trigonometric decomposition, which demonstrates that trigonometry is
computationally accessible by neural systems.

7.2.2.4 Maurer (1998)

Maurer [190, 200] proposes a neural network to realize path integration based on egocentered polar
coordinates. The system consists of a multilayer neural network trained by back propagation [294] to
predict the future animal’s position, given the current coordinates and movement. The author argues
that although back propagation is not neurophysiologically plausible, the resulting neural network may
converge toward solutions comparable to those observed in biology. Below is the neural network used
for a first version of the model

13 units

13 units

13 units

13 units

cw fwdccw

movement directiondistance

distance direction

The network takes as input: (i) The activity of three units encoding, respectively, forward translations
(fwd), clockwise rotations (cw), and counterclockwise rotations (ccw). These three units fire proportion-
ally to the magnitude of the movement (either translation or rotation) being executed at the current step.
(ii) Two sets of 8 units each coding for the current egocentric polar coordinates (distance and direction)
of the animal relative to the nest. Each unit has a triangular activity tuned to one preferred coordinate
value, and the responses of adjacent units overlap each other. In other words, polar coordinates are en-
coded by means of two coarse coding representations. The network provides as output the next animal’s
position. The network is actually folded, in the sense that its output is directly fed into its input. By this,
the network forms a dynamic memory loop suitable for continuous path integration.

In order to validate the model, Maurer adopts simulated environments and simulated animals whose
characteristics reflect those in experiments with hamsters [100, 314]. In particular, the model is tested
in two different tasks. In the first, the animal undergoes three full revolutions around the feeder position
(at the arena center) before eating, after which it returns to the nest. In the second, the hamster follows
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an L-shaped outward journey from the nest to the food, and returns home after hoarding. Maurer’s first
model shows a plausible behavior with respect to the first experiment, but it does not fit experimental
results concerning the L-shape experiment.

As a consequence, Maurer develops a new version of the model in which the neural network is trained
to provide only the directional component of the polar representation of the animal’s position. Below is
the architecture of the second network:

13 units

13 units

direction

cw fwdccw

movement direction

After training, the network has been tested with the same two experiments as above. In the three-
revolution task, the network performed particularly well (even better than hamsters). In the L-shaped test
the model reproduced experimental data quite properly. Maurer’s findings suggest the counterintuitive
hypothesis that distance representation plays a secondary role in path integration. This agrees with results
reported by Benhamou et al. [28] showing that errors in the estimation of linear movements do not impair
animals’ homing capabilities.

7.2.3 Anatomical Hypotheses

Most of the models reviewed so far are rather theoretical, in the sense they focus on the mechanisms
behind path integration without looking for plausible anatomical counterparts for their functional com-
ponents. In this section, we move towards a somewhat different approach: Understanding the nature of
path integration by identifying those brain areas that might provide the locus for such a navigational sys-
tem. A general consensus emerges from the three theories discussed below: The hippocampal formation
provides all the computational requirements necessary for path integration.

7.2.3.1 McNaughton et al. (1996)

McNaughton et al. [207] propose a theory in which the hippocampus works as an inertial path integrator.
According to this thought, the space representation occurring in CA3-CA1 areas is primarily based on
idiothetic signals. Exteroceptive information is a second order correlate, and is used to initialize and
calibrate path integration by associative learning.

The core of the theory is the multi-chart hippocampal hypothesis: The CA3 synaptic matrix provides
a large set of preconfigured quasi-independent reference frames, which permit spatial coding solely on
the basis of internal information. Each of these reference frames can be imagined as a two-dimensional
surface (a chart) consisting of a random subset of the total CA3 place cell population. Each cell is
assigned a random location in the chart and the synaptic strength of CA3 collaterals defines metrical
neighborhood relationships based on a two-dimensional Gaussian measure of distance. This is equivalent
to consider place fields within a chart as vectors from an arbitrary point in an allocentric coordinate
system.
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Since hippocampal place cells show different representations across different environments [254,
177, 357], it must be assumed that many two-dimensional charts exist within the pyramidal cell layer,
with only one being active at any time. Any CA3 cell would belong to many different maps, and would
have as many different neighborhoods as many charts it belongs to. Since each map has associated a
different vector representation determined by a precisely organized connection scheme, the following
question arises: When (and how) is such synaptic organization established in CA3? The hypothesis that
these connections might be learned through animal’s experience is unlikely, because place fields appear
almost immediately when the animal enters an unfamiliar environment [147, 394]. Thus, McNaughton
and colleagues assume that the entire set of CA3 charts is prewired somehow during development, so that
the animal disposes of a collection of maps to use in different environments. Another basic assumption
concerns the fact that each chart is limited in size, in the sense that there is a maximal magnitude of the
distance from the reference point that can be represented. Exceeding this limit is one of the factors that
induce the selection of a new reference frame.

The cell activity within a chart is based on an attractor dynamics producing stable and localized
firing patterns. At any time, one particular reference frame is active and supports the animal’s spatial
behavior. Which chart is selected depends on the collection of cells that are active: a chart with a well lo-
calized activity pattern will be more likely selected than a chart exhibiting a scattered activity. Under this
assumption, a disoriented animal entering an unknown environment would select an arbitrary precon-
figured chart. Then, external information (V) would be associated by correlational learning to locations
in the current frame, and, on subsequent visits, would be responsible for recalling the appropriate chart.
Below is a scheme to illustrate the model:

HH’H’ H PHxM P

M

V Subiculum

place code
multi−chart

CA3

Head−direction Movement

Local−view

. .
 .

. .
 .

t t+1

t

Within the active map, a blob of activity tracks the animal’s position over time. The mechanism
for shifting this peak over the network is a mere extension, from one to two dimensions, of the head-
direction model postulated by McNaughton et al. in 1991 [210]. The path integrator circuit involves,
beyond the CA3 layer (P), a population of PHxM cells coding for (i) the animal’s current position (P),
(ii) the animal’s current heading (H), and (iii) the current self-movement information (M). The firing
activity of each cell i ∈ PHxM is correlated with all these three variables simultaneously. The authors
observe that neurons in the subiculum, parasubiculum, and dorsal presubiculum have properties that fit
the above PHxM theoretical cells [323]. In the model, PHxM cells and CA3 cells form a loop to update
the spatial map: On the one hand, PHxM are told the animal’s current position ~p(t) by CA3 place cells
(via CA1). On the other hand, CA3 cells are informed about the future position ~p(t + 1) by PHxM cells.
This is obtained by means of prewired offset projections from PHxM to CA3. These offset connections
are responsible for shifting the CA3 activity peak according to the current angular and linear motion
components.
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Samsonovich and McNaughton, in 1997 [301], have validated the above path integration model
through numerical simulation. Their results fit several experimental data including doubling, reshaping,
and vanishing of place fields in distorted environments [253], arising of place field directionality in a
two-target shuttling task [132], rapid place field formation in new environments [147, 394], and slow
place field rotation after animal disorientation [166].

A relevant question about the multi-chart model is: How many stable independent maps can be
formed in a recurrent network such as CA3? Samsonovich [300] showed that the maximal number of
uncorrelated attractor maps that can be stored in a Hopfield-like network is 0.0042 · N , where N is the
number of network units. According to this, the rodent CA3 substrate (which contains approximatively
3 · 105 pyramidal cells [7]) may store about 1000 charts.

The authors identify the place module P with the CA3 area, since the recurrent nature of CA3 makes
it a plausible candidate for both the attractor and the multi-chart properties, and the module PHxM with
the subiculum (SC), since neurons in the latter are correlated to place, direction, and movement. Thus,
the path integrator is formed by a CA3↔SC loop. However, as far as we know, these two structures
are not directly interconnected. The subiculum receives place code information from the hippocampus
via CA1, and projects efferents to the postsubiculum, the parasubiculum, the entorhinal cortex and other
structures via the fornix, but not to the hippocampus [170, 171, 399, 400].

The model predicts that damaging the hippocampus would prevent rodents from path integrating.
However, experiments by Alyan et al. [4] show that hippocampal rats have intact homing capabilities
based on path integration.

To conclude, similar approaches suggesting a map-based path integrator scheme were postulated by
Droulez and Berthoz in 1991 [90], and Zhang in 1996 [405]. However, these models were not explicitly
simulated.

7.2.3.2 Sharp (1997)

Sharp [319, 320] adopts McNaughton and colleagues’ idea of a path-integrator loop involving (i) an
attractor network P coding for spatial locations, (ii) a set PHxM of cells encoding space, heading, and
movement simultaneously, (iii) a connection scheme in which P tells PHxM the current location ~p(t),
and PHxM sends back offset projections to inform P about the next animal’s position ~p(t+1). However,
in contrast to the multi-chart hypothesis by McNaughton et al., Sharp suggests a unique preconfigured
attractor network P that works as a universal place code used by the animal to fit all the environments it
visits.

The model identifies the entorhinal cortex as the area in which the single-chart representation (P)
takes place. Indeed, experimental findings suggest that entorhinal place cells have environment-inde-
pendent activity patterns, and that they are not sensitive to cue card removal [278]. The model takes the
subiculum as PHxM component of the path integrator, according to Sharp’s experimental data suggesting
that space, head orientation, and movements are simultaneously encoded by subicular activity [323]. In
addition, Sharp showed that place cells in the subiculum are able to transfer a single, abstract spatial
representation from one environment to another, and that they adapt such a universal map to fit the
boundaries of the current environment [323, 319, 321]. In the model, Sharp assumes that the entorhinal
cortex receives sensory information about the environmental size, and that this allows the system to
center the entorhinal-subicular representation within the current environment, as well as to adjust the
size of the universal map properly. Below is a functional scheme of the path integration model:
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place code
single−chart

entorhinal cortex

subiculum
universal PHxM map

Head−direction Movement

Environmental
stimuli

t
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Sharp suggests that the path integration representation might converge onto the hippocampus proper
to maintain a coherent place field activity despite ambiguous or absent exteroceptive inputs. Conversely,
hippocampal place cells could help to reinitialize/stabilize the subicular-entorhinal representation over
repeated episodes in the same environment.

In contrast to the hippocampal theory by McNaughton et al. [207, 301], this model predicts that
lesions to the hippocampus should not impair path integration. As previously stated, this is consistent
with experiments by Alyan et al. [4] in which hippocampal animals performed homing tasks in dark
conditions as efficiently as control rats.

To conclude, the hypothesis proposed by Sharp has not been implemented neither numerically nor
by a neural machinery, since the author does not report any simulation results validating the model.

7.2.3.3 Redish and Touretzky (1997)

Redish and Touretzky [285], as McNaughton et al. [207, 301], propose a path integration system relying
on a two-dimensional attractor scheme. However, in agreement with Sharp [319, 320], they find the hy-
pothesis of a multi-chart representation preconfigured in the hippocampus implausible and unnecessary
complex. Therefore, they adopt the idea of a universal single chart updated by means of a path integrative
process. The following scheme illustrates the model:

matching connection

entorhinal cortex

offset connection

matching connection

t t+1

superficial t
t+1

parasubiculum

Head−direction

Movement

tsubiculum

In the proposal by Redish and Touretzky, path integration is accomplished through a circuit involving
three brain regions, namely the subiculum, the parasubiculum, and the superficial entorhinal cortex.
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Experimental findings confirm the existence of the necessary anatomical connections for such a loop
[171, 400, 138]. In the model, cells in the superficial entorhinal cortex project onto the subiculum via
matching connections, the subiculum sends offset efferents to the parasubiculum, and the latter projects
matching connections to the entorhinal cortex.

The authors stress the importance of head-direction as well as self-motion information in order to
accomplish path integration. They emphasize the fact that both these inputs might enter the system
via projections to the parasubiculum from the postsubiculum (head-direction) [138] as well as from the
parietal and cingulate cortex (self-motion) [401]. However, in the model, these inputs are not utilized by
the parasubiculum; rather, they are employed by the subiculum, which projects offset afferents to induce
the position representation update from ~p(t) to ~p(t + 1). In the model, the parasubiculum is told the new
position ~p(t + 1) from the subiculum, and it simply “closes the loop” by forwarding this information
to the entorhinal cortex via matching connections. The authors disfavor Sharp’s model [320] (in which
the new location ~p(t + 1) is directly sent from the subiculum to the entorhinal cortex) by arguing that
there are no anatomical projections from subicular cells to the superficial layers of the entorhinal cortex.
Indeed, they refer to early anatomical data by Kohler [170, 171] and Witter et al. [400] reporting that
the subiculum projects only to deep layers of the entorhinal cortex. However, more recent studies have
shown that the entorhinal cortex, in particular its medial area, does receive a prominent projection from
the hippocampal formation (in particular from CA1 and subiculum) that distributes to the superficial
layers I-III [397].

Finally, the above model predicts that (i) parasubicular cells should provide similar place field distri-
butions across different environments (similar to subicular cells), (ii) lesions to the hippocampus should
not disrupt path integration, (iii) damaging the subiculum, and/or the parasubiculum, and/or the superfi-
cial entorhinal cortex, should impair idiothetic-based homing behavior.



90 CHAPTER 7. Modeling Hippocampal Place Cells: State of the Art



Chapter 8

Allothetic Space Representation:
Processing Visual Information

Hippocampal place fields are determined by a combination of highly-processed multimodal sensory stim-
uli (e.g., visual, auditory, olfactory, and somatosensory cues) whose mutual relationships code for the
animal’s current location [256, 148, 92, 305]. Experiments on rodents suggest that vision plays an em-
inent role in determining place cell activity [101, 258, 240, 211, 166]. In this chapter, we focus on the
visual pathway of our hippocampal model (Fig. 8.1), and we ask the question: How can place fields be
established from real visual input [253]?

The vision-based localization problem implies extracting relevant information from noisy visual stim-
ulation. We put forward a computational strategy to emulate the feature-extraction mechanism observed
in the visual cortex. Moving up the visual pathway (from the retina to the lateral geniculate nucleus and
then towards higher cortical areas), neurons become responsive to stimuli of increasing complexity, from
orientation-sensitive cells (simple cells), to neurons responding to more complex patterns, such as faces
[151, 143, 291, 364]. In our model, visual stimuli are interpreted by means of neurons that only respond
to combinations of specific visual patterns. Due to this filtering process, properties like agent-landmark
distance and egocentric orientation to visual cues can be measured implicitly, without explicit image
processing. The activity of the neural filters propagates through the model yielding place cell firing.

Due to the high dimension of the visual input space, vision-based localization consists of (i) detecting
a convenient low-dimensional representation of the continuous high-dimensional input space, (ii) learn-
ing the mapping function from the visual sensory space to points belonging to this representation. Since
our animat moves on a two-dimensional space with a camera pointing in the motion direction, the high-
dimensional visual space is not uniformly filled. Rather, all input data points lie on a low-dimensional
surface embedded in a Euclidean space whose dimensionality is given by the total number of camera
pixels. This low-dimensional description of the visual space is referred to as view manifold [109].

In the model, unsupervised Hebbian learning is used to detect the low-dimensional manifold repre-
senting the visual input space. The system consists of a multi-layer neural architecture modeling high-
dimensional continuous inputs by means of overlapping place fields. Spatio-temporal properties of the
environment are extracted from the visual stream to build the place field representation. Starting with no
prior knowledge, the system grows incrementally and on-line as the agent interacts with the environment.

91
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Figure 8.1: (a) Vision-based localization implies interpreting noisy visual information effectively. (b) Functional decompo-
sition of the visual pathway in our hippocampal model. (c) The corresponding (highly simplified) anatomical decomposition.

In this chapter, we describe three robotic implementations that have been adopted to validate the
visual pathway of the model. Our visual interpretation can be seen as a four-step processing:

(i) The first step consists of designing a set of filters to detect visual features. This phase strongly
depends on the physical implementation and consists of choosing appropriate filters to interpret
visual data.

(ii) As a second step, we map real images into the filter-activity space. This consists of computing the
magnitude of the response of each filter for a given image.

(iii) Third, we map filter responses into neural activity. We take a population of hypothetical visual
cells one synapse downstream from the filter layer. The activity of these neurons, termed snapshot
cells (SnC), encodes the current visual input.

(iv) As a fourth step, we apply unsupervised Hebbian learning to achieve spatial coding. We consider
a population of place cells one synapse downstream from the SnC layer. We suppose that the
anatomical counterpart for this neural substrate is the superficial layer of the lateral entorhinal cor-
tex (sLEC). Superficial layers of the entorhinal cortex receive spatial information about allothetic
landmarks (e.g., visual cues) from the posterior parietal cortex, and contain location-sensitive neu-
rons [278].

As we move up our visual pathway (from step (i) to (iv)), visual processing becomes independent
with respect to the physical properties of the system. Neurons at the highest level (sLEC place cells) re-
ceive highly processed information, similar to biological entorhinal neurons that receive highly processed
inputs from the posterior parietal cortex (Chapter 6).
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Figure 8.2: (a) A sample of linear image. (b) The filter-activity space. Along the x-axis are different Walsh-like filters, each
of which responds to a specific pattern. Along the y-axis we vary the spatial frequency fi of each pattern pi. Each image is
encoded by the cluster of filters maximally responding to that image.

8.1 Interpreting Visual Information

In this section we describe how stages (i), (ii), and (iii) can be accomplished in the case of both linear
and two-dimensional visual information. Step (iv) is described in Sec. 8.2.

8.1.1 Processing Linear Visual Data

The linear-vision experimental setup consists of a high-walled square arena, with randomly distributed
black and white stripes of variable width on the walls (Fig. 1.2 (a)). These stripes provide the visual
input patterns to the system. Visual signals consist of 64-pixel one-dimensional images. Each pixel has
a grey-level value within [0, 255] (Fig. 8.2 (a)). The azimuthal visual range covers approximately 36◦.
Image pre-processing consists of rescaling pixel values of input images within [−1, 1]. Thus, if I(x),
with 0 ≤ x ≤ 63, denotes an input image, the relation −1 ≤ I(x) ≤ 1 ∀x ∈ [0, 63] holds.

We define several classes of Walsh-like binary filters [11]. Walsh filters are simple and permit ef-
fective and low-cost feature-detection in one-dimensional visual spaces. Each class corresponds to a
specific visual pattern pi, and the set of filters in that class corresponds to different spatial frequencies
fi for pattern pi. This endows the system with a distance discrimination property. In total, we take 5
different classes of filters each of which contains filters at 10 different frequencies. As a consequence, a
two-dimensional filter space including 50 distinct elements is established.

Let Fk be one of our Walsh filters, where 1 ≤ k ≤ 50 is the index of the filter, and let lk denote
its length (i.e., number of pixels covered by the filter). In general, Fk can be seen as a simple binary
function defined in [0, lk]:

Fk(x) =







1 0 ≤ x ≤ l1
−1 l1 < x ≤ l2
1 l2 < x ≤ lk

0

-1

l l l1 2

+1

x

F (x)k

k

where 0 < l1 < l2 < lk, and l1 = lk − l2.
The aim is to interpret incoming visual stimuli by mapping them into the above filter-activity space.
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Figure 8.3: (a) At time t0, the robot takes a view and creates a snapshot cell scj . (b) Firing activity of cell scj as a function
of the difference (in degrees) between the robot’s current heading and its orientation at time t0 (i.e., when it created scj ).

Given an image I(x), the response ak of filter Fk is computed by convolution

ak = max
n

{

lk−1
∑

x=0

Fk(x) I(n + x)
}

(8.1)

where 0 ≤ n ≤ 64 − lk. Since I(x) ∈ [−1, 1] ∀x, and Fk(x) = ±1 ∀k, x, the relationship |ak| ≤ lk
holds.

Each filter Fk responds to a particular visual pattern. In order to model spatio-temporal relationships
between visual cues by means of neural activity, we consider a layer of snapshot cells one synapse
downstream of the filter layer. The idea is to represent each image I(x) by the cluster of maximally
active filters, defined by Eq. 8.1. Let Ck = 0.7 · lk be the threshold above which a filter Fk is considered
as active. Given an image I(x), the set of active filters projects one layer forward to form a snapshot cell
scj (Fig. 8.2 (b)):

scj = {Fk | ak ≥ Ck} (8.2)

The firing activity rj of a snapshot cell scj is given by

rj =

∑

k∈scj
H(ak − Ck)

Nj
(8.3)

where
∑

k∈scj
sums over all the Nj filters projecting to the cell scj , and H is the Heaviside function.

The normalization has been chosen so that 0 ≤ rj ≤ 1.
Each snapshot cell scj receives afferent inputs from several visual-feature detectors. This allows the

system to extract more complex environmental properties from visual information. As a consequence, the
neural activity rj can be employed to discriminate between views taken by the agent during exploration.
In other words, the snapshot cell population works as a neural image classifier. However, snapshot cell
activity does not provide allocentric spatial selectivity because it depends on the agent’s gaze direction.
Fig. 8.3 shows a result obtained by placing the robot perpendicularly to a wall and letting it take a
snapshot at time t0 (Fig. 8.3 (a)). Let scj denote the cell encoding that view. Fig. 8.3 (b) shows the firing
activity rj of cell scj as a function of the difference between the robot’s current heading θ(t) and its
heading θ(t0) when it created the cell scj . That is, the robot turns on the spot taking a view each 4◦, and
the response of cell scj to each new image is measured.
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8.1.2 Visual Processing based on Principal Component Analysis

The experimental setup used for the two-dimensional visual interpreter consists of an open-field square
arena of approximately 80 × 80 cm within a standard laboratory background (Fig. 1.2 (b)). Visual input
is provided by a black and white CCD camera having a view field of about 90◦ in the horizontal plane
and about 60◦ in the vertical plane (Fig. 1.1 (c)). Image pre-processing involves histogram equalization1

and resolution reduction (from 768 × 576 to 115 × 86 pixels). In addition, the 256 grey levels of
original images are mapped into the [−1, 1] range. Thus, working images I(x, y) have a resolution of
Lx × Ly = 115× 86 pixels, and the relation −1 ≤ I(x, y) ≤ 1 holds.

In order to detect the low-dimensional manifold embedded in the Lx × Ly high-dimensional view
space, we employ filter-based decomposition (similar to the approach adopted for the linear case). Thus,
we take a class P of 10 two-dimensional filters fi, each of which responds maximally to a specific visual
pattern. Each filter has a size of 32× 32 pixels2. To define the set of basic filters fi, we consider the first
10 principal components extracted from real visual data.

Extracting principal components from natural images

Principal component analysis (PCA) (or Karhunen-Loeve transform) is a statistical method largely ap-
plied for dimensionality reduction [249, 160, 302]: PCA determines a linear transformation of the input
data distribution such that high-dimensional inputs are projected onto a limited number of mutually-
orthogonal linear descriptors (i.e., principal components), and such that the most information about the
original data is conveyed.

Computing the principal components exactly corresponds to finding the eigenvectors of the correla-
tion matrix of the input data. Since we want to compute principal components of 32 × 32 image pieces,
we have an input space of 1024 variables, and then a correlation matrix with 1024 × 1024 = 220 en-
tries, which is computationally too expensive. Therefore, we resort to Sanger’s neural network technique
[302, 140] to approximate principal components through off-line unsupervised learning. Sanger’s algo-
rithm permits the extraction of the first N principal components in sequence, and is a generalization of
the neural network technique proposed by Oja [249, 250].

We let the robot collect 100 images I(x, y), and we build a training set by randomly selecting 10000
square samples I

′(x, y) of 32×32 pixels from these images. Before training, samples I
′ are pre-processed

by [140]: (i) subtracting the mean grey value (averaged over all 10000 patterns) from each pixel intensity,
(ii) applying a Gaussian mask of width σ = 7 to reduce edge effects, (iii) normalizing all input vectors

such that
(
∑

xy I
′(x, y)

)1/2
= 1.

We train a feed-forward neural network consisting of 32 × 32 = 1024 input units xj and 10 output
units yi. Weights wij are initialized to small random values such that

∑

j w2
ij ≈ 1. Output units are

linearly activated according to yi =
∑

j wijxj . Learning is defined by [302]

∆wij = η yi

(

xj −
i
∑

k=1

wkjyk

)

(8.4)

The learning rate η is initialized to 2.0 and then decreased during training (in particular, it is halved every
1600 steps of learning).

1Histogram equalization is a form of image enhancement particularly useful when images suffer from poor contrast. The
histograms of such images would have relatively narrow curves around a certain range of pixel values and not at the others.
Histogram equalization consists of adjusting the ranges of pixel values such that each value has approximately the same number
of image pixels.

2The size of the filters has been chosen empirically.
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Figure 8.4: The 10 filters fi corresponding to the first 10 principal components (numbered from left to right, top to bottom)
learned by applying Sanger’s neural network technique [302].

After training, each ith weight vector ~wi corresponds to the eigenvector of the input correlation matrix
which has the ith maximal eigenvalue [302]. Thus, the receptive field of the output unit yi corresponds to
the ith principal component of input data. Fig. 8.4 shows the receptive fields of the 10 output units yi after
training. Neurons having receptive fields similar to those displayed in Fig. 8.4 have been experimentally
observed in areas belonging to the biological visual pathway. Cells in the lateral geniculate nucleus
(LGN) as well as retinal ganglion cells exhibit concentric center-surround antagonist receptive fields
[364] similar to the first principal component. Simple cells in the primary visual cortex are also sensitive
to on-off concentric stimuli as well as to oriented bars [106, 20] (similar to the other principal components
in Fig. 8.4).

Modeling visual input

We take the 10 first principal components extracted by the above learning scheme to form our class P
of basic 32 × 32 filters fi. Then, for each filter fi ∈ P , we consider 5 different spatial scales fis

3.
Experimental findings on mammals suggest that the biological vision system uses filters with different
spatial scales in the early visual-sensory processing [379].

Given a filter fis, we compute its response ais to an input image I by shifting the filter across the
image and looking for the location of maximal matching between fis and I. That is,

ais = max
x,y

(

lis−1
∑

i=0

lis−1
∑

j=0

fis(i, j) · I(i + x, j + x)
)

(8.5)

where −1 ≤ I(x, y) ≤ 1, −1 ≤ fis(i, j) ≤ 1, 0 ≤ x ≤ Lx−lis, and 0 ≤ y ≤ Ly−lis.
The activity of a filter fis is then normalized with respect to its potential maximal response

ais =
ais

∑lis−1
i=0

∑lis−1
j=0 |fis(i, j)|

(8.6)

Let (x∗, y∗), with 0 ≤ x∗ ≤ Lx− lis and 0 ≤ y∗ ≤ Lx− lis, identify the location of best match.
We segment images in 4 quadrants Iq and we utilize the spatial information (x∗, y∗) to characterize each
filter fis by the region of the image in which it has detected its preferred visual pattern. In other words,
we interpret visual data by mapping images I into a three-dimensional filter-activity space F consisting

3Given the original size of a filter fi, that is li × li = 32 × 32 pixels, we take 5 filters of size lis × lis where lis ∈
{20, 12, 10, 8, 5}. Rescaling factors have been determined empirically.
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Figure 8.5: Visual data are interpreted by mapping images into a filter-activity space. (a) A sample of image taken by the
robot during exploration. Small black rectangles indicate features that have been detected by our small-scale filters. (b) The
filter activity space is defined by taking 10 basic filters (i axis), considering 5 scales for each of them (s axis), and accounting
for the quadrant of the image where each filter is maximally activated (q axis). Given an image I, the cluster of maximally
active filters is used to generate a neural unit scj which is the internal representation of I.

of F = 10 × 5 × 4 = 200 elements f q
is (Fig. 8.5). Let k be an index over F , that is 0 ≤ k ≤ F . Each

element fk identifies a unique neural filter f q
is ∈ F responding to a specific localized pattern within I.

In order to detect more complex visual features, we consider a layer of snapshot cells one synapse
downstream from the filter layer. As in Sec. 8.1.1, given an image I(x, y), the cluster of active filters is
used to generate a neural unit scj which is the internal representation of I. Again, a threshold Ck is used
to select maximally active filters, i.e., fk such that ak ≥ Ck. Then, Eqs. 8.2 and 8.3 are used to recruit
and drive, respectively, the cell scj ∈ SnC .

PCA-based filtering yields effective detection of visual properties and induces robust vision-based
self-localization (see Sec. 8.2). However, processing real images according to Eq. 8.5 is computationally
expensive. Given an image I(x, y), each filter fis has to be shifted “pixel-by-pixel” across the image, and
this process has to be repeated ∀i and ∀s, with 0 ≤ i ≤ 9, and 0 ≤ s ≤ 4, respectively. For each input
image, this yields a number n of multiplications given by n =

∑

i,s l2is · (Lx− lis +1) · (Ly− lis +1). On
a SUN ultra 10, this results in a computation time of approximately 20 s for processing a single image.
In the next section we put forward an alternative approach that accounts for efficiency of the visual data
interpretation.
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8.1.3 Gabor-decomposition for Visual Feature Extraction

In this section, we describe a second approach to detect visual properties from two-dimensional video
streams. We consider the same experimental setup as above: a 80× 80 cm open-field arena, and a robot
with a black and white camera on board. Visual scenes correspond to standard laboratory background.
Working images I(x, y) are obtained from original data through histogram equalization, resolution re-
duction (from 768× 576 to 422× 316 pixels), and grey-value remapping into [−1, 1].

We employ Gabor visual decomposition [113] to discover the mapping from the high-dimensional vi-
sual input to the low-dimensional view manifold [332]. Images are interpreted by means of a retinotopic
strategy that selects a limited number of image-points to be sampled by the filtering process.

Defining a set of (modified) Gabor filters

Gabor filters [113] provide a suitable mathematical model for biological simple cells [82, 161]. They are
generated by the two-dimensional Gabor function

G(x, y|σx, σy, ω0) = e−x2/2σ2
x · e−y2/2σ2

y · eiω0x (8.7)

This function produces a complex sinusoidal wave embedded in a Gaussian envelop centered at the
origin. The angular frequency of the wave is ω0, while σx and σy define the horizontal and vertical widths
of the Gaussian window, respectively. The complex sinusoidal wave is parallel to the x axis, that is, the
filter G responds selectively to vertical structures (e.g., vertical edges in the image). Therefore, to detect
structures having different orientations and scales, we need to generate a family of two-dimensional
Gabor filters by rotating and rescaling G.

In the frequency domain, the function G corresponds to a Gaussian Ĝ translated along the horizontal
frequency axis ωx by an offset ω0. The horizontal and vertical frequency widths of function Ĝ are given
by σωx = 1/σx and σωy = 1/σy , respectively. Thus, the Fourier representation Ĝ of G is defined by

Ĝ(ωx, ωy|σx, σy, ω0) = A · e−(ωx−ω0)2/2σ2
ωx · e−ω2

y/2σ2
ωy (8.8)

where A is a normalization factor.
In order to extract visual features effectively, we employ a family of modified Gabor filters [34, 332,

331]. A modified Gabor filter fi, tuned to orientation φj and angular frequency ωl = eξl , corresponds to
a Gaussian function in the Log-polar frequency plane rather than in the frequency domain itself, and is
defined by the Fourier function

Ĝ′(ξ, φ) = A · e−(ξ−ξj)2/2σ2
ξ · e−(φ−φl)

2/2σ2
φ (8.9)

where (ξ, φ) are coordinates in the Log-polar Fourier plane

(ξ, φ) =
(

log||(ωx, ωy)||, arctan(ωy/ωx)
)

(8.10)

A key property of the Log-polar coordinate system is that translations along φ correspond to rotations
in the image domain, while translations along ξ correspond to scaling the image. As a consequence,
generating a family of modified Gabor filters by varying scale and orientation parameters, corresponds
to arranging a set of identical Gaussian functions within a rectangular grid in the Log-polar frequency
domain. This simplifies the designing process significantly (see [331] for further details). Another
important benefit provided by modified Gabor filters is that they yield a more uniform coverage of the
frequency plane. By contrast, pure Gabor wavelets tend to densely cover low-frequency regions of the
Fourier plane, while provide coarse coverage of the high-frequency regions [331].
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Figure 8.6: (a, b, c) An example of modified Gabor filter (taken from [331]): (a, b) show the real and imaginary part in the
image domain of the filter, respectively, whereas (c) represents the filter in the frequency plane. (d) The set of modified Gabor
filters, shown in the Fourier domain, employed for the visual feature detection task.

We employ a family of 24 modified Gabor filters, F = {fi(ωl, φj) | 1 ≤ l ≤ 3, 1 ≤ j ≤ 8},
obtained by taking 3 distinct angular frequencies ω1, ω2, ω3, and 8 orientations φ1, . . . , φ8. The three
angular frequencies ωl have been determined by estimating three filter wavelengths λl suitable for our
application, and then using the relation ωl = 2π/λl. The values λ1 = 8, λ2 = 16, and λ3 = 32 have
been chosen. The 8 orientations φj are evenly distributed over the range [0, π], that is, φj = jπ/8.
Figs. 8.6 (a, b) show the real and the imaginary waves, respectively, of a typical filter fi ∈ F in the
image domain. Fig. 8.6 (c) represents the filter fi in the frequency plane. Finally, Fig. 8.6 (d) shows the
entire set F of modified Gabor filters in the standard Fourier domain.

Retinotopic image sampling

Efficiency is a crucial issue in vision-based self-localization. We apply a space-variant retinotopic sam-
pling [360] in order to perform visual feature extraction effectively (in contrast to the uniform sampling
strategy employed in Sec. 8.1.2). We place a retinotopic grid on the image (Fig. 8.7), and we use the
Np points of this “retina” to sample visual data by means of Gabor decomposition [333]. The approach
consists of having a high resolution of points only in a localized region of the view field (fovea), whereas
peripheral areas are characterized by a low-resolution vision. Thus, the retinotopic graph is constructed
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Figure 8.7: A visual scene acquired by the robot. The image resolution is 422 × 316 pixels. An example of retinotopic
sampling grid (white crosses) employed to sample visual data by means of Gabor decomposition. In this example, the retina
consists of Np = 31 points arranged on Nc = 5 circles. Black circles represent maximally responding Gabor filters (the circle
radius varies as a function of the filter’s amplitude).

by arranging the Np points on Nc concentric circles. The innermost circle (the center of the retina) has
radius zero and coincides with the center of the image. The radii of the remaining Nc−1 circles increase
exponentially. On each circle, the retinal points are evenly distributed.

At each retinal point ~g we place the 24 modified Gabor filters fi ∈ F with different orientations and
amplitudes. This results in a population of overlapping Gaussian receptive fields that tend to cover the
entire image continuously. The density of the coverage is higher at the center of the image and decreases
by moving towards the peripheral regions of the image.

Given an image I(x, y), we take the magnitude of the responses of the Gabor filters to detect visual
properties within video streams. Thus, we compute the magnitude of the response of all fi filters for
each retinal point ~g

ri(~g) =

(

(

∑

~x

Re(fi(~x)) · I(~g + ~x)
)2

+
(

∑

~x

Im(fi(~x)) · I(~g + ~x)
)2
)

1

2

(8.11)

where ~x varies over the area occupied by the filter fi in the spatial domain.
Due to the sparseness of the sampling graph, the retinotopic strategy allows the agent to perform

Gabor-based feature extraction rather efficiently. Two factors influence computational costs: The struc-
ture of the retina (i.e., number of circles, and number of retinal points per circle), and the distribution of
Gabor filters fi over the retinal points (i.e., number of filters per point). We present experimental results
obtained by employing a retina with Np = 17 points distributed over Nc = 4 circles4, and by placing
all the 24 modified Gabor filters at each retinal point. The resulting computation time for processing an
image on a SUN ultra 10 is approximately 1.25 seconds.

Modeling visual input by neural activity

The third step in the visual pathway of our model consists of interpreting visual cues by means of neural
activity. As in Secs. 8.1.1 and 8.1.2, we take the responses of our visual filters as neural afferents to a
population of snapshot cells (SnC) one synapse downstream of the filter layer. Note that our Gabor-based

4The number of points per circle (from the innermost to the outermost) is as follows: 1, 4, 6, 6.
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retinotopic system may be abstracted as a three-dimensional filter-activity space: The angular frequency
and the orientation of each Gabor filter provide the two first dimensions, while the spatial distribution of
the retinal points provides the third one (i.e., the sampled image location). Thus, we model each image
I(x, y) by mapping its representation If in the filter-activity space into snapshot cell activity.

Let k be an index over all K = 24 × 17 filters forming the retinotopic grid. Given an image I, a
snapshot cell scj ∈ SnC is recruited to receive afferents from all fk filters. Synaptic connections wjk

from filters fk to cell scj are initialized according to

wjk = rk ∀k (8.12)

Synaptic connections to cell scj work as the long-term representation of the filter activity associated to
image I. If, at a later point, the robot sees an image I

′, the firing activity rj of cell scj ∈ SnC is given by

rj = e−( 1

K

∑
k |rk−wsk|)

2/2σ2

(8.13)

where rk are the Gabor filter responses to image I
′. Eq. 8.13 defines a radial basis function in the filter

space that measures the similarity of the current image to the image stored in the weights wjk. The width
σ determines the discrimination capacity of the system for visual scene recognition5 .

In contrast to the strategy applied in Secs. 8.1.1 and 8.1.2 to map filter activity into snapshot cell
activity (Eqs. 8.2, 8.3), here filter responses are not thresholded. Rather, filter activity is interpreted as a
continuum by means of the radial basis function defined by Eq. 8.13, and each cell scj receives afferents
from all filters fk.

5In the current implementation σ has been empirically set to 0.07.
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8.2 Allothetic Space Representation:
Place Fields in the Superficial Layer of the Lateral Entorhinal Cortex

In this section, we complete the visual pathway of the model (step (iv)). Snapshot cell activity (resulting
from steps (i), (ii), and (iii)) depends on the agent’s gaze direction (Fig. 8.3), and does not code for
spatial locations. We apply unsupervised Hebbian learning to achieve allocentric spatial coding one
synapse downstream from the SnC layer (Fig. 8.1). We assume that this neural substrate corresponds
to the superficial layer of the lateral entorhinal cortex, and we call these neurons sLEC cells. Each cell
i ∈ sLEC receives afferents from a set of snapshot cells whose activities code for visual features of
the environment. As a consequence, the activity ri of a unit i ∈ sLEC depends on the combination of
multiple visual cues, which makes cell i location sensitive (i.e., a place cell). This results in a sLEC
population activity providing allocentric spatial coding.

8.2.1 Unsupervised Growing Network Scheme

Every time the agent is at a new location6 , all simultaneously active snapshot cells are connected to a
newly recruited sLEC cell. Let i and j be indices for sLEC cells and snapshot cells, respectively. If rj is
the firing activity of a snapshot cell j, then a connection wnew

ij is created such that

wnew
ij = H(rj − ε) · rnd 0,1 (8.14)

where H is the Heaviside function, ε = 0.75 is the activity threshold above which a snapshot cell is
considered to be active, and rnd 0,1 means that each new synapse wnew

ij is initialized by a random weight
in (0, 1).

The firing rate ri of a place cell i ∈ sLEC is computed by linearly averaging the activity over its SnC
afferents

ri =
∑

j

wijrj/
∑

j

wij (8.15)

where j varies over all snapshot cells that have been connected to cell i according to Eq. 8.14. The
relation 0 ≤ ri ≤ 1 holds.

Once connections wij are established, their synaptic strength is changed by Hebbian learning

∆wij = rj (ri − wij) (8.16)

The rationale behind Eq. 8.16 is to (i) induce correlational LTP whenever pre- and postsynaptic neurons
are simultaneously active, (ii) depress the connection wij (LTD) whenever the presynaptic snapshot cell
j is active while the postsynaptic sLEC cell i is not. For instance, Eq. 8.16 tends to reduce the strength
of the connection from an “always activated” SnC cell j (i.e., a cell that does not discriminate visual
information effectively) to a sLEC cell i. Note also that Eq. 8.16 keeps weights wij ≤ 1.

We call the learning scheme defined by Eqs. 8.14, 8.15, and 8.16 an unsupervised growing network
scheme (see, e.g., [110]). When the animat first enters a novel environment, it has no prior knowledge,
that is, there is no place field representation at all. The population of place cells grows incrementally as
a result of the animat interaction with the environment, that is, through exploration (see Sec. 10.2 for a
description of the adopted exploration strategy).

6A simple definition of “location familiarity”, based on the number of place cells active at a given position, will be given in
Chapter 10.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.8: Some samples of sLEC place fields obtained with the linear-vision experimental setup. The square box represents
the arena. The firing rate of a cell is maximal (center of the place field) when the agent is at the red location. The dark-blue
region indicates the area in which the cell remains silent.

8.2.2 Recording Single sLEC Cell Activity

At each visited location, the robot takes four views v1, v2, v3, v4 [62], such that vi+1 = vi + 90◦. For
simplicity, we shall refer to these gaze directions as north, east, south, and west, but they may actually
be associated to an arbitrary allocentric reference frame. To take these views the animat strongly relies
on the compass information provided by the head-direction system (Chapter 4).

For each visited location the robot creates four snapshot cells (one for each view vi), which are bound
together to form a quasi-panoramic description of the place7. This information is then used for driving
neurons in the sLEC layer (Eqs. 8.14, 8.15, and 10.1). This results in non-directional sLEC place cell
activity, consistently with experimental data concerning place fields recorded from freely-moving rats in
open-field environments [278]. On the other hand, when recorded in a linear track maze, place cells tend
to be directional [209]. In a linear track the animal always runs in the same direction. If we would model
this by taking a single view only, then we would get directionality.

We have validated the above unsupervised growing network scheme in all three cases of visual data
interpretation described in Sec. 8.1. Here, we present results obtained by recording single place cell
activity from the sLEC layer of the model during robot exploration.

Fig. 8.8 shows eight samples of sLEC place fields obtained with the linear-vision experimental
setup. Figs. 8.8 (a-e) show five examples of cells that are maximally activated only if the agent is in
a rather localized region of the environment. Thus, the robot can use the center of the place field for self-
localization. Fig. 8.8 (f) shows a cell whose receptive field is not well-localized, but still single-peak.
On the other hand, Figs. 8.8 (g, h) present two examples of multiple-peak place field. The activities of
these sLEC cells encode ambiguous visual inputs, that is, their receptive fields identify different spatial
locations that provide similar visual stimulation. About 30% of the recorded sLEC cells are of type (g,
h) when using linear vision.

7Notice that rats have a wide angle vision: 320 − 360◦ in the azimuthal plane depending on head angle [152].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.9: Some place fields recorded from the sLEC layer of the model in the case of PCA-based visual processing.

Fig. 8.9 presents eight sLEC place fields recorded when adopting PCA-based visual interpretation.
Again, most of the recorded place cells exhibit single-peak localized fields (e.g., Figs. 8.9 (a, b)). How-
ever, due to visual aliasing, some cells have multiple subfields, that is, they do not discriminate spatial
locations effectively (e.g., Figs. 8.9 (g, h)). About 25% of recorded sLEC cells present unclean location
selectivity due to multi-peak activity. Note that, with respect to sLEC place cells created in the linear-
vision case, receptive fields of Fig. 8.9 are more expanded, that is, place cells tend to be maximally active
over larger spatial regions.

Finally, Fig. 8.10 shows eight sLEC receptive fields obtained by applying Gabor-based visual feature
extraction. More than 90% of recorded cells showed clean location-correlated firing (e.g., Fig. 8.10 (a)).
Still, some sLEC cells encode ambiguous visual information which results in non-localized receptive
fields (e.g., Fig. 8.10 (f)). A general property of our Gabor-based sLEC place cells is that they tend to
fire at appreciable rate throughout the entire arena surface (Fig. 8.10 (h)), reducing the contrast between
low and high activity regions. However, despite this noisy background activity, their maximal firing rate
occurs only over restricted areas of the environment.

8.2.3 Interpreting Place Cell Ensemble Activity by Population Vector Decoding

The proposed model yields an allothetic spatial representation consisting of a large number of localized
overlapping place fields. The rationale behind such a redundant approach is two-fold: (i) To cover space
uniformly in order to generate a continuous coarse coding representation (similar to a dense family of
overlapping basis functions); (ii) To use the place cell population activity, rather than the single cell
activity, for the self-localization task.

To locate itself, our animat utilizes the information provided by all sLEC cells, i.e., RsLEC(t) =
{ ri(t) | ∀i ∈ sLEC}. Looking at the population activity rather than at the single cell activity, allows
the system to compensate for misleading sLEC place cell activity (e.g., Fig. 8.10 (g)). This enhances the
stability and the robustness of the vision-based self-localization process.

Decoding the ensemble place cell activity for position reconstruction is neurophysiologically plau-
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Figure 8.10: Samples of sLEC receptive fields obtained by means of Gabor-based visual feature extraction.

sible. Hippocampal place cells seem indeed to transmit an ensemble code to identify spatial locations
[394, 406]. Population decoding has been also applied to interpret neuronal activity patterns in sev-
eral other brain areas: The primate motor and premotor cortices [121, 120, 67, 299], the parietal cortex
[164, 339], the cerebellum [105], the primary visual cortex [123], the superior colliculus [124, 179], and
the inferotemporal cortex [404].

In order to interpret the ensemble firing RsLEC(t) as a spatial location, we compute the population
vector ~p(t) by averaging sLEC activity [121, 243, 1, 61]

~p(t) =

∑

i ~xi ri(t)
∑

i ri(t)
(8.17)

where ~xi is the center of the place field of neuron i ∈ sLEC. Let ~s(t) be the true agent’s location at
time t. According to Eq. 8.17, the system estimates ~s(t) by computing the center of mass ~p(t) of the
sLEC network activity. The encoded position ~p is near, but not necessarily identical, to the true location
~s. The approximation ~p ≈ ~s is good for large neural populations covering the environment densely and
uniformly [299].

Note that the place field center ~xi has been made explicit for interpreting and monitoring purposes
only. Associated with each place cell i is a vector ~xi that represents the estimated location of the robot
(based on dead-reckoning) when it creates the cell i. While the vector ~xi is used in Eq. 8.17 for decoding
the observed population activity, knowledge of ~xi is not necessary for spatial learning and navigation.

Fig. 8.11 (a) shows an example of sLEC place cell distribution created by the robot after spatial
learning (in the case of linear visual information). The square box represents the experimental arena.
Each dot represents a place cell i ∈ sLEC, and the position of the dot represents the center ~xi of the
place field. The two-dimensional space is uniformly and densely covered by the population of sLEC
cells forming the allothetic space representation8 . In this experiment the animat, starting from an empty

8Note that place cells are not topographically arranged within the sLEC layer of the model. That is, two cells i and j coding
for two adjacent locations ~xi and ~xj , respectively, are not neighboring neurons in the sLEC network. In Fig. 8.11 (a) adjacency
of physical locations is preserved at the level of sLEC cells for interpreting purposes only.



106 CHAPTER 8. Allothetic Space Representation: Processing Visual Data

(a) (b)

Figure 8.11: Allothetic vision-based space representation. (a) An example of sLEC population created by the robot after
learning. The square box represents the experimental arena. Each dot represents a place cell i ∈ sLEC, and the position of the
dot represents the center of the place field ~xi. The white cross represents the center of mass of the ensemble activity computed
by population vector decoding. (b) The location of the robot corresponding to the sLEC ensemble activity of (a).

population, has created about 600 vision-driven sLEC cells. The ensemble sLEC cell activity of Fig. 8.11
(a) codes for the robot’s location shown in Fig. 8.11 (b). The center of mass of the network activity
(computed by Eq. 8.17) is represented by the white cross.

8.2.4 Accuracy of the Allothetic Spatial Representation

The sLEC activity blob moves over the two-dimensional space tracking robot’s displacements. The ac-
curacy of the representation is not uniformly distributed over the arena surface: The mapping from the
visual input space to the two-dimensional view-manifold reflects the reliability of local visual stimula-
tions, such that locations characterized by ambiguous local views will be poorly encoded by sLEC firing
activity. Fig. 8.12 (a) shows an example of inadequate sLEC ensemble activity. The robot is approx-
imately at location A. However, sLEC exhibits a multi-blob ensemble activity and population vector
decoding (Eq. 8.17) reconstructs a position ~p that is totally inaccurate (white cross).

The sLEC allothetic space representation does not form the final hippocampal spatial map, rather it
is combined along with path integration to yield a stable CA3-CA1 space representation (Chapter 10).
Nevertheless, sLEC activity plays a primary role in determining the system’s dynamics, and it is used to
calibrate the idiothetic space representation occasionally. As a consequence, the agent needs a criterion
to evaluate the reliability of the vision-based space coding.

As a first step, we have adopted a mere algorithmic technique to assess sLEC population activity. As
a first approximation, one way to penalize representations of type Fig. 8.12 (a), consists of measuring the
dispersion σ of the sLEC population activity around the center of mass ~p. According to this technique,
the robot may assess sLEC ensemble activity over time by employing a threshold Σ to simply neglect
improper sLEC representations, that is, those activity patterns characterized by a dispersion σ > Σ
(Fig. 8.12 (b)). In a future step, we will implement this technique to assess the ensemble sLEC activity
by means of a neural network being included in the model.
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Figure 8.12: (a) An example of multi-blob population activity due to ambiguous visual stimuli. Location A is the actual
animat’s position, whereas the white cross represents the position reconstructed from sLEC vision-based activity. (b) The
reliability of the positional information encoded by sLEC activity may be assessed by looking at the dispersion σ (around the
center of mass) over time, and a threshold Σ may be used to select proper sLEC representations.

8.3 Discussion

In this chapter, we have described the visual pathway of our hippocampal model. Starting from raw visual
information, we build an allothetic space representation based on place-sensitive neurons. In the first part
of the chapter (Sec. 8.1), we have focused on the interpretation of visual data. We put forth a mechanism
to detect the view manifold that provides a low-dimensional representation of the environmental spatio-
temporal properties carried by the visual signal. Incoming stimuli are interpreted by means of neurons
that only respond to combinations of specific visual cues. This yields a neural activity in which metric
information (e.g., distance to visual cues), landmark recognition, and interrelations between landmarks
are implicitly encoded. This is in contrast to other hippocampal models in which metric information is
directly used as input for the system [317, 62, 377, 286, 369].

In order to validate our approach, we have tested it on a robotic platform by means of three distinct
implementations: (i) A system based on Walsh-like filters for linear image processing, (ii) a PCA-based
module to interpret two-dimensional video signals, and (iii) a retinotopic Gabor-based approach suitable
for modeling biological low-level visual processing.

In the second part of this chapter (Sec. 8.2), we have proposed an unsupervised learning scheme to
generate location-sensitive neurons (place cells) relying on processed visual information. As a prediction,
we assume that these cells belong to the superficial layer of the lateral entorhinal cortex (sLEC). Indeed:
(i) They receive processed allothetic information, as neurons in the superficial lateral entorhinal cortex
do from the parietal lobe via the perirhinal cortex [278, 60]; (ii) They exhibit spatial correlates similar to
cells observed in the rat entorhinal cortex. Actually, available recording data from the entorhinal cortex
concern the superficial layer of its medial part (sMEC) [278]. The only available finding concerning LEC
comes from lesion studies: Animals with lesioned LEC exhibit deficits in an odor-to-place matching task
[262]. This result is consistent with the hypothesis that LEC (in particular its superficial layer) is involved
in encoding allothetic signals (e.g., odor). However, it does not tell us anything about the presence of
place cells in sLEC. To our knowledge, not any recordings have been done from LEC cells [283]. Thus,
the model predicts the presence of spatially tuned neurons in the sLEC that are driven by multimodal
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external cues, and in particular by vision.
According to experimental findings about place cells recorded from freely-moving rodents in open-

field arenas [239], our sLEC cells have non directional place fields. In order to obtain direction indepen-
dent sLEC place fields, we adopt a technique similar to the approach proposed by Burgess et al. [62],
in which, for every visited location, four distinct views (e.g., north, east, south, and west) are bound
together to form a non-directional local view. In our model, for each view taken, the animat creates a
snapshot cell coding for that view and whose activity is viewpoint dependent. Unsupervised correlational
learning is then applied to combine the response of several snapshot cells for driving a single sLEC cell.
In this process, the compass information provided by the head-direction module (Chapter 4) plays an im-
portant role. As a result of learning, sLEC cells are spatially tuned with respect to an allocentric frame of
reference. Interestingly, experimental data suggest that viewpoint-dependent spatial coding occurs in the
parietal lobe, whereas neurons in the hippocampal formation tend to provide allocentric representations
[60, 26]. Thus, we assume that (i) our hypothetical snapshot cells might find their biological counterpart
in neurons in the parietal cortex, (ii) unsupervised correlational learning might be responsible for the
translation from gaze-dependent snapshot cell activity into allocentric spatial activity of sLEC cells, and
(iii) head-direction cells should be important for this translation process.

A direct consequence of adopting unsupervised correlational learning is that sLEC place fields are
established quickly (at the first visit of the place) and subsequently tuned to achieve stable coding. This
is consistent with recordings from real hippocampal place cells [147, 395]. After learning, the model
develops a space representation consisting of a large number of overlapping sLEC place fields covering
the environment uniformly. This is compatible with entorhinal cells recorded from rats, whose field
centers evenly cover the surface of the recording apparatus [278].

In the model, redundancy in the place field representation is considered a crucial issue to yield ro-
bustness. To interpret the ensemble sLEC cell activity as spatial locations we apply a population vector
scheme [121, 394, 62], a decoding mechanism that reduces the effect of noise in the response of sin-
gle neurons. The biological plausibility of reconstruction methods such as population coding has been
recently demonstrated by Zhang et al. [406].

A critical aspect of our vision-based localization system is the need for rather rich visual stimulation.
Future research will focus on the adaptability of the feature extraction process. For instance, in the case
of a high-walled arena without visual cues on the walls, the animat might resort to a more geometric
approach in which agent-wall distance would be explicitly considered [59] as well as the geometric
properties of the environment (e.g., metric relations between walls) [276].

To conclude, an intrinsic limitation that occurs when performing vision-based spatial learning is the
sensory aliasing problem [193, 109]. In other words, when relying on visual information only, the spatial
representation might not fulfill the Markov hypothesis [202]. Indeed, since distinct spatial locations may
provide identical visual information, the low-dimensional view manifold may be singular [178, 345,
308]. The presence of multi-peak place fields in our sLEC population reflects this singularity property
of the view manifold. As already mentioned, in our hippocampal model we consider, along with the
visual pathway, an idiothetic representation encoding self-motion information (i.e., path integration).
This idiothetic signal provides an internally generated context that enables the system to disambiguate
visual input. Path integration is the topic of the next chapter.



Chapter 9

Idiothetic Space Representation:
Path Integration

Neurons in the hippocampal formation exhibit stable place fields even in the absence of allothetic cues,
i.e., either after visual cue removal, or in the dark [251, 258, 212, 277, 278, 194] (Chapter 6). This sug-
gests that, along with allothetic signals, the dynamics of place cells relies on some internally-generated
motion information.

The ability to navigate relying on self-motion information is referred to as path integration [223, 99].
More precisely, path integration (also termed dead-reckoning1 [114, 272], or vector navigation [380])
enables a navigating agent to infer its current position relative to a departure point from its own movement
[201, 98]. This implies integrating the translational and angular motion components over time in order
to determine the current distance and orientation with respect to the starting point [314]. To assess the
angular component of motion continuously, the information provided by head-direction cells (Part II) is
determinant.

Path integration does not consists of (i) memorizing the sequence of movements since the beginning
of the outward journey until the current position, and (ii) performing path reversal to return home. Rather,
the continuous integration of translations and rotations over time generates a homing vector ~h leading
the animal directly to the departure location [98] (Fig. 9.1 (a)).

The capability of homing by path integration has been observed in several living species through
a large body of behavioral studies. Experiments suggest that arthropods [225], ants [382, 77, 238],
spiders [131, 316], bees [35], birds [223], rodents [361, 224, 223, 273, 100, 314, 3], dogs [21, 30, 313],
cats [30], and humans [30, 304, 111, 102], path integrate when navigating without external references.
Fig. 9.1 (b) shows an example of hamsters’ homing trajectory reported by Etienne and colleagues [98]. In
particular, they have shown that hamsters do resort to vector addition in absolute coordinates to perform
goal-oriented navigation independently of external landmarks [99].

In mammals, assessing translational and angular displacements relies on vestibular, somatosensory,
and motor command efference copy information. Vestibular signals primarily influence rotation estima-
tion, whereas somatosensory and efference copies are predominant to measure translations [125].

Dead-reckoning allows an agent to navigate in totally unfamiliar environments since its very first

1Deduced reckoning.
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Figure 9.1: (a) Difference between path reversal (i.e., inverting the sequence of movements performed from a starting
point A to a current location B, and path integration (i.e., returning to location A by a direct homing vector). Solid lines
represent the outward journey, whereas dashed lines indicate the return path. (b) Homing behavior of two hamsters. After
being guided by a bait from the nest location A to points B e C, respectively, within the arena (solid lines), animals return home
by an approximately direct path (dashed lines). The experiment was performed in the dark, with a circular arena of radius
approximately equal to 1 m. Data courtesy A. Etienne [98].

exploring excursion [136]. To path integrate, indeed, animals do not have to learn environmental prop-
erties, because they solely rely on their internal references. This makes path integration a sort of basic
underlying mechanism for navigation. Indeed, it is functionally available (i) in all type of environments
(i.e., with or without reliable landmarks), (ii) as soon as the animal enters an unknown environment, (iii)
also for “naive” navigators (e.g., young animals), that is, agents that can not exploit their interaction with
the external world effectively. In addition, since dead-reckoning endows animals with vector addition
capabilities in allocentric space [99], it might play an important role in determining short-cut finding
behavior. Preliminary behavioral results on hamsters support this hypothesis [97].

A limitation of path integration is its vulnerability to cumulative drift over time. This holds for both
biological [98] and artificial navigating systems [48]. Indeed, the idiothetic-based dynamics that consists
of integrating translational and rotational signals instantaneously, induces systematic as well as non-
systematic errors that quickly disrupt the position representation [238, 314, 201, 136]. As a consequence,
path integration needs to be reset episodically in order to maintain a consistent representation over time.
When available, stable allothetic cues (e.g., visual fixes) may be used to accomplish such a calibration
process [210, 207, 98].

In this chapter, we focus on the idiothetic pathway of our hippocampal model. Internal movement-
related signals are used to drive a population of place cells, PiC, that we suppose to be located in the
superficial layer of the medial entorhinal cortex (sMEC). The model also involves the subicular area
(SC) of the hippocampal formation. For an overview of previously postulated hypotheses modeling path
integration, see Sec. 7.2.

9.1 Path Integration-based Place Coding

The path integrator providing the idiothetic pathway of our hippocampal model must satisfy the following
requirements: (i) To encode the current agent’s position ~p(t) with respect to a departure point ~p(t0)
(where t0 is the time at which the journey starts), i.e., to provide the necessary information to compute the
current homing vector ~h(t). (ii) To update the representation ~p(t) of the agent’s position by integrating
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Figure 9.2: A functional overview of the idiothetic pathway (grey areas) of the model. Path integration occurs via the
interaction between cells in the superficial medial entorhinal cortex (sMEC) and cells in the subiculum (SC). SC in the model
receives directional information from the head-direction system (Part II). sMEC forms the output of the path integrator and
projects onto the hippocampus proper. sMEC receives afferent information from sLEC which, in our model, is the locus of the
allothetic space representation. The latter is used to occasionally recalibrate the sMEC idiothetic map.

inertial signals over time. Thus, the path integrator has to receive directional information from the
head-direction system, and self-motion information from the proprioceptive and vestibular systems. (iii)
To convey its idiothetic representation to the hippocampus proper, in which the CA3-CA1 place field
representation takes place. (iv) To receive afferent information from an allothetic-based place coding
area in order to recalibrate the idiothetic representation.

Fig. 9.2 shows the functional architecture of our path integrator as well as its main afferents and
efferents. The system satisfies the four above requirements:

(i) The idiothetic place representation occurs in a population of neurons that we call path-integration
place cells (PiC). The ensemble activity RPiC(t) = {ri(t) | i ∈ PiC} codes for the robot’s cur-
rent position ~p(t) = (x(t), y(t)) within an allocentric frame of reference centered at the starting
location ~p(t0). RPiC(t) depends on internal information only. The activity of the PiC cells is
environment-independent, that is, PiC place fields do not change from environment to environ-
ment. We assume that the anatomical locus for our PiC cells is the superficial layer of the medial
entorhinal cortex (sMEC). Indeed, neurophysiological data suggest that the place-field topology of
location-selective neurons in sMEC does not change across different environments [278].

(ii) Similar to previous anatomical hypothesis [207, 319, 285], we assume that subicular cells (SC)
have a primary role in path integration. Indeed, SC cells have the property of encoding both
location and direction of the animal [323], and have a firing activity that is modulated by self-
motion information [207]. Moreover, similar to sMEC, SC has the capability of transferring a
single place field pattern from one environment to the next. As shown in Fig. 9.2, we assume
that integrating self-movement signals occurs through the interaction between sMEC (PiC) and
SC cells. In particular, we suppose that SC cells are responsible for shifting the PiC activity blob
over time. Anatomical interconnections exist between the subiculum and layers I-III of the medial
entorhinal cortex [397].

(iii) In the model, PiC cells form the output of the path integrator. Since the PiC representation takes
place in sMEC and the latter projects anatomically onto the hippocampus proper (via the per-
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forant path), the third requirement is satisfied. In Chapter 10 we will describe how sMEC→CA3
connections can be learned during environment exploration.

(iv) In order to prevent the path integration error from diverging over time, we employ the vision-
based space code established in the sLEC layer (Chapter 8) to calibrate the PiC representation.
Anatomical data show that the lateral entorhinal cortex (LEC) projects to the medial entorhinal
area (MEC) [278]. We will describe in Chapter 10 how path integration calibration is achieved in
the model.

9.1.1 Robotic Implementation

In the current system, we only employ a neural network to implement sMEC (PiC) cells. On the other
hand, we do not propose a neural implementation for the SC layer shown in Fig. 9.2. Rather, to update
PiC activity, translational velocity v(t) provided by the odometer is algorithmically combined with the
allocentric directional signal θ(t) provided by our head-direction module. That is, similar to Mittelstaedt
and Mittelstaedt (1973) [222], we compute the agent’s current location ~p(t) = (x(t), y(t)) as

x(t) =

∫ t

t0

v(t′) cos(θ(t′)) dt′

y(t) =

∫ t

t0

v(t′) sin(θ(t′)) dt′ (9.1)

where t0 is the time at which the agent enters the arena. Thus, the position ~p(t) is computed within an
allocentric framework whose reference point is the entry position ~p(t0), the reference orientation φ is
provided by the head-direction system, and the metric is provided by the odometer.

We take a population PiC = { i | 1 ≤ i ≤ N } of N = 1000 cells. Our PiC cell assembly could be
interpreted either as one of the charts of the multi-chart path integrator by McNaughton et al. [207], or
as the universal place map proposed by Sharp [319]. The advantage of such a single-chart approach is
that only one map has to be preconfigured in advance. By contrast, McNaughton et al. assume a large
number of preconfigured charts (and for each of them the necessary prewired connections for the update
mechanism) from which one chart is extracted to be used as current map.

PiC neural activity relies on preconfigured metric interrelations: (i) One cell io ∈ PiC encodes the
origin (0, 0) of the abstract frame of reference S the PiC firing relies on. Every time the robot enters a
novel environment, cell io is recruited to encode the entry position ~p(t0). (ii) Each cell i ∈ PiC, with
i 6= io, has one preferred firing location ~pi relative to the origin identified by io. PiC preferred positions
are evenly distributed over the two-dimensional abstract space S . In the current implementation, we
adopt a fixed spatial resolution of about 10 cm.

Note that, since the abstract space S is mapped onto the physical space S ′ depending on the entry
position ~p(t0) ∈ S ′, a novel environment may be encoded by two distinct PiC firing patterns if two
explorations start at points ~p 1(t0) 6= ~p 2(t0). In other words, PiC cells have preconfigured metric relations
within the abstract allocentric space S , but not with respect to a physical absolute framework S ′. As we
will see in Chapter 10, correlational learning can be employed to establish a stable S → S ′ mapping,
such that in a familiar environment PiC cells maintain similar firing patterns across different sessions.

As the robot moves, PiC cell activity changes according to translational self-motion signals (supplied
by the odometer) and to the current heading of the robot as estimated by the directional system. The firing
rate ri(t) of a PiC cell i at time t is taken as a Gaussian

ri(t) = exp
(

−
(

~pdr(t)− ~pi

)2
/2σ2

)

(9.2)
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Figure 9.3: The mean path integration error over time. Idiothetic place coding is affected by cumulative shift.

where ~pdr(t) is the current robot position (relative to the starting point ~p(t0)) estimated by dead-reckoning,
~pi is the preferred firing location (center of the receptive field) of cell i, and σ ≈ 10 cm defines the width
of the field. According to Eq. 9.2, PiC cells have quite large firing fields and tend to be rarely silent
within a 80 × 80 cm square arena (Fig. 1.2 (b)). This is consistent with the fact that neurons recorded
from sMEC fire considerably over the entire environment [278].

9.1.1.1 Position Tracking Error Over Time

In order to test the idiothetic place representation provided by the above system, we run a series of n
experiments all starting at t = 0. At each time, the robot rotates by a random angle within [0◦, 360◦], and
moves linearly by a random step within [0, 5] cm. Population vector decoding [121, 243, 241, 394, 299]
is applied to estimate the robot’s position ~p ′(t) according to the ensemble PiC activity, that is, ~p ′(t) =
(
∑

i ri(t) ~pi)/
∑

i ri(t)
)

. Vision-information is not made available to the robot (to simulate experiments
with animals in complete darkness).

At each step t, we measure the difference e(t) between the actual robot’s position ~p(t) = (x(t), y(t))
and the estimate ~p ′(t) = (x′(t), y′(t)). The mean tracking error at time t is defined as

e(t) =
1

n

n
∑

i=1

(

(x′ − x)2 + (y′ − y)2
)

1

2 (9.3)

The experiment includes n = 5 trials, each of which consists of 300 steps. At the beginning of each
session the robot is placed inside the arena at the same starting position ~p(t0), and with the same initial
arbitrary heading. Fig. 9.3 shows the mean path integration error e(t). As expected, the idiothetic
representation is affected by a cumulative shift over time. As a consequence, in order to make path
integration useful for effective space coding, we need a mechanism to bound dead-reckoning error by
occasionally calibrating the idiothetic representation. Allothetic information can be used to achieve
this aim. In Chapter 10 we will take the visually-driven activity of sLEC place cells as the signal for
calibration.
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9.1.2 Having a Finite Idiothetic Representation: The Edge-Effect Problem

Our path integrator model (as well as those by McNaughton et al. [207], Sharp [319], and Redish and
Touretzky [285]) has an intrinsic limitation due to the following factors: (i) The idiothetic place map is
preconfigured rather than learned; (ii) The representation is finite, i.e., the finite PiC ensemble can only
encode a confined physical space. This gives rise to the edge-effect problem [283]: What happens when
the navigating agent (either a robot or a rat) crosses one of the edges of the place map?

Neurophysiological data by Sharp [320] suggest that subicular cells have the ability to transfer a
single place code across environments with different shapes and sizes. In particular, subicular place
cells seem to be able to adjust the size of their place field in order to fit the boundaries of the current
environment. Based on these findings, we might imagine a scalable idiothetic representation such that
both the size of place fields and their mutual metric relations would change to fit larger environments.
Although this hypothesis might contribute to solving the edge-effect problem, it does not provide the full
solution. Indeed, there would still be a limit to the scalability of the map, and the accuracy of the place
representation would decrease as place fields would become too large and distant [283].

An alternative solution consists of resorting to multiple place cell representations (i.e., multiple hip-
pocampal maps [256], active place cell subsets [240], multi-charts [207], multiple reference frames
[362, 285]). The basic idea is that the animal might be able to do map transitions appropriately, such that
it would always have a valid place representation associated to the current context. Although we do not
address the issue of multiple hippocampal maps [256, 240, 207, 362], we assume that the robot would
switch to a different map as soon as the current PiC representation would be no longer adequate.

9.2 Discussion

In this chapter we have described the idiothetic pathway of our hippocampal model. The aim is to
provide the animat with a place code system relying on inertial stimulation only. This is consistent
with neurophysiological data showing that place fields do persist even in the absence of external cues
(Chapter 6).

We consider the superficial layer of the medial entorhinal cortex (sMEC) and the subiculum (SC) as
primary structures for path integration (Fig. 9.2). This is based on the experimental evidence that sMEC
and SC seem to be capable to transfer the same place field topology across different environments,
e.g., from a square box to a cylindrical arena (Chapter 6). In the model, sMEC and SC interact with
each other to integrate self-movement signals. A fundamental contribution to build the idiothetic space
representation comes from the head-direction cells (Chapter 4). We assume that SC cells receive (either
directly or indirectly) the signal encoding the current allocentric heading of the animal (e.g., from the
postsubiculum (poSC)).

Similar to McNaughton et al. [207], we take the subiculum (SC) as a primary component to update
path integration. On the other hand, we do not take the hippocampus proper as a part of our path
integrator. Rather, the idiothetic representation is maintained outside CA3-CA1 (in particular in sMEC)
and converges onto the hippocampus via the perforant path. Also, we adopt a single preconfigured
chart, in contrast to the multi-chart hypothesis by McNaughton and colleagues. In that, our approach is
similar to the model by Redish and Touretzky [285]. However, their system identifies the parasubiculum
(paSC) as a crucial part of the path integrator. Our model does not involve paSC. Rather, paSC might
be responsible for feeding SC with the directional signal from the postsubiculum (poSC). Similar to
Sharp [319], we use a single chart and we take the subiculum and the entorhinal cortex as primary
components for the path integrator. However, Sharp assumes that EC receives information about the
size of the current environment and that this knowledge is used to center the universal map within the
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physical space as well as to adapt its size appropriately. Our animat does not estimate the size of a
novel environment before starting exploration. Also, our idiothetic representation is not universally
mapped onto the physical space (i.e., it depends on the starting point). Another important difference
concerns Sharp’s hypothesis about reinitializing/correcting the path integrator. Sharp suggests that the
hippocampus proper sends the calibrating signal to SC. By contrast, in our model, the allothetic sLEC
map is responsible for calibrating the idiothetic sMEC representation, via the sLEC→sMEC projections
(Chapter 10). Since the hippocampus proper combines both idiothetic and allothetic representations,
using the CA3-CA1 signal to reset path integration would not be effective: an erroneous path integration
would affect CA3-CA1 firing, which should not be used for calibration. On the other hand, the map
formed in our sLEC layer is both allothetic and totally independent from path integration.

Some predictions can be made based on the path integrator model presented in this chapter: (i) Place
cells in sMEC mainly depend on idiothetic information; (ii) The sMEC-SC loop provides the anatomical
locus for path integration; (iii) Lesions to the interconnections between sMEC and SC should impair the
animal’s ability to path integrate; (iv) Lesions to SC should impair sMEC firing as well as disrupting
path integration; (v) Damaging sMEC should reduce the influence of inertial stimuli upon CA3-CA1
cells (e.g., animals with lesioned sMEC should not exhibit clean hippocampal place fields in complete
darkness); (vi) In contrast to the theory by McNaughton et al. [207] and similar to Sharp [319, 320] and
Redish and Touretzky [285], our model postulates that lesions to the hippocampus proper should not dis-
rupt path integration. Alyan and colleagues (1997) [4] have explicitly tested this hypothesis. Preliminary
results suggest that, when solving homing tasks, hippocampal rats exhibit intact path integration.

There are some aspects we need to take into account in the future in order to extend our path in-
tegrator: (i) We need to implement the entire system by a neural machinery. At the moment, only the
sMEC layer (i.e., PiC) is a cell assembly. Similar to our neural approach to integrate angular velocity
(Chapter 4), we will consider a SC network in which for each preferred location ~pi there are several
neurons coding for different robot’s headings θi. That is, each unit i ∈ SC will respond to the combined
signal (~pi, θi). Moreover, according to experimental results, the activity ri of cell i should be modulated
by the translational velocity v. Finally, a sMEC↔SC connection scheme based on matching and offset
projections might produce the activity shift necessary for tracking robot locomotion. (ii) As previously
stated, in the current model we do not address the problem of switching between distinct idiothetic rep-
resentations to cope with the edge-effect problem. Indeed, the neural PiC population is large enough to
fit both our experimental arenas (i.e., a 60 × 60 cm square box, and a 80 × 80 cm open environment).
In the future, a mechanism to endow the animat with multiple mapping capabilities should be included.
(iii) Our path integrator accounts for non-systematic errors, whereas it does not model systematic biases
(Eq. 9.1 is the correct trigonometric solution to generate the homing vector ~h(t)) [314].

To conclude, we have stressed the fact that the idiothetic representation alone cannot provide stable
self-localization capabilities (Fig. 9.3). This holds both for animals (e.g., [98]) and mobile artifacts (e.g.,
[48, 47]). Employing our vision-based place code to correct dead-reckoning is one of the topics of the
next chapter.
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Chapter 10

Place Cells in the Hippocampus Proper

In the previous two chapters, the allothetic and the idiothetic pathways of the model have been presented.
The former allows the agent to extract spatio-temporal properties of the environment from visual signals.
This results in place fields that we suppose being anatomically located in the superficial layers of the
lateral entorhinal cortex (sLEC). An intrinsic limitation of vision-based spatial coding is its vulnerability
to sensory aliasing (Sec. 8.2) [178, 345, 193, 109]. The idiothetic pathway (i.e., path integration) pro-
vides the agent with a basic mechanism to behave independently from environmental conditions (e.g.,
in complete darkness). We take the superficial layers of the medial entorhinal cortex (sMEC) as output
for our path integrator (which also involves the subiculum). Self-localization based on idiothetic signals
suffers from an instability problem: the representation is not coherent over time [98, 48] (Sec. 9.1).

In this chapter, allothetic and idiothetic representations are combined to form a population of CA3-
CA1 place fields. Correlational learning is applied to combine these two types of information based
on the agent-environment interaction. This induces a mutual benefit in the sense that path integration
may disambiguate visual singularities and, conversely, visual cues may be used for resetting the path
integrator. This process is done on-line during the development of the hippocampal space representation
(i.e., exploration).

Fig. 10.1 (a) illustrates a functional view of the entire model. Hippocampal place cells and head-
direction cells are strongly coupled and interact with each other to form a unitary spatial learning system.
Consistently with experimental data [166], inhibiting either one of these two modules would critically
impair the performance of the other and would disrupt spatial learning. Both systems rely on extrinsic as
well as intrinsic signals to maintain stable internal representations. Finally, the combined output of both
systems is used for motor commands to achieve goal-oriented navigation (Part IV). Fig. 10.1 (b) shows
a more detailed view of the model as well as its anatomical counterparts.

In Sec. 10.1 we establish CA3-CA1 place fields by combining sLEC and sMEC place codes. In
Sec. 10.2 we show how path integration can be recalibrated based on vision during exploration. Finally,
in Sec. 10.3 we study the interrelation between allothetic and idiothetic cues in controlling place cells.
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Figure 10.1: (a) Functional view of the entire spatial learning system. Place coding areas (hippocampal place cells) and direc-
tion coding areas (head-direction cells) interact with each other to maintain stable internal representations. (b) Representation
of the constituents of the model with their anatomical counterparts. Glossary: LMN: lateral mammillary nuclei, ADN: an-
terodorsal thalamic nucleus, poSC: postsubiculum, HAV: hypothetical head angular velocity cells, CAL: hypothetical direction
calibration cells, VIS: hypothetical visual cells, SC: subiculum, sMEC: superficial medial entorhinal cortex, sLEC: superficial
lateral entorhinal cortex, SnC: hypothetical snapshot cells, DG: dentate gyrus, NA: nucleus accumbens, VTA: ventral tegmental
area, FX: fornix, PP: perforant path.
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10.1 CA3-CA1 Place Fields:
Combining Allothetic and Idiothetic Representations

In the model, allothetic and idiothetic representations converge onto the hippocampus proper to form
a spatial representation based on CA3-CA1 place fields. Both sLEC and sMEC cells project to CA3-
CA1 units by means of downstream synapses that are established according to a correlational learning
rule. Anatomically, these projections would form the perforant path from the superficial layers of the
entorhinal cortex to the hippocampus (Chapter 6).

As mentioned in Sec. 8.2, when the robot enters a novel environment it does not have any prior
knowledge. Place cells are recruited incrementally as exploration proceeds. In order to cover the space
uniformly by a population of place fields, the agent needs a mechanism to assess “familiarity” with
respect to spatial locations. In the model, whenever the robot visits a place ~p(t), it first checks whether
there are already CA3-CA1 cells i coding for that place. A new subset of place cells is recruited only if

∑

i

H(ri(t)− ε) < A (10.1)

where ri(t) is the firing activity of cell i at time t, and H is the Heaviside function. Therefore, the
population of hippocampal place cells grows only if the number of CA3-CA1 units active at location
~p(t) does not exceed a threshold A [286, 117]. Eq. 10.1, which is a mere algorithmic implementation,
enables the system to control the redundancy level in the space representation.

For each new location, the system recruits a new subset of n CA3-CA1 place cells i1. New con-
nections are then formed from all simultaneously active cells in sLEC and sMEC to the new place cells.
Then, during the agent-environment interaction, Hebbian learning is used to establish the weight of the
efferents from sLEC and sMEC to the hippocampus proper. If i and j represent a postsynaptic CA3-CA1
cell and a presynaptic cell in sLEC or sMEC, respectively, the weight wij is changed according to

∆wij = η ri rj (1− wij) (10.2)

where the learning rate η is taken equal to 1. The firing rate ri of a cell i ∈ CA3-CA1 is simply a
weighted average of the activity of its presynaptic cells

ri =
∑

j

wij rj/
∑

j

wij (10.3)

where j varies over sLEC and sMEC cells. The relation 0 ≤ ri ≤ 1 holds.

The above technique to generate CA3-CA1 place fields yields a stable representation in the hip-
pocampus proper. The reason for this stability is two-fold: (i) Each CA3-CA1 place cell receives affer-
ents from several entorhinal cells with similar firing patterns, and it averages their activities. This results
in a cleaner positional signal with respect, for instance, to the noisy activity recorded in sLEC (Fig. 8.10)
[278]. (ii) CA3-CA1 activity relies on the combination of internal and external stimuli. This allows the
system to eliminate the sensory aliasing problem affecting pure allothetic representations. Also, in the
dark, CA3-CA1 firing can be supported by the input provided by the sMEC path integration signal.

1The number n of newly recruited cells is a fixed parameter of the model that influences the redundancy of the place field
space representation. In the current implementation, n = 2.
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Figure 10.2: Samples of CA3-CA1 place fields recorded during experiments using linear vision.
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Figure 10.3: Samples of CA3-CA1 place fields recorded during experiments using PCA-based vision interpretation.
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Figure 10.4: Samples of CA3-CA1 place fields recorded during experiments using Gabor-based visual feature extraction.

10.1.1 Single-Cell Recordings

Figs. 10.2, 10.3, and 10.4 illustrate some typical CA3-CA1 place fields recorded in experiments with
linear vision, PCA-based image interpretation, and Gabor-based feature extraction, respectively. The
model generates biologically plausible CA3-CA1 place cells in all three cases. Receptive fields are clean
and less noisy than those recorded in the sLEC layer of our model (Chapter 8). Most of the recorded
CA3-CA1 cells do not exhibit multiple subfields (e.g., 97% in the linear vision case). This is mainly
due to the contribution of the idiothetic representation. Such a clean spatial selectivity at the level of the
hippocampus proper is compatible with experimental single-unit recordings showing that about 5% of
hippocampal cells have multiple subfields within a single environment [281].

10.1.2 Multiple-Cell Recordings

As already mentioned in Chapter 8, the purpose is to cover the environment by a large population of
localized overlapping place fields. This yields a dense family of overlapping basis functions that can be
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(a) (b)

(c)

Figure 10.5: (a) Sample of learned CA3-CA1 population. Each dot denotes the center of a place field. The white cross rep-
resents the center of mass of the ensemble activity computed by population vector decoding. (b) The 60× 60 cm experimental
arena with the Khepera robot inside. The location of the robot corresponds to the CA3-CA1 ensemble activity of (a). (c) An
example of population activity coding for the upper-right corner of the arena.

used for the self-localization task. Redundancy helps in terms of stability and robustness of the place
code. Let RCA(t) = { ri(t) | ∀i ∈ CA3−CA1} be the ensemble CA3-CA1 activity at time t. As usual,
we employ population vector decoding (Sec. 8.2.3) to reconstruct the agent’s current position based on
RCA(t) [394, 406].

Fig. 10.5 (a) shows an example of CA3-CA1 population created by the robot after spatial learning
based on linear visual information. Each dot is a place cell i ∈ CA3-CA1, and its position denotes
the center ~xi of the place field. Note that, place cells do not need to be tied to the physical space to
enable spatial navigation of the system (Part IV). Rather, we use this information in order to monitor
the self-localization process. Also, CA3-CA1 cells are not topographically arranged (i.e., cells i, j ∈
CA3-CA1 coding for two adjacent locations ~xi and ~xj , respectively, are not adjacent neurons of the
network). However, in Fig. 10.5 topology is preserved for interpreting purpose. In this experiment, the
robot recruited approximately 1000 CA3-CA1 place cells (starting from an empty population) covering
the environment uniformly and densely. The firing pattern of Fig. 10.5 (a) has been recorded with the
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robot at the location shown in Fig. 10.5 (b). The estimated position (computed by population vector
coding) is represented by the white cross (i.e., the center of mass of the CA3-CA1 ensemble activity).
Finally, Fig. 10.5 (c) is a three-dimensional representation of CA3-CA1 population activity recorded with
the robot being at the upper-right corner of the arena. The diagram has been obtained by discretizing
the two-dimensional environmental space in 40 × 40 subregions, and then plotting the mean ensemble
activity for each subregion.

10.2 Exploring Behavior and Path Integration Calibration

During locomotor behavior, the robot moves in discrete time steps ∆t that determine the frequency at
which it senses the world, interprets sensory inputs, and takes an action. We assume that each step ∆t
corresponds to one theta cycle of approximately 0.1 s (the real movement of the robot is, of course, slower
than this) [317, 59]. Thus, place cell activity is updated with a frequency of 10Hz, which simulates
the fact that hippocampal processing, during animal’s motion, is timed by a sinusoidal EEG signal of
7− 12Hz, namely the theta rhythm (Sec. 6.4).

When entering a novel environment, the robot needs to explore it in order to establish a CA3-CA1
place field representation. Since the environment is unfamiliar, the robot starts by relying upon path
integration only. The entry location becomes the reference point (home) relative to which the sMEC
idiothetic representation is built. Then, exploration is performed to (i) extract the environmental visual
properties in order to learn the sLEC allothetic code, (ii) combine local views encoded by sLEC ac-
tivity with the spatial framework provided by the path integrator. This results in a growing CA3-CA1
population whose dynamics relies on two coherent allothetic and idiothetic space codes.

The robot adopts an exploration strategy that emulates the exploratory behavior of animals [180,
98, 78]. As exploration proceeds, new place cells are recruited by the system. At the very beginning,
exploration consists of short return trips (e.g., narrow loops) centered in the home location and directed
towards the principal radial directions (e.g., north, east, and so on). This overall behavior relies on the
head-direction system and allows the robot to explore the space around the home base exhaustively.
Afterwards, the robot switches to a more open-field exploration strategy: It starts moving in a random
direction recruiting a new subset of CA3-CA1 place units for each new location encountered (i.e., spatial
learning). After a while, the agent “feels” the need to re-calibrate its path integrator. Note that we do
not propose a specific uncertainty model for the dead-reckoning system. We simply assume that the
“need of calibration” grows monotonically as some function n(t) of time t. When, after a time tcal, n(t)
overcomes a fixed threshold ncal, the animat stops creating place cells and starts following the homing
vector to return to the starting location [98, 78]. As soon as it finds a previously visited location (not
necessarily the home location), it tries to use the learned allothetic representation to re-align its path
integrator. Fig. 10.6 (a) shows an example of open-field exploring excursion.

We take the vision-based sLEC activity as calibrating signal. Let ~p(t) be the center of mass of the
sLEC ensemble activity computed by population vector coding at time t (Sec. 8.2.3). Let σ(t) denote the
variance of the sLEC activity around ~p(t). As described in Sec. 8.2.4, we take a fixed variance threshold
Σ to evaluate the reliability of the sLEC cell activity. We further assume that only if σ ≤ Σ the signal ~p
is suitable for re-calibrating the robot (Fig. 8.12 (b)). More precisely, we define a weight coefficient

α(t) =

{

1− σ(t)
Σ σ(t) ≤ Σ

0 otherwise
(10.4)

and then we use it to compute the calibrated robot position ~p ∗(t) according to

~p ∗(t) = α(t) ~p(t) + (1− α(t)) ~p ′(t) (10.5)
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Figure 10.6: (a) Sample of exploring excursion from a starting point (N). During exploration (solid trajectory n.1) the animat
recruits new place cells to model spatial locations. After a while the robot stops exploring and follows its homing vector (dashed
line). During homing, spatial learning does not occur (i.e., the robot does not recruit new place cells). Exploration is resumed
as soon as a previously visited position A is found in which the path integrator can be calibrated based on visual information.
The process is then iterated (excursion n.2) to propagate exploration over the entire environment by keeping the dead-reckoning
error bounded. (b) Uncalibrated (lightgrey curve) and calibrated (black curve) mean path integration error.

where ~p ′(t) is the position estimated by dead-reckoning at time t. Eq. 10.5 is an algorithmic implemen-
tation. In the future, we will calibrate path integration by applying associative learning to correlate sLEC
activity with sMEC activity.

Once the robot has calibrated itself, exploration is resumed and the robot starts creating new place
cells (Fig. 10.6 (a)). This technique allows the agent to propagate exploration over the entire environment
by keeping the dead-reckoning error bounded. This means that allothetic (sLEC) and idiothetic (sMEC)
representations are maintained mutually consistent over time. As in Sec. 9.1.1.1, we run a series of n
exploring trials all starting at t = 0. At each step t, we measure the difference e(t) between the robot’s
true position ~p(t) and the estimation ~p ′(t). The experiment involves n = 5 trials, each of which includes
300 exploration steps. At the beginning of each trial the robot is placed at the same starting location ~p(t0)
(home). Fig. 10.6 (b) shows the calibrated and the uncalibrated mean error e. While the uncalibrated
system exhibits a cumulating shift over time, the calibrated error is bounded and has an average value of
about 4.4 cm.

Note that, during the homing behavior, the robot might reach the starting location without having
re-aligned its path integration, i.e., without having found a location where sLEC activity is suitable for
calibration2 . In this case, the robot would resort to a spiral searching behavior centered around the home
location. After having found a calibration point, the open-field exploring behavior would be resumed.

Another important concern is that an initially unfamiliar environment has to be explored uniformly
in order to model all locations adequately. The robot adopts a simple active-exploration strategy that
helps to cover the environment uniformly. At each time step t, it updates its direction of motion φ
based on CA3-CA1 activity. If a relatively large number of neurons are currently active, it means that
a well known region of the environment is being visited. Then, a small directional change, ∆φs, will

2This case has never occurred in our experiments.
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increase the probability of leaving that area. Conversely, a large variability of the robot’s direction, ∆φ l,
is associated to low CA3-CA1 place cell activity, which results in a thorough exploration of that region.
In our experiments ∆φs and ∆φl are randomly drawn from [−5◦,+5◦] and [−60◦,+60◦], respectively.

10.2.1 Entering a familiar environment

In this thesis, we do not address the problem of consolidating and recalling hippocampal maps [283].
Rather, we simply assume that re-entering a familiar environment results in the attempt to retrieve the
previously learned hippocampal chart. In particular, the agent needs to re-align its internal representa-
tions (i.e., head-direction, allothetic space code, and idiothetic chart) in order to re-activate a coherent
description of the environment. Such a re-instantiating process relies on the coupling between the differ-
ent components of the model established during training by associative learning. In a highly simplified
view (assuming a constellation of external cues that can just rotate as whole between sessions) we can
distinguish four different situations:

1. At the beginning of the trial, the agent is placed at the nest location3 without undergoing disori-
entation before entering the arena (i.e., consistency is maintained between the animal’s directional
framework outside and inside the experimental arena). In this condition, neither the head-direction
system nor the path integrator need to be re-aligned.

2. The animat is placed at the nest location but it is disoriented before entering the arena. In this case,
the agent needs to polarize its directional sense by using a visual reference (e.g., a light source)
experienced as stable during training (see Part II, in particular Chapter 5).

3. The animat is entered the arena at a random location ~p(t0) without undergoing disorientation
before starting the session. In this case, the robot has to re-align the idiothetic space chart (sMEC)
with respect to the allothetic map (sLEC), i.e., to reset its path integrator according to visual
information (Sec. 10.2).

4. At the beginning of the trial, the animat is placed at a random location ~p(t0) and undergoes dis-
orientation. Therefore, both head-direction cells and path integration need to be re-aligned. To do
this, the agent has to retrieve a clean positional signal at the level of the allothetic space code, i.e.,
a clean blob in the sLEC ensemble activity. Since sLEC firing relies on head-direction informa-
tion, the only thing the agent can do is to resort to a random search in the visual input space by
taking views in random directions by turning on the spot. Given that the animat’s entry position
~p(t0) is a location that has been experienced during training, this search should converge to an ac-
tivation of the subset of sLEC place cells coding for ~p(t0). Once the allothetic representation has
been restored, the head-direction system can be calibrated according to the technique described in
Chapter 4. Also, path integration can be reset as described in Sec. 10.2.

Failing to retrieve a coherent representation of the environment (i.e., to mutually re-align head-direction
and place cells, allothetic and idiothetic charts) results in a failure in “recognizing” a previously experi-
enced arena. Then, a between-session remapping (i.e., the development of a new hippocampal represen-
tation of the environment) is likely to occur [258, 50, 166, 25]. Since the retrieving procedure (points 2,
3, and 4) relies on LTP correlational learning, impairing this mechanism would result in unstable repre-
sentations between separate sessions within a same environment. This is consistent with experimental
findings showing that old animals with deficient LTP exhibit stable hippocampal maps within sessions,
but unstable mapping between separate runs [25, 283].

3We assume that the nest is a location (e.g., a home box [99]) that the agent can easily recognize across sessions and that
provides the reference point for the path integration framework.
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Figure 10.7: A poSC head-direction cell and two CA3-CA1 place cells recorded from the robot trained under non disorienting
conditions. At the beginning of each probe trial, the robot undergoes disorientation. The head-direction cell as well as the two
place cells are controlled by the light cue (whose position is indicated by the ‘*’ next to each diagram).

10.3 Studying the Interaction between External and Internal Cues

In Chapter 5 we have studied the influence of external directional cues upon the head-direction system.
In particular, we have done some experiments inspired by those performed by Knierim et al. on rats
[166] (Sec. 5.1.3). Consistent with neurophysiological data, we have shown that “disorienting” our
robot before each training session reduces the control exerted by an external landmark (e.g., a light
source) upon head-direction cells during probe trials (Fig. 5.4). By contrast, the robot trained under
non disorienting conditions is able to re-align its direction representation across test trials based on the
external directional reference (Fig. 5.3).

In this section, we present results obtained by recording our CA3-CA1 place cells in a similar ex-
periment4. The objective being to demonstrate that our head-direction and place cells are two coupled
systems, so that if the direction representation rotates by an angle ∆θ, a comparable rotation will be
observed in the hippocampal place code.

We run 2 training series of 10 trials each. A single trial lasts about 15 minutes. At the beginning
of each trial the robot is placed at the center of the arena (i.e., nest position). First, the animat turns
on the spot and learns to associate its inertial directional sense to the external reference provided by a
light source. Then, random exploration is triggered and spatial learning takes place. In the first series
of experiments, the robot is trained under non disorienting conditions. In the second series, the robot’s
direction representation is initialized randomly (i.e., the animat is disoriented) before each training trial.

After training, we run 2 probe series of 4 trials each. In the first series, we record from the robot
trained under non disorienting conditions. In the second, we take the robot that underwent disorientation.
We record poSC head-direction cells and CA3-CA1 place cells of the model.

4For this experiment we have utilized our linear-vision setup.
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Figure 10.8: Effects of disorienting training on poSC head-direction and CA3-CA1 place cells. At the beginning of the four
recording trials, the robot fails to calibrate its directional system with respect to the allothetic cue. The light (whose position
is indicated by the ‘*’ next to each diagram) does not influence the dynamics of the direction and place systems. Note that
head-direction and place cells are strongly coupled and always rotate consistently with each other.

At the beginning of each recording trial, the robot is “disoriented” and placed inside the arena at
the nest location (i.e., case 2 in Sec. 10.2.1). Then, it first tries to re-align its direction representation
relative to the external cue. This process usually succeeds for the robot that did not undergo disorienting
training. Indeed, with respect to its inertial system, the light has been perceived as stable during training.
By contrast, the robot trained under disorienting conditions usually fails to recalibrate its head-direction
cells, and keeps its directional sense as randomly initialized at the beginning of the trial.

Fig. 10.7 shows some results obtained during the first recording series. The tuning curve of one poSC
direction cell as well as the place fields of two CA3-CA1 neurons are displayed. The light source exerts
a strong control upon both directional and place coding: the head-direction cell and the place cells rotate
their firing patterns following the light reference. Importantly, head-direction and place cells always
rotate consistently with each other, forming a unitary system.

Fig. 10.8 illustrates results obtained with the robot trained under disorienting conditions. The external
cue does not influence the directional and place representations: despite its constant position, recorded
cells vary their receptive fields across trials. Since the robot fails to re-align the components of its spatial
learning system, between-session hippocampal remapping occurs (even if the robot enters a familiar
environment). Note that, recorded cells maintain similar receptive fields during sessions 3 and 4 (i.e.,
remapping does not occur). This is solely due to the fact that at the beginning of these trials the robot’s
directional system has been initialized to two similar random configurations.

Results shown in Figs. 10.7 and 10.8 are consistent to those reported by Knierim et al. when record-
ing from freely-moving rats [166].
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10.4 Discussion

In this chapter, the different components of our spatial learning system (i.e., head-direction cells, vision-
based place code, and path integration) are combined to form a unitary system. We stress the importance
of integrating external and internal signals to drive place cell activity in CA3-CA1. The idiothetic path-
way provides a spatial framework suitable to compensate for unreliable visual information. Conversely,
visual cues allow the path integrator to maintain a coherent representation over time. This closed sen-
sory loop results in a stable representation in our hippocampus proper. We also stress the importance
of the coupling between head-direction and place cells. Their mutual interaction is a crucial issue with
respect to the self-localization task. Consistently with experimental results, disrupting our poSC layer,
for instance, would severely impair spatial learning [352].

The system relies upon the interaction between separate maps (i.e., direction representation, allo-
thetic and idiothetic space codes), so that entering a familiar environment results in retrieving a coherent
description of the world by realigning the above representations. Such a recalling mechanism relies on
experience-dependent LTP coupling. Failing to retrieve a consistent internal representation, leads to hip-
pocampal remapping. Thus, the model is consistent with the fact the LTP-deficient animals (e.g., old
rats) may develop a new hippocampal representation upon arrival into a familiar environment.

Our place cell assembly grows incrementally during exploration. Redundancy in the place code
is considered as a crucial property to yield robustness. The model produces a spatial representation
consisting of a large population of localized overlapping place fields covering the environment uniformly
and densely. Population vector coding is employed to interpret the ensemble CA3-CA1 activity [394].

The adopted working hypothesis is compatible with Tolman’s latent learning concept [361]: The
hippocampal space representation is built in the absence of any specific reward, and a sort of “curiosity”
solely motivates exploration [367]. Nevertheless, neurophysiological findings show that place cells can
become strongly correlated to reward locations [209, 391, 51, 239] (Chapter 6). A way to understand this
consists of considering the dependency of the hippocampal representation on multivariate sensory inputs:
Among several sources of information, the animal might use the reward signal received at location ~p to
tune up one pyramidal cell i coding for ~pi ≈ ~p. If the reward information becomes predominant with
respect to the other sensory inputs (e.g., vision), then cell i might become mostly correlated to the reward
signal. Then, moving the rewarding location would result in a shift of the place field of i.

The model captures some properties of biological place cells (Chapter 6): It produces plausible CA3-
CA1 place fields [254, 243, 242], anatomical topology does not occur in the hippocampal ensemble
[254, 177, 357, 240], place cell firing patterns are uncorrelated across different environments [177, 243,
240, 357, 278], rapid learning of place fields occurs [147, 394, 18], asymmetry in the CA3-CA1 firing
persists even in visually symmetric environments [322, 324]. Due to the contribution of the idiothetic
pathway, cells in the CA3-CA1 layer of the model exhibit clean location selectivity even when allothetic
cues are removed or in complete darkness [254, 148, 271, 240, 258, 212, 278]. In addition, since our
idiothetic representation depends on the entry position, the latter plays an important role in determining
the influence of visual cues upon place field locations [324]. Also, according to experimental findings
[32, 166], the more stable an allothetic cue (e.g., a light cue) is perceived by the robot, the more it will
control the dynamics of our CA3-CA1 place cells.

The model is compatible with anatomical lesion data showing that damaging the hippocampus proper
disrupts spatial cognition [236, 237], whereas does not affect path integration [4]. Lesions to the entorhi-
nal layer of our model (i.e., sLEC and sMEC substrates) would seriously impair spatial selectivity of
pyramidal cells in CA3-CA1 (consistent to [220, 261, 307, 127, 278]). The model predicts the damaging
sMEC would diminish the influence of idiothetic signals upon CA3-CA1 firing, whereas lesioning sLEC
would impair the influence of visual information. Finally, since our path integrator is reset by taking
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the allothetic sLEC code as calibrating signal, the model predicts that cutting off the sLEC → sMEC
projections would impair the animal’s capability of maintaining a coherent idiothetic space code.

Much has to be done to account for several other important properties of biological place cells.
For instance, the current system does not model the phase relationship between the theta rhythm and
hippocampal place cell firing [257, 330]. Another property that is not captured by the model is the
experience-dependent reshaping of CA1 place fields observed when animals experience several times a
route [215, 216]. Also, the role of the dentate gyrus (DG) is currently neglected by the model. To con-
clude, experiments involving environment manipulations (e.g., shrinking and stretching the experimental
arena) as well as tests in changing environmental conditions (e.g., changing light) need to be performed
to replicate several neurophysiological data (see Chapter 14 for a discussion concerning future work).
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Foreword

The spatial behavior of a rat is likely to be the result of a continuous combination of different navigation
modalities [114, 274]. Which strategy predominates at any time depends on the sensory information
available to the animal [287]. A simple stimulus-response strategy can be used to finding a food source
when the latter is visible or it smells (i.e., taxon navigation [256, 309]). Applying a specific motor
sequence can be used to solve tasks in which the target is identified by a succession of cues (i.e., praxic
navigation [272]). However, in more complex navigation tasks (e.g., when the target cannot be directly
perceived by the animal, as the hidden-escape platform in the water maze [233]), goal-oriented navigation
needs to be supported by spatial learning (i.e., locale navigation [256]). As mentioned early in this
dissertation (Part III), the hippocampus provides a neural support for such a cognitive spatial behavior.
Lesion data indicate that the hippocampus is important for locale navigation but not for taxon navigation
[236, 237, 267] (Chapter 6).

The hippocampal place cell activity encodes locations but does not provide information about how
to navigate from one place to another. In this part of the thesis we focus on locale navigation and we ask
the following question: How can target-directed cognitive behavior be achieved based on hippocampal
place fields?

• In Chapter 11 we discuss some general issues concerning navigation capabilities of animals and
we review experimental data on rodents.

• In Chapter 12 some previous models of hippocampal-based navigation are reviewed. We also
present results obtained by implementing: (i) The model by Abbott, Blum, and Gerstner [1, 46,
122] using our place field substrate as underlying space representation (Chapter 10); (ii) The nav-
igation part of the model by Burgess, Recce, and O’Keefe (results concerning the implementation
of the space-code part have been reported in Sec. 7.1.2).

Contributions: We propose an action learning scheme that allows the agent to acquire navigational
maps based on rewarding signals. Our place fields provide a coarse coding representation which
is suitable for applying reinforcement learning in continuous space [343]. Furthermore, since
the established place code is goal-independent, it provides a basis onto which navigation to a
newly added target (or to several distinct targets) can be quickly learned, i.e., latent learning (the
navigation model described in this part of the thesis has been published in [14, 16]):

• In Chapter 13 we describe the reward-based learning scheme and we present results obtained by
validating the model with the Khepera robot.
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Chapter 11

Goal-oriented Behavior in Animals

In Chapter 6, we have discussed neurophysiological as well as anatomical-lesion data supporting the
hypothesis that the hippocampus endows animals with cognitive spatial behavior. In this chapter, we
consider behavioral studies, that is, experiments to investigate, through behavior analysis, the ability of
animals to reach interesting places. Returning home, finding a food source, avoiding dangerous areas:
all these tasks demand effective navigation skills, and can be reproduced in controlled environmental
conditions1 .

In particular, we review experiments concerning open-field navigation [233, 236, 76, 32, 33, 132,
337]. We do not provide an exhaustive experimental review2. Rather, we provide some elements that
are relevant to the concepts treated in this part of the thesis. To this extend, for instance, we briefly
describe some properties of the nucleus accumbens and of dopaminergic neurons which will support our
discussion about reward-based learning.

11.1 Goal-oriented Navigation in the Water Maze

The water maze experimental setup is one of the most utilized for studying hippocampally dependent
navigation. Since it was first introduced by Morris in 1981, a huge amount of data has been collected
about rodents’ capability of learning this task [233, 236, 307, 237, 385, 25, 337]. In particular, many
lesion studies have been done by employing this open-field environment (Chapter 6).

As shown in Fig. 6.5 (a), the Morris water maze is a large circular pool (e.g., 1 − 2 m of diameter)
containing opaque liquid (e.g., milk mixed with water). The navigation task consists of reaching an
escape platform (e.g., 0.1 m of diameter) located somewhere within the pool. The animal must learn to
navigate to the platform from any location. The task is termed hidden escape-platform water maze when
the platform is submerged just below the surface. Alternatively, it is termed visible escape-platform water
maze if the platform is above the water surface. Finally, a cued-platform water maze is a task in which
a local landmark (e.g., a ball hanging above the platform) indicates the target location. In the following,
we will concentrate on the hidden escape-platform task. Two major protocols have been defined:

1A controlled environment is an experimental setup in which most of the variables that can influence the animal behavior
(e.g., light, noise, odor, visual cues) are controlled by the experimenter.

2Refer to [361, 256, 114, 282, 371] for more comprehensive experimental overviews.
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Figure 11.1: Experimental data showing the performance of rats on solving the reference memory water maze RMW, (a),
and the delayed matching-to-place water maze DMP, (b). Animals are given four trials per day during consecutive days. For
each trial, the time needed by the animal to find the hidden platform is measured (i.e., escape latency). Data courtesy Foster,
Morris and Dayan [337, 107].

(i) The reference memory water maze task (RMW) [233]: The platform has a fixed location during
the entire training. Rats are given several learning trials per day (e.g., four), for several consecutive
days. At the beginning of each trial, the rat is entered the pool at one of four starting locations (e.g.,
north, south, west, or east edge). Using different entry positions over trials reduces the possibility of
solving the task by praxic navigation (i.e., by simply re-executing a sequence of locomotor actions that
worked successfully previously). As shown in Fig. 11.1 (a), normal rats can learn the RMW task in a
few trials. Performance are measured in terms of mean escape latency (i.e., the average time needed
by the animal to find the platform). In this experiment, rats received four training trials per day. The
diagram shows that they are able to navigate directly to the platform after less than 20 trials (i.e., escape
latencies become very short during days 5 − 7). However, if the platform is subsequentially relocated,
animals need some re-training before exhibiting direct navigation trajectories to the new target location.
Nonetheless, learning the new task occurs rapidly (i.e., escape latencies during days 8− 9).

(ii) The delayed matching-to-place water maze (DMP) [337]: The hidden platform is maintained
in the same position throughout the day, but it is given a new location at the beginning of each day.
Fig. 11.1 (b) shows the performance of rats when solving the DMP task. Interestingly, animals exhibit
one-trial learning after a few days of training. Indeed, as shown in Fig. 11.1 (b), they can swim directly
to the platform on the second trial of day 6. Thus, rats are able not only to avoid interference between
consecutive training days, but they can also generalize from previous experience to improve navigation
during later days [107].

11.2 Navigation based on Local-landmark Information
Collett and colleagues, in 1986, performed a series of behavioral experiments to investigate the ability of
animals to use local-landmark information (within an otherwise impoverished open-field environment)
to achieve goal-directed navigation [76]. In particular, they were interested in understanding (i) what a
rodent can learn about the geometrical relationships between a goal and nearby visual cues, (ii) how it
uses this information to navigate to a target. They trained gerbils to find a feeder location identified by
an array of cylindrical landmarks. In this experiment, the animal’s entry position as well as the location
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of the landmark array changed randomly across training trials. However, the food source remained at the
same position relative to the landmark array. After training, probe tests were run by removing the food
source and measuring the time spent by animals at each location of the environment.

Experimental results reveal that gerbils are able to learn the spatial relationship between the target
location and either a single local cue or an array of local landmarks [76, 282]:

(i) Single landmark: Gerbils can easily learn to find a food source located at a specific bearing and
distance to a single cylinder (Fig. 11.2 (a)).

(ii) Two landmarks: When trained to search for food at a position identified by two local landmarks,
gerbils are able to combine the bearing-distance information relative to both cues (Fig. 11.2 (b)).
If probe trials are run with only one cylinder, animals search alternatively in two locations, each of
which located at the learned distance and bearing from one of the experienced landmarks (Fig. 11.2
(c)). If, after training, the two-landmark array is stretched (e.g., the distance between the two cylin-
ders is doubled), gerbils concentrate their search on two locations, each at the learned distance-
bearing from the corresponding landmark (Fig. 11.2 (d)).

(iii) Three landmarks: Animals are able to find a target located at the center of a configuration of three
landmarks (Fig. 11.2 (e)). Adding one more cylinder during probe trials does not modify the
location where gerbils expect to find food, i.e., the fourth landmark is ignored, (Fig. 11.2 (f)).
Removing one cylinder during test does not impair animals’ searching behavior (Fig. 11.2 (g)). If
only one landmark is used during probe sessions, gerbils search at three distinct locations equally
distant from the cylinder but with bearings relative to each experienced landmark (Fig. 11.2 (h)).
Finally, if one element of the three-landmark array is relocated with respect to the original config-
uration (e.g., the triangular array is stretched), gerbils continue to search at the correct location by
using information provided by the two unchanged cues (Fig. 11.2 (i)).

Given the above findings, Collett and colleagues concluded that gerbils are able to establish a com-
plete representation of the environment which allows them to store (or to compute from) the geometric
arrangement of landmarks and goal [76].

11.3 The Role of Dopamine in Reward-based Learning

Neurophysiological data show that dopamine neurons in the ventral tegmental area (VTA) encode the
difference between expected and actual occurrence of reward-related stimuli [189, 312]. Indeed, the
response of these neurons is a function of the unpredictability of incoming reward (or reward-predicting)
stimuli: They respond positively to rewards which occur unpredictably. Instead, they remain silent if a
fully predicted stimulus arrives. Conversely, when a predicted reward fails to occur, dopamine neurons
respond negatively3 exactly at the time at which the reward is expected.

The response of dopamine neurons occurs for specific rewards. For instance, when the animal
touches a small morsel of hidden food. However, if a similarly shaped non-food object is given to the
animal, there is no dopamine response. A further property is that dopamine responses are independent
of the direction of the stimulus relative to the body axis. Also, reward-related stimulation activates most
of dopamine neurons in parallel. This suggests that these neurons respond as a population rather than
exhibiting distinct response profiles among each other. Finally, dopamine neurons respond mostly to
unconditioned rewards as well as to conditioned reward-predicting stimuli. They also respond to novel

3A positive (negative) response occurs when neurons fire more (less) action-potentials with respect to their background
activity. Similarly, a silent dopamine neuron is one that does not vary its activity when a rewarding stimulus arrives.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11.2: Experimental results showing the performance of gerbils in searching for a food source at a position identified
by a landmark array. Filled black circles indicate cylindrical landmarks, whereas black crosses indicate the locations mostly
visited by animals during probe trials. Adapted from Collett et al. [76].

or arousing stimuli. A novel stimulus could be a potential reward or a reward predictor and it can be
considered as a reward-related event [310].

Dopamine neurons project to the frontal cortex and to the striatum (i.e., caudate nucleus, putmen,
and ventral striatum including nucleus accumbens). These structures seem to be involved in processing
information concerning behavioral actions (e.g., goal-oriented movements). In particular, neurons in the
ventral part of the striatum are primarily activated in relation to the expectation of rewards [311]. Thus,
striatal cells might be informed by dopamine neurons about the occurrence of unconditioned or condi-
tioned reward-related events. The presence of dopamine-dependent plasticity in the striatum suggests
that dopamine responses might be involved in plasticity changes yielding reward-based learning [310].
Indeed, since the activity of dopamine neurons is a function of the unpredictability of a reward, dopamin-
ergic activity might work as a prediction error signal (i.e., the difference R(t)−R ′(t) between the actual
reward R(t) at time t and the predicted reward R′(t)) suitable for learning. Then, striatal plasticity may
be exploited to modify synaptic efficacy based on the dopamine prediction error [312].

11.4 The Nucleus Accumbens

As mentioned in Chapter 6, the nucleus accumbens (NA) seems to be involved in the neural mechanisms
underlying cognitive spatial behavior. Experiments show that NA lesions disrupt the performance of rats
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on learning the hidden water maze, but not the visible-platform task [341].
In particular, the nucleus accumbens seems to play an important role in spatial locomotion based on

reward-dependent learning [387, 55]. Indeed:

(i) NA receives space coding information from the hippocampal formation via the fornix fiber bundle
[344, 8];

(ii) NA receives dopaminergic inputs from the brainstem (via the ventral tegmental area) which are
likely to transmit rewarding brain stimulation [188, 315];

(iii) NA may influence locomotion through its efferent projections to pallidal, hypothalamic, and mes-
encephalic structures [139, 75]. Furthermore, when testing hippocampal lesioned rats with dis-
rupted dopaminergic input to the striatum (including NA), Whishaw and Mittleman [387] found
that combined hippocampal-accumbens lesions yield a decrease of the animal’s locomotor behav-
ior [387].

Therefore, the nucleus accumbens can be thought of as a locomotor-related structure in which spatial
information as well as reward-based signals converge [55]. This suggests that NA might be strongly
implicated in target-dependent action learning.
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Chapter 12

Modeling the Role of Hippocampus in
Navigation: State of the Art

Since the first experimental findings have shown the hippocampal role in rodent cognitive behavior,
several models have been proposed to achieve hippocampally dependent navigation [62, 377, 55, 308,
46, 122, 116, 368, 107]. Some of these models assume the existence of an ‘ideal’ place cell represen-
tation [377, 55, 46, 122, 368, 107], some others are also concerned with establishing place fields from
sensory inputs [62, 308, 117]. Despite their differences, all these approaches share the idea that com-
plex navigation (i.e., not merely stimulus-response mapping) can be effectively accomplished based on
hippocampal space coding.

In this chapter, we review some of the above navigation models1. We also present simulation results
obtained by implementing two of these approaches: The model by Burgess, Recce, and O’Keefe [62],
and the model by Abbott, Blum, and Gerstner [1, 46, 122] (Part III).

12.1 Burgess, Recce, and O’Keefe (1994)∗

This model postulates a goal-memory system in which each target is represented by a set of goal cells
(GC) one synapse downstream of hippocampal place cells [62, 61]. GC activity encodes the animal’s
position with respect to the goal (e.g., cell GCN will fire maximally whenever the rat is north of the
target). In particular, each goal cell is assumed to have a conic firing distribution over the entire envi-
ronment peaked close to the goal (e.g., GCN has a firing map peaked to the north of the target). As a
consequence, since GC activity decreases as the distance to the goal increases, the animal can estimate
both its direction and its distance to the target. In order to approximate the direction of the animal to the
goal, population vector coding is applied to interpret the ensemble goal cell activity.

One-shot Hebbian learning is applied to modify the connections from place cells to goal cells when-
ever the animal receives the corresponding reward. In particular, the reinforcement signal is gated by the
head-direction system before reaching the goal cell population, such that, for instance, cell GCN receives

1Those models that do not assume the existence of place fields but that create them from sensory inputs, have already been
introduced in Chapter 7. Here, we only discuss their navigation part. A label ‘*’ is used to distinguish these models from those
that do assume an ideal place field population.
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an excitatory input only when the rat is at the target location and faces north. Whenever a goal cell GC i

receives the reward signal, connections from the currently active place cells to GCi are “switched on”.
Below is scheme of the model:

on/off 
synapses

n s we

n

e

s

w

R

subicular place cells

goal cells

cells
head−direction

The authors assume that (i) the reinforcement signal R always arrives at a late phase of each theta
cycle, (ii) whenever the rat finds a rewarding location, it turns on the spot and looks in several directions.
Since learning occurs at a late phase of theta, when the rat is at the goal location and faces north, for
instance, connections to cell GCN will be created from those place cells having place fields centered to
the north of the goal2. Thus, after learning, whenever the rat is north with respect to the goal, cell GCN

will fire more strongly than each other cell GCi. This will provide the animal with the direction to be
taken in order to navigate towards the goal.

An intrinsic limitation of the hypothesis by Burgess, Recce, and O’Keefe is that only those place
cells whose place field contains the target are correlated to the goal cells by Hebbian learning. This
results in goal cells of limited attraction radius which impairs agent’s navigation at large distances from
the target. For this reason, the authors postulate that place cells driving GC activity are not located in
the hippocampus proper but in the subiculum. Indeed, subicular cells have broader place fields than
CA3-CA1 cells (Chapter 6). However, this does not solve the problem of loosing navigation information
at very large distances from the target (i.e., for distances larger than the size of subicular place fields).

In Fig. 12.1 we show some simulation results obtained by implementing the above navigation model3.
Figs. 12.1 (a, b, c) show, respectively, the simulated environment with the target (darkgrey square) at the
center, a navigational map acquired after training, and an example of goal-directed behavior performed
by the agent (lightgrey circle) based on the learned map. Fig. 12.1 (d) shows the same environment with
the goal located near to the bottom-right corner. As a consequence, the maximal distance the robot has
to travel to reach the goal is larger than in the previous experiment. Figs. 12.1 (e, f) show, respectively, a
successful and a failing goal-oriented path. As previously discussed, the above navigation model suffers
from a “distal reward problem” [107]. Indeed, in Fig. 12.1 (f) the simulated agent becomes lost at the
upper-left corner (where the distance to the goal is maximal) since it does not receive any directional
signal from the population of goal cells.

12.2 Wan, Redish, and Touretzky (1994, 1997)∗

Hippocampal-dependent navigation, in the model by Wan, Redish, and Touretzky [377, 286], relies
upon vector subtraction within an allocentric coordinate system. As we have seen in Sec. 7.1.3, the
authors put forward a theory of rodent navigation in which place cell activity depends on both local
views (i.e., allothetic-based place recognition) and metric information relative to a reference point (i.e.,
path integrator coordinates). On entering a familiar environment, the agent uses visual cues to activate the
place code for the current location ~p(t), and it recalls the path integrator coordinates (xp, yp) associated

2As seen in Sec. 6.4, a place cell i firing at a late phase of theta tends to have a place field centered ahead of the animal.
3The part of the model concerning the acquisition of the space representation has also been implemented (Sec. 7.1.2).



12.3. BROWN AND SHARP (1995) 141

goal

(a) (b)

goal

(c)

goal

(d)

goal

(e)

goal

(f)

Figure 12.1: Some results obtained by implementing the navigation model by Burgess, Recce, and O’Keefe [62].

with place ~p. Once the animal has reconstructed its position within the metric reference frame, it can
estimate the position of the goal within this coordinate system, (xg, yg)

4, and it can compute the direction
~dg leading to the goal by vector subtraction, i.e., ~dg =

(xg

yg

)

−
(xp

yp

)

. Note that this does not provide explicit

obstacle avoidance information.
The authors model behavioral data from Collett and colleagues [76], in which gerbils have to find

a food location identified by an array of local landmarks in an otherwise impoverished environment.
Computer simulations reported by Wan, Redish, and Touretzky show goal-position estimates that are
consistent with experimental data. The model, however, does not produce explicit locomotion behavior
towards a rewarding location. Rather, the simulated gerbil is placed at 100 randomly-chosen locations
in the environment. For each trial i, 1 ≤ i ≤ 100, the model reconstructs its entry position (xi

p, y
i
p), and

from that it simply provides an estimate of the goal location (xg, yg).

12.3 Brown and Sharp (1995)∗

Similar to the model by Burgess, Recce, and O’Keefe, Brown and Sharp propose a neural system in which
place and direction codes are mapped into actions based on reward signals [55]. An important difference,
however, is that they model motion directions egocentrically (e.g., turn left), rather than allocentrically
(e.g., the goal is to the north).

4Given that the goal position (xg, yg) has been learned by the agent during training.
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The authors concentrate on the nucleus accumbens (NA) and model it as two separate clusters of 60
output units each: one cluster is associated with left-turns, the other with right-turns. Each cell i ∈ NA
can be considered as a motor cell5. Each cluster also contains 60 inhibitory interneurons, each of which
projects to a unique subset of 59 motor cells. Thus, whenever an interneuron becomes active, it inhibits
all the motor units within its cluster but one. Interneurons are activated by hippocampal place cells. In
particular, Brown and Sharp consider 60 place units in total. For each spatial location there is only one
place cell firing (i.e., winner-take-all scheme). Each place cell projects to a unique interneuron within
each cluster. Thus, for each position, the activation of one place cell mediates the inhibition of all but
two motor units, il and ir, one unit for each NA cluster.

Which of the two units il and ir will actually fire is determined by the head-direction cells (HD):
each cell i ∈ NA receives one plastic excitatory afferent from each directional cell j and is activated
according to ai =

∑

j wijrj . Thus, of the two motor neurons that have not been inhibited il and ir, the
one fires which has the highest activation (e.g., il, if ail > air ). The winner cell (e.g., il) will determine
the agent’s motion direction6 (e.g., left). Below is a diagram of the model:

il

       place cells

motor cells
ir

       head−direction cells
j

rightleft

Synaptic weights wij from HD cells to NA motor cells are initialized randomly and changed when-
ever the agent reaches the target. In order to back-propagate the reward-triggered synaptic change (i.e.,
to update those HD→NA projections responsible for the actions taken during the agent’s trajectory),
Brown and Sharp use a memory trace: those synapses which led to more recently correct movements are
strengthened the most, while synapses associated to early good actions are strengthened less.

The above model has been tested by computer simulations to learn the hidden-platform water maze
(in particular, the reference memory task (RMW) as defined in Chapter 11). Results are comparable to
experimental data [233].

12.4 Schölkopf and Mallot (1995)∗

In the models by Burgess, Recce, and O’Keefe [62, 61] and Brown and Sharp [55], goal-oriented naviga-
tion is achieved by mapping places into local actions. Alternatively, navigation can be accomplished by
path planning based on a topological map. The model by Schölkopf and Mallot [308] adopts this view.

As seen in Chapter 7, the central idea of the authors is that a topological view graph (rather that
a place graph) is sufficient for navigation. Each node of the graph corresponds to a given view, while
edges indicate temporal coherence between views: Two nodes i and j are connected if and only if the

5Note that, since actions are encoded within an egocentric framework it is appropriate to speak about motor units; real motor
neurons would be neurons in the motor cortex or in the spinal cord.

6The agent rotates by an angle of 11◦ and it moves by a small distance.



12.5. ABBOTT, BLUM, AND GERSTNER (1996, 1997) 143

corresponding views vi and vj are temporally sequential. Furthermore, each edge i → j is labeled by the
egocentric movement (i.e., go left, right, back) leading the agent from view vi to the subsequent view vj .

Given this view-graph representation, path planning is employed to determine the minimal-length
sequence of movements to go from the current view vi to the desired view vgoal. In particular, path plan-
ning is performed by adopting a breadth-first search algorithm that can be seen as “mental exploration”:
(i) The goal view vgoal is “imagined” in order to find which node in the graph it corresponds to; (ii)
The lengths of all possible paths from the current node vi to vgoal produced by “imaging” all possible
movements from vi are evaluated; (iii) The movement µ producing the optimal path is selected; (iv) The
process is iterated from the new current view vj reached by executing µ from vi.

In other words, this planning algorithm “explores mentally” all paths that have been experienced
during exploration (as well as novel combinations of them) in order to find the optimal trajectory between
arbitrary points in the representation. As reported by the authors, the necessary concepts to implement
the above path planning mechanism by a neural machinery have not been explicitly implemented in the
model.

12.5 Abbott, Blum, and Gerstner (1996, 1997)

Abbott and Blum [1] put forward a theory concerning the functional understanding of NMDA-dependent
LTP (Chapter 6). They address the following question: How does LTP-synaptic enhancement affect the
behavioral read-out of a neural population? As a general outcome, they postulate that LTP enables a
neural network encoding a quantity A to generate an experienced-based prediction of future A values.
In particular, they argue that LTP-dependent training induces a shift in the ensemble code with important
behavioral implications.

To validate their theory, Blum and Abbott [46] examine the effect of LTP on the ensemble place cell
coding. They show that the shift arising from collateral synaptic potentiation provides a useful infor-
mation to support goal-oriented behavior. The navigation model relies on two experimentally supported
elements: (i) NMDA-mediated LTP is temporally asymmetric (i.e., only if presynaptic firing precedes
postsynaptic activity by less than about 200ms LTP occurs, otherwise either there is no LTP or LTD
takes place [183, 85, 1]); (ii) Population vector decoding can be applied to interpret place cell ensemble
activity as physical locations [394].

The authors focus on CA3 collaterals and change their synaptic efficacy according to a reward-
induced LTP. After training (consisting of a set of exploratory paths leading the agent to a target location),
CA3 ensemble activity no longer encodes the agent’s actual position ~p1, but a different location ~p2

nearby. This experience-induced shift in the spatial information encoded by the ensemble CA3 firing,
∆~p = ~p2−~p1, provides the local action to reach the target position. Blum and Abbott report that applying
this navigation mechanism to solve the hidden-platform water maze (in particular, its reference memory
version (RMW)), produces a latency decrease over trial consistent with experimental data [236].

Gerstner and Abbott [122] extend the above approach in order to achieve navigation (i) in the pres-
ence of obstacles, (ii) for multiple target locations. With respect to this latter issue, they introduce a
target-dependent modulatory mechanism influencing place cell activity. After learning (involving mul-
tiple reward locations), this mechanism allows place cells to provide multiple navigational maps corre-
sponding to different targets. Furthermore, interpolating maps to learned targets provides directions to
novel unexperienced goals.

The model by Abbott, Blum, and Gerstner predicts that individual place fields should shift as a result
of learning. As mentioned in Chapter 6, recent experimental data suggest that an experience-dependent
place field shifting does actually occur when an animal takes several times a route [215, 216].
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(a) (b)

(c) (d)

Figure 12.2: Some results obtained by implementing the navigation model by Abbott, Blum, and Gerstner [1, 46, 122]. Our
incrementally learned place field representation has been used as basis to support the proposed action learning mechanism. The
navigational map shown in (b) has been learned after 5 training trials, whereas the map in (d) has been acquired after 10 trials.

A limitation of the above theory is that place cells need to be tied to physical locations within a
metric coordinate system (as in Wan, Redish, and Touretzky [377, 286]). This is indeed necessary to
derive the local directions of movement encoded by the shift of the center of mass of the ensemble
hippocampal activity. A second assumption of the model is that hippocampal place cells need to exhibit
a dual space code. Indeed, they have to simultaneously represent both the true animal’s location and the
shifted position in order to extract the vector difference providing the navigational map.

The theory by Abbott, Blum, and Gerstner does not account for place field establishment based on
sensory information. Rather, it focuses on how LTP can affect the activity of an ideal population of
place cells consisting of evenly distributed Gaussian-tuned units. In an early stage of this thesis work,
we have employed our incrementally learned place field substrate (Chapter 10) as a basis to implement
the above navigation model [13]. This completes the system in the sense that the underlying space code
supporting action learning is not manually built, but it is learned by modeling spatio-temporal features of
the environment. Fig. 12.2 shows two examples of navigational maps obtained by computer simulation.
During training, the simulated agent (lightgrey circle) moves along straight exploratory paths avoiding
collisions with walls and obstacles (white rectangle). Every exploratory path starts at a random position
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and with a random orientation and ends when the target (darkgrey square) is reached. Dashed lines
shown in Fig. 12.2 are examples of training paths. The two vector field representations, Figs. 12.2 (b, d),
show the two navigational maps generated after 5 and 10 training trials, respectively. Arrows indicate
local directions as suggested by the shifted population vector for each sampled position7 . Finally, solid
trajectories are examples of paths taken by the agent according the encoded navigation map.

12.6 Trullier and Meyer (1997)∗

As described in Sec. 7.1.5, Trullier and Meyer [370, 368, 369] consider the rat hippocampus (in particu-
lar, its CA3 region) as an hetero-associative memory in the spatial domain: place cells form a recurrent
network that learns the spatial relationships between neighboring locations. Thus, CA3 provides a di-
rected graph in which nodes are places and links indicate adjacency between places. In addition, similar
to Schölkopf and Mallot [308], links are labeled by head-direction information. This results in a topo-
logical representation suitable to support navigation.

In the model, goal-oriented behavior is achieved by combining reward-signal propagation with the
existence of goal cells. Whenever the agent finds a target, it recruits a set of goal cells and it looks in
all directions [62]. For each orientation θi, the system induces a firing activity in all CA3 cells encoding
locations in that gaze direction (by exploiting the fact that links in the CA3 graph are gated by head-
direction information), regardless of the distance from the goal. Then, Hebbian learning is applied to
correlate active CA3 place cells to the goal cell corresponding to θi. After learning, activating one of
these CA3 cells will result in exciting the appropriate goal cell which will indicate where the animat is
relative to the goal.

However, the above propagation mechanism does not bypass obstacles. Thus, in the presence of
barriers, the activity of a set of goal cells does not cover the entire environment. Let Sg denote the surface
of the environment in which goal cells can guide the agent towards the target. In order to overcome this
problem, Trullier and Meyer postulate the existence of subgoal cells: neurons that allow the animat
to navigate from places ~p that are not covered by goal cell activity, i.e., ~p /∈ Sg, to places ~p ′ ∈ Sg.
Whenever the agent is at a location ~p /∈ Sg, it starts wandering until when it finds a place ~p ′ ∈ Sg.
At that time, it recruits a new set of subgoals and it looks in all directions to update the connections
from CA3 to this new set of subgoal cells. After learning, whenever the animat will be in a position
~p /∈ Sg, an appropriate subgoal cell will be activated in order to guide it towards a place ~p ′ ∈ Sg. Thus,
goal-oriented information is stored which allows the agent to skirt around obstacles (if the environment
contains several barriers, the agent has to recruit multiple sets of subgoals).

Trullier and Meyer report computer simulations showing that the model allows an animat to perform
goal-oriented navigation in presence of obstacles. However, as pointed out by the authors, the system
does not cope with dynamically changing environments (e.g., moving, appearing, or disappearing obsta-
cles).

12.7 Gaussier et al. (1998)∗

In the model by Gaussier and colleagues [117] cognitive navigation is seen as a temporal sequence pro-
cess (similar to Schölkopf and Mallot [308], and Trullier and Meyer [370]). A goal map layer is consid-
ered one synapse downstream of the place recognition level (the latter has been described in Sec. 7.1.6).
The goal map provides a topological representation of the environment in which places (nodes) are in-
terconnected according to their experienced temporal proximity. In particular, the weight w ij of the link

7The vector field representations have been obtained by rastering randomly over the obstacle-free areas of the environment.
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between two successively visited places j and i is increased by Hebbian learning. Thus, wij = 0 when
there is no path from j to i, whereas 0 < wij ≤ 1 when i is directly reachable from j. Below is a scheme
illustrating the architecture of the system:

wij

i

j

Motivation

g

       place recognition

       goal map

Whenever a motivation activates one unit g of the goal map, it is propagated to the other neurons
through the synaptic weights wij . If ri, with 0 ≤ ri ≤ 1, denotes the activation of a cell i in the goal
map, the motivation-propagation algorithm is: (i) rg = 1, (ii) ri = maxj(wij ·rj), ∀i. As a consequence,
a motivation has the effect of activating neurons in the goal map according to their distance to the goal
neuron g. Navigation can then be achieved by following the gradient of the neural activity over the goal
map. Note that the algorithm allows the agent to find the shortest path in the graph.

The authors present computer simulation results in which an agent has to find food and water sources
within an environment with obstacles. Although they claim that the above method can cope with moving
goals and dynamic environments, they do not report any result concerning those experimental situations.

12.8 Foster, Morris, and Dayan (2000)

This model postulates an actor-critic temporal difference (TD) learning mechanism to achieve reward-
based hippocampally dependent navigation [107, 83]. The system consists of three parts: (i) An input
layer of place cells. The authors assume an ideal population of Gaussian units i encoding the agent’s
current position ~p(t). (ii) A critic unit c one synapse downstream of hippocampal place cells. The critic
receives afferent projections wci from all place cells i. (iii) An actor network consisting of eight action
cells aj one synapse downstream of place cells. Each action unit aj , 1 ≤ j ≤ 8, codes for a specific
direction of movement (e.g., north, north-west, and so on) and receives input connections wji from all
place units i.

Given this architecture, TD-learning is applied to update weights wci and wji from place cells i
to the critic c and to the actors aj , respectively. During reward-based learning, the actor continually
produces actions taking the agent around the environment, while the critic continually criticizes the
selected actions. This results in an actor adapting its policy according to the critic’s information, and in
a critic that also adapts to the changing actor8 [343].

The authors focus on experimental findings concerning rodent navigation in the hidden-platform
water maze. In particular, they run computer simulations to solve both the fixed-platform task (i.e., the
reference-memory water maze (RMW)), and the moving-platform task (i.e., the delayed matching-to-
place water maze (DMP)9) [337]. Results show that the above actor-critic model allows the simulated

8The critic network has to learn a value function V (~p), over locations ~p, which is used in TD-learning to evaluate the
action-selection policy currently adopted by the actor [343].

9See Chapter 11.
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animal to learn the RMW task in about 10 trials (consistently with rodent navigation data). On the other
hand, the model fails to reproduce the performance of rats in the DMP task: the system does not adapt to
moving platforms over trial because of the interference from previously learned policies. Rats, instead,
can avoid interference from previous training as well as generalize from experience on previous days to
improve performance on later training [337] (Chapter 11).

In order to overcome this limitation, a further component is added to the model which learns allo-
centric coordinates (i.e., independent of the animal’s entry position). The coordinate system relies on
the hippocampal place cell representation and consists of three elements: (i) A coordinate representation
(xp, yp) of the agent’s current location ~p. This is implemented by two units x and y one synapse down-
stream of hippocampal place cells. Let wxi and wyi be the projection weights from all place cells i to
units x and y, respectively. (ii) A goal coordinate memory (xg, yg) providing the location at which the
platform was lastly found. (iii) A mechanism that performs vector subtraction algorithmically to derive
the direction θg from the current location (xp, yp) to the target (xg, yg).

As the agent moves, TD-learning is applied to update connections wxi and wyi from place cells to
coordinate cells, that is, to acquire the allocentric coordinate system based on relative self-motion. For
every move, the agent has to estimate the difference between its coordinates at the end and at the begin
of the move. This difference should correspond exactly to the relative self-motion during the move. This
consistency condition is used as the basis for TD-learning. The authors report that learning a coordinate
system takes about 16 trials.

The output of the coordinate system is the direction θg to be followed to navigate to the goal. This
information is integrated within the actor-critic system by considering an abstract action cell acoord. This
unit receives reward by the critic depending on its performance in a similar manner to actor cells aj .
This results in a coordinate system which takes the control gradually as it gives increasingly accurate
information about where both the animal and the goal are located. Below is a scheme of the model:

system
coordinate

x,y

ciw wji wxi

wyi

critic a
actor

coord

       place cells

The combined coordinate and actor-critic model has been tested in both the fixed-platform water
maze (RMW) and the moving-platform task (DMP). In both cases, simulation results are consistent with
experimental data [337].

An intrinsic limitation of the above model is that it relies upon an ideal place cell representation
in the sense that (i) it is not built from sensory inputs, (ii) it is assumed to be coherent over time. In
particular, using place cells to learn metric coordinates assumes a completely stable allocentric place
code. Also, as reported by the authors, head-direction information is assumed to be consistent over trial
(e.g., the simulated agent never undergoes disorientation between training trials). Finally, similar to Wan,
Redish, and Touretzky [377, 286], the coordinate model relies upon an explicit memory of the current
goal coordinates (xg, yg) in order to derive the bearing information by means of vector subtraction.
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Chapter 13

Modeling Hippocampus-based Navigation:
Action Learning in Continuous Space

The proposed hippocampal model enables the agent to localize itself within an unfamiliar environment
based on available sensory information (i.e., spatial learning). However, to accomplish its functional
role in spatial behavior (i.e., cognitive navigation), the model must also incorporate the knowledge about
relationships between the environment, its obstacles and reward locations. That is, place cell activity has
to be used to guide navigation.

Fig. 13.1 (a) shows a functional view of the entire system. Spatial learning is achieved by acquiring
place and direction coding incrementally. Both of these modules rely on allothetic as well as idiothetic
stimuli, and interact with each other to maintain consistent representations over time. One synapse
downstream of hippocampal place cells, we have the action learning module. We focus on a specific
neural pathway, namely the fornix projection, connecting the hippocampus to the nucleus accumbens
(NA). As previously mentioned, the latter is an extra-hippocampal structure involved in goal-oriented
locomotor behavior (Chapter 11). We do not propose a model for the nucleus accumbens [55]. Rather,
we simply assume that CA1 place cells project efferents to a population NA = {ai | 1 ≤ i ≤ N } of
locomotor action neurons ai whose anatomical locus is the nucleus accumbens. Each cell ai provides an
allocentric directional motor command (e.g., go north).

Given the above system, the navigation problem is: How can we establish a mapping function M :
R → A from the place cell activity space R to the action space A in order to achieve goal-directed
behavior? We employ reinforcement learning [343] to acquire M through continuous agent-environment
interaction [62, 55, 107]. Synaptic efficacy between CA1 and NA cells is changed as a function of reward-
related signals. This results in an ensemble action cell activity providing, at each time step, the correct
action to navigate to the target.

Within the reinforcement learning paradigm, temporal difference (TD) learning relies on sound math-
ematical foundation and represents a well understood approach [342, 84]. In particular, we utilize Q-
learning [378], a TD-based learning technique.

Problems with high-dimensional continuous state space are a critical issue in reinforcement learning
[303]. In these cases, optimizing the value function (i.e., deriving the function predicting the optimal
long-term reward for a given state when selecting a specific action and following an optimal policy
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thenceforth) means to learn the optimal mapping over a very large number of state-action pairs. Since
exploring the whole state-action space is infeasible, a key property in these problems is the ability of the
agent to estimate the expected value function for never experienced state-action pairs (i.e., generalization
property) [303, 343, 187, 297].

Combining reinforcement learning with function approximation methods permits to learn an action-
value function over a continuous location space, which endows the system with spatial generalization
capabilities. Thus, the animat may be able to associate appropriate actions to spatial positions that it
has never seen before. Our overlapping localized CA3-CA1 place fields provide a natural set of basis
functions that can be used to learn a parameterized form of the action-value Q-function. Note that,
in contrast to other approaches, we do not have to choose parameters like width and location of the
basis functions. Rather, the basis functions are created automatically during the phase of unsupervised
learning.

13.1 Learning Navigational Maps:
Reward-based Action Selection in Continuous Space

Fig. 13.1 (b) shows our action learning system. For each type of target (e.g., food, water), a discrete set
of four NA action cells A = {north, south,west, east} is recruited. Each cell a ∈ A receives afferent
projections ~wa = (wa

1 , . . . , wa
n) from all n CA1 place cells. Therefore, the navigation task consists

of modifying the four synaptic vectors ~wa to learn the location-to-action mapping from each agent’s
position ~p(t) (i.e., state) to the correct local action a(t). This results in learning a set of four Q-value
functions Qw(~p, a).

Let ri and ra denote the activity of place cells i and of action cells a, respectively. Each state ~p(t) is
encoded by the ensemble place cell activity ~r(~p) = (r1(~p), r2(~p), . . . , rn(~p)), where n is the number of
place cells. Thus, the population of place cells can be thought of as a continuous-valued coarse coding
representation. The activity ra of an action cell a depends linearly on the place cell activity ~r(~p) and on
the synaptic weights ~wa:

ra(~p) = Qw(~p, a) = (~wa)T ~r(~p) =
n
∑

i=1

wa
i ri(~p) (13.1)

In order to update ~wa to approximate the optimal goal-oriented action-value function Q∗
w(~p, a), we em-

ploy the linear gradient-descent version of Watkins’ Q-learning algorithm [343]. Given a position ~p, we
interpret the action cell activity ra(~p) as the “expected gain” when taking action a at location ~p of the
environment.

During training, the robot behaves in order to either consolidate goal-directed paths (exploitation)
or find novel routes (exploration). This exploitation-exploration trade-off is determined by an ε-greedy
action selection policy, with 0 ≤ ε ≤ 1 [343]. At each time t, the robot takes the “optimal” action a∗

t

with probability 1− ε (exploitation)

a∗t = argmaxa ra(~pt) (13.2)

or, it might resort to uniform random action selection with probability equal to ε (exploration). At each
step ∆t, the synaptic efficacy of projections ~wa changes according to [343]

∆~wa = α δt ~et (13.3)

The terms in Eq. 13.3 have the following interpretation:
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Figure 13.1: (a) A functional view of the entire system. The space learning module presented in the previous chapters
provides a neural basis for action learning. We focus on the connection from CA1 cells to neurons in the nucleus accumbens
(NA) in order to establish navigation maps. (b) Our Q-learning scheme. The overlapping localized CA3-CA1 place fields
are used as basis functions. A discrete set of actions A = {north, south, west, east} is considered, which results in four
Q-functions Q(~p, north), Q(~p, south), Q(~p, west),Q(~p, east) to be approximated.

(i) The factor α, 0 ≤ α ≤ 1, is a constant learning rate.

(ii) The term δt is the prediction error defined by

δt = Rt+1 + γ max
a

ra(~pt+1)− ra(~pt) (13.4)

where Rt+1 is the actual reward delivered by an internal brain signal, and γ, 0 ≤ γ ≤ 1, is
a constant discount factor. The temporal difference δt estimates the error between the expected
and the actual reward when, given the location ~pt at time t, the agent takes action a and reaches
location ~pt+1 at time t + 1. Training trials allow the system to minimize this error signal. Thus,
asymptotically δt ≈ 0, which means that, given a state-action pair, the deviation between predicted
and actual reward tends to zero.

Neurophysiological data show that the activity of dopamine neurons in mammalian midbrain en-
codes the difference between expected and actual occurrence of reward stimuli [312]. In particular,
the more reliably a reward is predicted, the closer is the rate of a dopamine neuron to its baseline
activity. Thus, the temporal difference error δt used to update our synaptic weights ~wa may be
thought of as a dopamine-like teaching signal (Sec. 11.3).

(iii) During training paths, Eq. 13.3 allows the robot to memorize action sequences. Since recently
taken actions are more relevant than earlier ones, we need a memory trace mechanism to weight
actions as a function of their occurrence time. The vector ~et, called eligibility trace, provides such
a mechanism [343]. The update of the eligibility trace depends on whether the robot selects an
exploratory or an exploiting action. Specifically, the vector ~et changes according to

~et = ~r(~pt) +

{

γλ~et−1 if exploiting
0 if exploring

(13.5)

where λ, 0 ≤ λ ≤ 1, is a trace-decay parameter [343], and ~r(~pt) is the place cell vector activity.
We start with ~e0 = ~0.



152 CHAPTER 13. Modeling Hippocampus-based Action Learning in Continuous Space

goal

(a) (b)

Figure 13.2: (a) A view of the environment with a target location. (b) Vector field representation of the learned navigational
map after 5 training trials.

13.2 Behavioral Experiments in Open-field Environments

Given our experimental setup, we define a specific target region (e.g., a feeding location) within the
environment. We apply the above reward-based learning scheme to build up a navigational strategy
leading the robot towards the target from any location, while avoiding obstacles.

To study robot behavior, we adopt a similar protocol as employed for experiments with rats. Training
involves a series of consecutive sessions each of which consists of a sequence of trials (e.g., five) begin-
ning at a random location and ending when the robot reaches the target or after a timeout (e.g., 120 time
steps). At the beginning of each trial the robot retrieves its starting location on the hippocampal chart
based on the allothetic (visually-driven) place field representation (Chapter 10) [207, 205].

During learning, we take a discrete set of actions A = {north, south,west, east}. However, after
learning, population vector coding is applied to map A into a continuous action space A ′ by averaging
the ensemble action cell activity. Given a position ~p of the robot, the action

a′(~p) ∝

(

cos φ

sinφ

)

(13.6)

is a direction in the environment encoded by the NA action cell activity

a′(~p) =

∑

a∈A a ra(~p)
∑

a∈A ra(~p)
(13.7)

where an =
(0
1

)

, as =
( 0
−1

)

, aw =
(−1

0

)

, and ae =
(1
0

)

are the four principal directions. Eq. 13.7 results
in smooth trajectories.

Experiments have been carried out with a learning rate α = 0.1, a discount factor γ = 1.0, and a
decay factor λ = 0.9. The reward-signal function R(~p) is defined by

R(~p) =







1 if ~p = target state
−0.5 if ~p = collision state
0 otherwise

(13.8)

where collision means contact with walls or obstacles.
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Figure 13.3: Escape latency, in number of time steps, as a function of training trials.

We adopt a dynamically changing ε-probability. The idea is to increase the probability of exploring
novel routes as the time to reach the target increases. The ε parameter is defined by the exponential
function

ε(t) =
exp(β t) + k1

k2
(13.9)

where β = 0.068, k1 = 100, k2 = 1000, and where t = 0, 1, 2, . . . are discrete time steps. If we
consider the dynamic of ε over a time window of 100 time steps, at t = 0 the robot behaves according to
a value ε = 0.101 (i.e., enhancing exploitation), and at t = 100 it behaves according to a value ε = 1.0
(i.e., enhancing exploration). If at the end of the time, t = 100, the target is not reached yet, exploration
is further enhanced by keeping a fixed ε = 1.0 for another 100 time steps. Then, exploitation is resumed
by setting t = 0 and ε = 0.101. Moreover, every time the target is reached the time window is re-
initialized as well, and ε is set equal to 0.101. These are heuristic methods to ensure a sufficient amount
of exploration.

13.2.1 Single Target Experiments

Fig. 13.2 (a) is a view of the experimental arena as seen by the camera above the environment1 . The
target area is about 2.5 times the area occupied by the robot. During training, the target is maintained at
a fixed position. Therefore, this experiment is similar to the reference memory task (RMW) performed
with rats in the water maze (Sec. 11.1). Fig. 13.2 (b) shows the navigational map learned by the robot
after 5 training trials. The vector field representation has been obtained by rastering uniformly over the
whole environment. Each arrow indicates the local action encoded by the ensemble action cell activity
after learning (according to Eq. 13.7). Many of sampled locations were not visited by the robot during
training, which confirms the generalization capabilities of the method. That is, the robot was able to
associate appropriate goal-directed actions to never experienced spatial states. Finally, Fig. 13.3 shows
the mean escape latency (measured in time steps) as a function of training trials. Our model captures the
learning capabilities of rats when solving the RMW task: escape latencies decrease over time and reach
asymptotically low values after few training trials (similar to Fig. 11.1 (a)).

1Results concerning goal-oriented navigation have been mainly obtained with the experimental setup involving the linear
vision system (Chapter 8, Sec. 8.1.1).
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(a) (b)

Figure 13.4: Navigation tasks in the presence of obstacles (grey objects). (a) Vector field representation after 20 training
trials. (b) The same experiment as (a), but the map is the result of 80 training trials.

In a further series of experiments, obstacles have been added within the arena. Figs. 13.4 and 13.5
show that our navigation model enables the robot to cope with the presence of barriers (grey objects).
The vector field representation of Fig. 13.4 (a) has been acquired after 20 training paths. It contains
appropriate goal memory information, whereas it does not provide obstacle avoidance accurately. Note
that, this does not really impair the robot’s target-directed behavior, since obstacle avoidance is supported
by a low-level reactive module driven by infrared sensors. Fig. 13.4 (b) displays a navigational map
learned after 80 trials for the same task. Due to longer training, the map provides both goal-oriented and
obstacle avoidance behavior. Fig. 13.5 (a) shows a map learned after 20 training paths in an experiment
in which the target location is located at the bottom-left corner of the arena. Finally, the map in Fig. 13.5
(b) concerns an experiment with two obstacles and the goal at the same bottom-left location. The map
has been learned after 20 training trials.

13.2.2 Moving a Learned Target

As discussed in Sec. 11.1, if rats are trained to solve the reference memory task (RMW) for several days
and the escape platform is subsequentially relocated, they need some re-training to adapt their navigation
behavior. Nevertheless, they exhibit direct navigation paths to the new target after a few re-training trials
(Fig. 11.1).

This experiment concerns relocating a previously learned target (in particular, the one used for the
experiment of Fig. 13.5 (b)), and enabling the robot to adapt its navigational behavior consequently.
Fig. 13.6 (a) shows an example of robot’s trajectory after it has learned the target at the bottom-left
location. The animat is attracted by the previous feeder position and concentrates its search in the neigh-
boring positions. Therefore, some mechanism is needed to allow the robot to find the new target in the
upper-right corner of the arena. Note that, due to the exploration component of the Q-learning algorithm
(Eq. 13.9), the animat might occasionally find the new goal and then adapt its action-selection policy over
time. However, it would take a large number of re-training trials in order to achieve direct navigation
towards a new target placed in an opposite position with respect to the learned one.

The idea is to endow the system with an internal reward-expectation mechanism. During training,
the robot learns to correlate the place cell activity to the positive reward signal, R = 1, received at the
target location. This is done by taking a neuron d, that we call the reward-expectation cell, one synapse
downstream from the place cell layer (Fig. 13.7 (a)). Let i be an index over the CA3-CA1 cell population.
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(a) (b)

Figure 13.5: Navigation tasks in the presence of obstacles (grey objects). (a) The goal is at the bottom-left corner. The map
has been learned after 20 training trials. (b) The same learning task as (a) but with two obstacles. The map has been learned
after 20 trials.

Projections wdi from place cells i to cell d are inhibitory, and are initialized to random values within the
interval [−0.1, 0]. Cell d receives as input also the external rewarding stimulus R. The activity rd of cell
d is non linear and it is defined by

rd =

{

f(
∑

i wdiri) + R if R ≥ 0
0 otherwise.

(13.10)

where f(x) = tanh(x). Thus, the activity of cell d depends on both the external reward R and the
CA3-CA1 network activity.

In order to learn the desired correlation between the event “positive reward” and the place cell activity,
we apply Hebbian learning to modify the inhibitory weights wdi:

∆wdi = ri · rd(wdi − 1) (13.11)

The more correlated the activities ri and rd, the more inhibitory the synapse wdi.
As a consequence, before associating the external reward signal with the internal spatial representa-

tion, the cell d responds maximally whenever the robot receives a positive R = 1. Indeed, since weights
wdi are initially close to zero, the activity rd ≈ R = 1 (according to Eq. 13.10). As training proceeds,
the robot starts predicting the external stimulus R by learning synapses wdi. Thus, whenever the robot
is near the target location, cell d receives a strong inhibitory input

∑

i wdiri which compensates for the
excitatory reward R. Therefore, when R is fully predicted, even when a reward R = 1 occurs, cell d
remains silent. On the other hand, if the fully predicted reward fails to occur (i.e., the learned target
has been moved away), the activity of cell d is strongly depressed (rd ≈ −1), and an internal negative
reward is generated. When the number of negative internal rewards exceeds a fixed threshold D (e.g.,
D = 10), the robot “gives up” searching the previous target location and starts looking for a new goal.
Thus, after a re-training period, it will start navigate directly to the relocated target. Fig. 13.6 (b) presents
the navigational map obtained after 20 re-training trials. Fig. 13.7 (b) shows the escape latency during
training before target relocation (until trial 40), and after (trials 41 − 60). This result is consistent with
the capability of rats of quickly re-adapting their behavior relative to an escape platform which has been
relocated after several days of training.

The reward-expectation cell d finds its neuro-physiological counterpart in dopamine neurons ob-
served in mammalian midbrain. The response of these neurons encodes the unpredictability of incoming
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goal

(a) (b)

Figure 13.6: (a) The robot uses the navigation map of Fig. 13.5 (b) to navigate to the previously learned target. However,
the latter has been moved to a new location (the solid line is the robot’s trajectory). (b) The re-adapted navigational map
corresponding to the new rewarding location.

stimuli [312]. Indeed, they respond positively to external rewards which occur unpredictably, but they
remain silent if a fully predicted stimulus arrives. Moreover, when a fully-expected reward fails to oc-
cur, dopamine neurons respond negatively exactly at the time at which the reward is expected [312]
(Sec. 11.3)2.

13.2.3 Multiple Target Experiment

The learning scheme of Sec. 13.1 also applies to multi-target tasks. Let {T1, . . . , Tm} be a set of distinct
target types (e.g., T1 could be a food location, T2 a water location, and so on). Whenever the agent finds
a target Ti, it recruits a new set of action cells ATi . Let rTi

a be the activity of cell a ∈ NA associated to
target Ti, ~wa,Ti denote the synaptic projections from CA1 place cells to cell a, and {RT1 , . . . , RTm} be
the set of reward signals. We employ the above Q-learning algorithm to approximate the set of functions
rTi
a (~p).

In this experiment we consider two distinct types of rewards T1 (e.g., food) and T2 (e.g., water).
Fig. 13.8 (a) shows the two target locations within the environment. The agent is initially trained to
reach the feeder location T1. That is, its primary task is to approximate the rT1

a (~p) functions. Fig. 13.8
(b) illustrates the navigation map learned by the animat after about 30 trials.

When searching for food, it might happen that the agent encounters the water location and receives
a positive reward signal with respect to T2, RT2 = 1. This information can be exploited by the robot
by adjusting the weights ~wT2 . Thus, even if T2 is not the current target, the robot can partially learn a
navigational map leading to it. Fig. 13.8 (c) shows the knowledge about the water location T2 acquired
by the robot while learning the optimal policy to reach the food T1. Therefore, when the robot decides
to focus on water (i.e., to approximate rT2

a (~p)), it does not start from zero knowledge. This results in a
shorter training time for T2, and accelerates the robot’s progress. Fig. 13.8 (d) presents the navigational
map learned by the robot after about 10 training trials when looking for water.

2Note that, instead of Eq. 13.10, we could have also used the prediction error δt defined in Eq. 13.4 to monitor an unexpected
target location.
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Figure 13.7: (a) The internal reward-expectation mechanism. Cell d has a dopaminergic-like activity and sends an internal
negative reward whenever a fully predicted reward fails to occur. (b) Escape latency during training (until trial 40) and after
relocating the target (trials 41-60).

13.3 Discussion

Action learning, in our navigation model, relies on the reward-dependent update of hippocampal efferents
to the nucleus accumbens (NA) [55]. In the system, CA1 cells project to a population of locomotor
action cells in NA whose ensemble activity is used to guide navigation. Thus, solving the action learning
task results in establishing a mapping function from the continuous space of physical locations to the
activity space of action cells. We employ Q-learning [378] (a temporal-difference learning technique
[342, 84, 343]) to establish this function based on the agent’s experience. The robot interacts with the
environment, and reward-related stimuli elicit the synaptic changes of the CA1 → NA projections to
adapt the action-selection policy to the task. After training, the hippocampally-dependent NA activity
provides a map to support goal-oriented behavior and obstacle avoidance.

During recent years, reinforcement learning has become a mathematically well-defined learning
paradigm with numerous applications [343, 84]. Algorithms like temporal difference learning TD [342],
Q-learning [378], or SARSA [343] are easy to implement, in particular for low-dimensional discrete
problems. In real world applications, input data (e.g., sensory data for an autonomous robot) are rather
high-dimensional and continuous. The most important practical issue for applications of reinforcement
learning in these cases is probably the construction of a suitable representation of the input space. We
have shown that our incrementally learned place fields provide a coarse coding representation suitable
for applying reinforcement learning in continuous space. Our representation also solves the problem of
partially hidden states [202]. The standard reinforcement paradigm relies on the Markov hypothesis that
the present state of the system is known to the learner [343]. However, in real-world applications the
Markov hypothesis is not always fulfilled (e.g., when the current state is identified based on visual input
only). Since our hippocampal place fields integrate allothetic and idiothetic information, sensory aliasing
does not occur, and therefore the current state is always fully known to the system. Another limitation
of standard reinforcement techniques is that learning takes a long training time when applied directly
on high-dimensional input spaces [343]. We have shown that by means of an appropriate state space
representation, based on localized overlapping place fields, the robot can learn goal-oriented behavior
after few training trials (e.g., 5 as shown in Fig. 13.2).

Recently, Schultz and colleagues [311, 312] have demonstrated that TD reinforcement learning has



158 CHAPTER 13. Modeling Hippocampus-based Action Learning in Continuous Space

T1T 2

(a) (b)

(c) (d)

Figure 13.8: (a) The arena with two distinct target types T1 (e.g., food) and T2 (e.g., water). The white rectangle is an
obstacle. (b) The navigation map corresponding to the food location T1. (c) The partial navigation map corresponding to the
water T2 learned by the robot when focusing on food T1. (d) The final map acquired by the robot when focusing on water T2.

also a sound neurophysiological foundation: midbrain dopamine neurons fire as a function of the unpre-
dictability of a reward and, then, they might provide a prediction error signal similar to the teaching signal
used in TD learning. Dopaminergic inputs reach the ventral striatum (including the nucleus accumbens)
via the ventral tegmental area (Chapter 11).

The navigation model has been validated by a series of experiments which can been thought of as
instances of the reference memory task (RMW) in the water maze. The system captures the ability of rats
to acquire navigational map rapidly (less than 10 trials) and effectively (generalization property). In one
of these experiments, the target location is changed after training. We postulate a mechanism based on
a dopamine-like signal in order to let the robot “give up” using the learned map and start approximating
a new action-selection policy for the new goal. This results in rapid adaptation of the goal-oriented
behavior which is consistent with experimental data. The system has been also tested in a two-target
learning task (e.g., food and water). A nice property is that even if the robot is focusing on a specific
target T1, it can exploit exploration in order to learn navigation towards target T2. Thus, when the agent
focuses on T2, it does not start from zero and it has only to refine the partial map previously established.
This results in fast learning of the optimal policy for T2.

An important issue we have discussed in Part III is latent learning, i.e., the fact that the rodents
establish a representation of the environment even in the absence of explicit rewards [361, 256]. In this
chapter, we have shown that having a target-independent space representation (i.e., our CA3-CA1 place
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fields) enables the animat to learn target-oriented navigation very quickly. That is, goal-directed behavior
is supported by the stable activity in our place cell substrate. This is consistent with the concept of latent
learning.

The model predicts the presence of locomotor action neurons in the nucleus accumbens (NA) driven
by hippocampal place cells. This is consistent with lesion studies. Indeed, damaging either the fimbria-
fornix (connecting the hippocampal formation to NA) or the nucleus accumbens impairs animals’ per-
formance to learn the hidden platform maze [93, 341, 385] (Chapter 6). The model also predicts that
blocking synaptic plasticity in the hippocampus proper after a place field representation has been es-
tablished should not impair action learning in a hidden platform navigation task [107]. Indeed, since
NA locomotion units are extrahippocampal, as long as CA1 → NA projections are plastic goal-oriented
behavior can be achieved.

The fact that we locate action selection outside the hippocampal formation is an important differ-
ence with respect to models by Abbott, Blum, and Gerstner [1, 46, 122], and by Trullier and Meyer
[370, 368, 369]. Indeed, those approaches postulate that navigation information is stored in the recurrent
connections between hippocampal place cells (e.g., CA3 collaterals). Also, in contrast to models by
Schölkopf and Mallot [308], and Gaussier et al. [117], our navigation model does not rely on a topolog-
ical graph supporting path planning. Our approach is similar to those by Burgess, Recce, and O’Keefe
[62, 61], Brown and Sharp [55], and Foster, Morris, and Dayan [107, 83] in that we also postulate that
goal-oriented behavior is achieved by mapping place cell activity into actions based on reward signals.

However, goal cells (GC) by Burgess, Recce, and O’Keefe [62, 61] do not depend on a local place-
to-action function as our NA action cells do. This results in a GC activity that encodes the position of the
animal relative to the goal, but that does not account for obstacle avoidance. Also, our action selection
mechanism does not suffer from the distal reward problem, i.e., the fact that places that are far away
from the target may not be associated to any specific goal-oriented action. Finally, Burgess, Recce, and
O’Keefe do not propose any re-learning mechanism to cope with targets whose location might change
over time (e.g., DMP water maze task).

With respect to the model by Brown and Sharp, we do not encode motion directions egocentrically
(e.g., turn left), but allocentrically (e.g., locomote to north). Also, they use an explicit memory trace
mechanism to overcome the distal reward problem, whereas our system relies on a TD learning method
[343]. Another difference is that we do not propose an explicit model for the nucleus accumbens as
Brown and Sharp do. Rather, we simply assume the presence of action neurons in that specific brain
region. Finally, the model by Brown and Sharp is adequate for RMW-like problems, but not for DMP
learning tasks [337].

Our approach is similar to that by Foster, Morris, and Dayan [107, 83] in that we also apply a
hippocampally dependent temporal difference learning for navigation. However, they postulate an actor-
critic architecture to implement reward-based synaptic modification, whereas in our system we imple-
ment a Q-learning scheme in continuous space. Also, their model relies on an ideal place field represen-
tation which is assumed to be stable over time. By contrast, we build our population of CA3-CA1 cells
from real sensory information and we get stability by combining visual and self-motion cues. Finally,
similar to Wan, Redish, and Touretzky [377, 286], Foster, Morris, and Dayan resort to an allocentric
metric coordinate system in order to enable the system to solve complex navigation tasks (e.g., the DMP
water maze). The coordinate system relies on the hippocampal place cell representation, has an explicit
memory of the current goal coordinates (xg, yg), and derives the current direction to the target θg by per-
forming vector subtraction algorithmically. In our model, path integration (encoding metric information)
is independent from CA3-CA1 representation and is not used for action selection.
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Chapter 14

Conclusions

At the beginning of this dissertation we established two milestones for this thesis work: (i) Under-
standing and modeling the neural mechanisms underlying biological spatial learning; (ii) Designing
an autonomous navigation system based on the information provided by a neural representation of the
agent-environment interaction. It’s time to ask the crucial question: Have we accomplished these two
objectives? In this chapter, we summarize the achievements of this work and we give its overall contri-
butions. We also analyze the limitations of the current model, and we state our long-term future direction
of research.

14.1 Contributions

In this work we have developed a modular neural model that captures several neurophysiological find-
ings concerning biological head-direction cells and hippocampal place cells. The model involves two
principal neural substrates providing directional and place coding. These two modules are strongly cou-
pled and interact with each other to form a unitary spatial learning system. Inhibiting either one of the
two systems critically impairs the performance of the other and disrupts the spatial learning capability
of the entire system. The model stresses the importance of combining idiothetic (e.g., vestibular and
proprioceptive) and allothetic (e.g., visual) signals to generate and maintain stable direction and place
representations. Indeed, the dynamics of both neural systems relies on vision as well as self-motion
stimuli. The representation of direction and position by head-direction cells and place cells, respectively,
provides a suitable basis for achieving goal-oriented navigation using reinforcement learning. Fig. 14.1
is a scheme of the overall system’s architecture.

In order to validate the model experimentally, we have implemented it on a real mobile Khepera
robot. The experimental setup consists of a square arena within which the robot can freely move. The
robot’s behavior is monitored by means of a camera above the arena. The robot’s sensory system consists
of eight infrared sensors to detect obstacles and measure ambient light, a light-detector, an on-board
camera for vision-based self-localization, and an odometer for sensing internal self-motion signals. We
stress the importance of continuous interaction between the agent and the environment. This results in
an incremental and dynamic development of the navigation system, and enables the agent to adapt its
lifelong behavior according to situations that it has never experienced before.

The three main subsystems, i.e., head-direction cells, place cells, and goal-directed navigation, have
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Figure 14.1: Modular architecture of the current system.

been described in the three central parts of this dissertation, Part II, III, and IV, respectively. Below, we
give a brief description of their basic principles.

Head-direction Cells

The directional system models biological head-direction cells observed in three structures of the rat
brain, namely the anterodorsal thalamic nucleus (ADN), the lateral mammillary nuclei (LMN), and the
postsubiculum (poSC) [279, 353, 347, 388, 229, 71, 41]. Idiothetic signals strongly influence directional
selectivity since ADN and LMN neurons are primarily involved in integrating angular velocity over time.
On the other hand, allothetic stimuli influence poSC neurons and can therefore be used to occasionally
modify the system’s dynamics to calibrate head-direction cells. poSC forms the output of the entire
directional system. That is, the population activity of poSC cells is used to estimate the robot’s current
allocentric heading. Population vector coding [121, 394] is employed to interpret the ensemble poSC
pattern of activity.

Hippocampal Place Cells

The place-coding system is based on a computational model of the rat Hippocampus. Unsupervised
Hebbian learning is applied to correlate visual information and path integration. This yields a stable
space representation in which unreliable visual data are compensated for by internal self-motion signals,
and reliable visual fixes are used to occasionally calibrate the path integrator. Hippocampal place fields
[255, 256] are determined by modeling high-dimensional continuous sensory input by means of localized
overlapping place fields. Starting with no prior knowledge, the system grows incrementally based on the
agent-environment interaction. The anatomical areas of the hippocampal formation which are primarily
involved in the model are (i) the superficial layers of the lateral entorhinal cortex (sLEC) in which we
assume the allothetic representation is formed, (ii) the superficial layers of the medial entorhinal cortex
in which we suppose a representation induced by path integration takes place, (iii) the subiculum (SC)
which plays an important role in path integration, and (iv) the hippocampal CA3-CA1 regions in which
the “final” place field representation is formed.

Navigation and Action Learning

The proposed spatial representation results in an incrementally learned coarse coding representation
suitable for applying reinforcement learning to map continuous input state spaces into agent’s actions.
In particular, a temporal difference (TD) learning technique, namely Q-learning, is applied to acquire
navigational maps. CA3-CA1 place fields work as a basis function approximator that is utilized to
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learn a parameterized form of the Q-function [378, 343]. The navigation system involves the nucleus
accumbens (NA), an extra-hippocampal structure that seems to be involved in reward-based goal memory
and in locomotor behavior [55, 282]. In the model, CA3-CA1 place cells drive a population of locomotor
action neurons in NA. The synaptic efficacy between CA3-CA1 cells and action cells is modified as a
function of dopaminergic target-related reward signals. This results in an ensemble activity of the action
neurons that provides a navigational map to support spatial behavior.

To conclude, we think that the present study has produced some interesting insights about the neu-
rophysiological processes involved in spatial cognition (e.g., functional and anatomical predictions1),
in particular for the mechanisms underlying hippocampal place cells and head-direction cells. From
a robotic point of view, we have endowed an artificial agent with animal-like exploration and self-
localization capabilities (e.g., bio-inspired vision-based place recognition). Furthermore, the robot has
learned to accomplish effective target-oriented navigation based on its continuous interaction with the
environment.

14.2 Limitations and Future Work

The attempt to answer a complex basic question most often gives rise to many other complex basic
questions. Since this is the essence of scientific research, hopefully, the issues listed below are just a
subset of the potential future directions sprung from this thesis.

Throughout this dissertation we have already discussed several important points that need to be ad-
dressed in order to ameliorate the soundness and the biological plausibility of our approach1 . Our future
research will focus on the following issues:

Environment manipulations. The existing model has been validated in rather stable environments. In
the future, data analysis will be focused on the dynamics of the robot behavior using the same method-
ology as employed for experiments with rats. In particular, we will evaluate our hippocampal model
through experiments concerning environment manipulations (e.g., shrinking and stretching the arena,
changing light conditions). We will also address the two following issues:

• Open-field vs linear-track mazes. Biological place cells tend to be direction independent when the
animal moves freely within an open-field arena. Alternatively, place fields become directional in
the case of highly structured or linear mazes. We will investigate whether and how place fields of
our model can show a similar property.

• Rich vs poor visual information. In principle, three distinct cue cards in an otherwise impoverished
environment provide enough information for precise localization. Our current allothetic pathway
relies on rich visual stimulation (e.g., standard laboratory background). We will validate the per-
formance of our allothetic self-localization mechanism in more visually deprived environments.

Redundant vs sparse topological representation. The current model stresses the importance of having
a redundant space code. The environment is covered by a large population of overlapping place fields.
An interesting issue concerns investigating more sparse place coding systems and comparing their self-
localization capability with that of the current system with respect to neurophysiological data.

Active search within the visual input space. In the current model, visual data are interpreted by
means of filters (e.g., Gabor filters) which are either moved over the whole visual scene to detect specific
patterns, or are evaluated in fixed image locations (i.e., retinotopic sampling). In order to optimize the

1We refer the reader to the following Discussion sections: Secs. 4.4, 5.3, 8.3, 9.2, 10.4, 13.3.
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Figure 14.2: The extended system.

interpretation of visual data, we might switch to a somewhat different strategy that can be compared
to saccadic search. That is, the system might perform “jumps”, namely saccades, between the points
of interest in the visual scene. The idea is to let the agent search for interesting cues within the image
by shifting its focus of attention and use these salient landmarks for self-localization. The concept of
“interesting” will be probably defined based on a saliency measure in the Gabor feature space.

Exploration strategies. What are suitable exploration strategies to optimize the interaction between
a navigating agent and its environment? When an agent (rat or robot) first enters an unfamiliar envi-
ronment, it does not have an internal spatial map yet. How do animals explore their environment in
order to optimize spatial learning? How does the exploration strategy depend on the available sensory
information? When establishing the space representation, the current system directs exploration towards
unknown regions, based on the activity of existing place cells. In order to replace this strategy by a
more environment-dependent exploration, we will employ the above concept of “interesting” landmark
to modulate the robot’s curiosity and to direct exploration.

Multiple environments: Consolidating and recalling hippocampal maps. In the current model, the
problem of long-term memorization of learned space representations is not addressed. This interesting
issue relates to the role of the hippocampus in memory as well as to the interaction between the hip-
pocampus and neocortical areas (in which long-term consolidation is likely to take place). We will also
address this issue from the point of view of optimizing the use of memory. Indeed, reusing previously
learned maps is necessary to avoid the explosion of time and memory resources that would arise when the
agent has to cope with multiple environments. In particular, the reuse of hippocampal codes devoted to
previously experiences, requires the recognition of the environment from contextual cues and the recall
of the appropriate representation.

Real-time acting. In the current model, the animat does not really behave in real-time. Rather, it
moves in discrete time steps ∆t which determine the frequency at which the robot interacts with the
environment and takes an action. For a more realistic bio-inspired behavior, the animat should act in a
continuous manner. Due to the non neglectable time needed for visual interpretation (e.g., about 1 s to
map two-dimensional images into neural activity), a possible solution might be to let the robot move also
during signal processing. During this “thinking-time”, the reactive controller could maintain the agent in
a safety condition (e.g., providing obstacle avoidance).

Multimodal sensory information. The current model integrates external (vision) and internal (path
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integration) signals. LTP learning is applied to correlate these two types of information. However, their
relative contribution does not vary explicitly as a function of environmental conditions (e.g., changing
light). The idea is (i) to extend the current system by taking into account other allothetic non-visual
sensory inputs (e.g., odor or sound), (ii) to include a low-level sensory-gating network to modulate
the contribution of each sensor modality (e.g., in the dark path integration and odor should play an
important role for self-localization). Such a neural substrate for sensory selective attention might find its
neurological counterpart in the thalamus, and should adapt the relative priority between sensory signals
according to the current agent-environment context.

Motivation-based action selection. At a high control level, action selection can be thought of as
based on the agent’s current motivational state. Motivation derives from internal states (e.g., hunger,
fear, curiosity) as well as from external stimulation (e.g., changing environmental situations, conflict
conditions). Interestingly, the relationship between motivation and perception forms a closed loop. On
the one hand, motivation is driven by perceptual signals deriving from the agent-environment interaction.
On the other hand, sensory information is interpreted with respect to the current motivational state of the
agent (i.e., selective attention). We will include a high-level controller to model how motivation may
influence action selection2 .

Integrating different navigation strategies. This thesis has focused on cognitive (i.e., locale) navi-
gation. The animat establishes an internal model of the spatio-temporal properties of the environment,
and uses such a space representation to perform navigation. Nevertheless, animals are able to adapt their
navigation strategy to the complexity of the spatial task to be solved. Adopting the optimal navigation
technique is crucial for minimizing the use of resources like time and memory. In particular, animals
combine taxon, praxic, and locale navigation. In the future we will extend the current model to incor-
porate taxon and praxic behavior modalities. A sensory evaluation process might emulate the animals’
capability of adapting the complexity of their navigation strategy to the current task-environment context.
For instance, the agent might resort to simple reflex-behavior to follow a smell trace, whereas it might
adopt locale navigation to perform hoarding trips in complex mazes. Fig. 14.2 shows a diagram of the
extended system.

Neuroethological and robotic experiments. A crucial issue of our future work will be the study of the
above questions in parallel with both animals and robots. A new series of rat experiments and robotic
experiments will be performed in parallel by employing equivalent experimental setups (or at least setups
with the same characteristic features). Such a two-pronged experimental approach should yield a better
understanding of the behavioral and cognitive mechanisms underlying intelligent navigation3 .

Validating the hypotheses/predictions derived by the model. Each component of our system (i.e.,
head-direction cells, path integration, visual-based space code, place cells in the hippocampus proper,
and goal-oriented behavior) relies on functional as well as anatomical assumptions, and predicts that
specific capabilities should be impaired by performing lesions at the level both of brain structures and
of their anatomical interconnections. Some of these predictions will be tested by designing specific
recording experiments with rats4.

2This work will be done in collaboration with J.-A. Meyer, AnimatLab, Laboratoire d’Informatique de Paris 6, France.
3This work will be done in collaboration with C. Brandner of the Lab. of Neuroethology, Inst. of Physiology, Fac. of

Medicine, University of Lausanne, Switzerland.
4This work will be done in collaboration with A. Berthoz and S. Wiener of the Lab. de Physiologie de la Perception et de

l’Action (LPPA), Collège de France, Paris, France.
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Appendix A

The Hippocampal Formation:
Anatomical Images

The hippocampal formation is one of the most studied brain regions. This part of the limbic system has been so
named by Arantius (in 1587) [185, 367] due to its characteristic three-dimensional shape. Below is an image of
the rat hippocampi (adapted from Amaral and Witter (1989) [8]):

As clearly indicated by the above image, in rats the hippocampi occupy a large volume of the cerebral hemi-
spheres. By contrast, in primates and human (whose brain volume is mostly occupied by neocortical areas) the
hippocampi are buried deep within the temporal lobes. Below is a medial view of the right human brain showing
the hippocampal formation and its neighboring areas (adapted from Burgess, Jeffery, and O’Keefe (1999) [60]):
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In this appendix we focus on the rat hippocampus and we show the anatomical locus of some of the regions
involved by the model presented in this thesis. The following image illustrates a section of the rat brain (bregma
−2.12 mm) and focuses on the left hippocampus to identify its main structures: The dentate gyrus (DG), the cornu
ammonis (CA1-CA3), and the subiculum (SC).

SC

DG

CA1

CA3

The following image is a more detailed representation of the hippocampal formation (adapted from Brown and
Zador (1979) [57]):
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Appendix B

Neural Networks for Egocentric Bearing
Estimation

B.1 Introduction

The task is to allow the robot to estimate its egocentric bearing α relative to a light source L. The robot senses
light by means of eight infrared sensors and one light-detector. This results in a sensory reading vector ~s(t) =
(s1(t), . . . , s9(t)). In order to interpret this noisy information, we train a feed-forward neural network N to learn
the mapping function

M : S → RV IS(α) (B.1)

where S is the input sensory space (i.e., ~s(t) ∈ S), and RV IS(α) is the population activity of our visual bearing
cells VIS (Chapter 4). We let the robot approximateM through supervised learning.

B.2 Supervised Training

The input of the network N consists of the sensory vector ~s(t) = (s1(t), . . . , s9(t)). We take one hidden layer of
30 units. The output layer is our population of S = 180 VIS cells. The activity ri of a neuron i in layer l is given
by f(

∑

j wijrj), where j varies over all units in layer l − 1, and f is the sigmoid function. Network N is trained
by using gradient descent back-propagation1 [294]. The error function being minimized is

E =
1

2N

N
∑

i=1

S
∑

v=1

(rv(~si)− tv(~si))
2 (B.2)

where rv and tv are the actual and the desired value, respectively, of the vth output unit, and N is the number
of training examples. Training patterns are of the form (~si, ~t(~si)), where ~si = (s1, . . . , s9) is the sensory input
vector, and ~t(~si) = (t1(~si), . . . , tS(~si)) is the corresponding target vector.

Vector ~t(~si) is the desired VIS activity encoding the bearing α which corresponds to ~si. That is, if we apply
population vector coding to interpret ~t(~si) we obtain α. The ensemble activity ~t(~si) is taken as a Gaussian centered
on the mean µ = α and with standard deviation σ = 20◦. Thus, for a given α, the target activity of the vth output
cell is tv(~si) = exp(−d2

v/2σ2), with

dv =

{

min(|αv − α |, |α− αv + S |) αv > α
min(|αv − α |, |αv − α + S |) otherwise

(B.3)

1The learning rate η is taken equal to 0.05, and the momentum term α = 0.6.

171



172 APPENDIX B. Neural Networks for Egocentric Bearing Estimation

0 90 180 270 360
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
IS

 c
el

l p
op

ul
at

io
n 

ac
tiv

ity

Degree

(a)

(b)

0 1000 2000 3000 4000 5000 6000 7000
26

28

30

32

34

36

38

Test set

S
dt

 o
f V

IS
 c

el
l a

ct
iv

ity

(c)

Figure B.1: (a) A sample of the output of the network after training. The output encodes a bearing angle α of approximately
260◦. (b) The behavior of the network during test. The solid black line is the desired behavior, whereas grey dots represent the
actual behavior. (c) The standard deviation of the network’s output around the mean µ during test.

where αv is the preferred bearing of cell v ∈ VIS. To build the training data set, the robot is located at different
distances from the light L. At each location the robot rotates by steps of 2◦. At each step, it builds a new example
(~si, ~t(~si)). After a complete turn, the robot is relocated at a different distance from L. A data set containing 28000
examples has been built by iterating this process. We take a training set of N = 14000 examples, a validation set
of 7000 examples, and a test set of 7000 examples.

B.3 Results
Fig. B.1 (a) represents a typical output distribution for the trained network N . According to the population de-
coding scheme, the ensemble activity corresponds to an angle α of approximately 260◦. In order to assess the
performanceP of the trained networkN we compute

P =
1

M

M
∑

i=1

H(β − |α− α |) (B.4)

where M = 7000 is the size of the test set, β is a fixed threshold, andH is the Heaviside function. The performance
P is approximately 99% for β = 10◦, and approximately 95.5% for β = 5◦.

Fig. B.1 (b) shows the behavior of N when sampled over the test set. The solid black line represents the
desired behavior, whereas grey dots represent the network’s actual behavior. The dispersion of the actual output
around the nominal behavior is rather uniform and narrow. Fig. B.1 (c) shows the standard deviation of the output
distribution around the mean firing activity µ during the same experiment.



Appendix C

Glossary
ADN: Anterodorsal nucleus.

AT: Anterior thalamus.

CA3-CA1: Brain regions forming the hippocampus proper.

DG: Dentate gyrus.

EC: Entorhinal cortex.

HD: Head direction.

LDN: Laterodorsal nucleus.

LEC: Lateral entorhinal cortex.

LGN: Lateral geniculate nucleus.

LMN: Lateral mammillary nuclei.

LTD: Long-term depression.

LTP: Long-term potentiation.

MB: Mammillary bodies.

MEC: Medial entorhinal cortex.

PC: Posterior cingulate cortex.

PP: Posterior parietal cortex.

paHI: Parahippocampal cortex.

paSC: Parasubiculum.

peRH: Perirhinal cortex.

poSC: Postsubiculum.

prSC: Presubiculum.

SC: Subiculum.

sLEC: Superficial layers of the lateral entorhinal cortex.

sMEC: Superficial layers of the medial entorhinal cortex.

VTA: Ventral tegmental area.
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Acetylcholine: A neurotransmitter.

Afferent signals: Incoming signals.

Allocentric: Relative to an external absolute frame of reference.

Allothetic stimuli: External stimuli such as visual, olfactory, auditory, and tactile signals.

Amygdala: A brain region involved in emotional and motivational behavior.

Anterior thalamus: A brain region possibly involved in the rodent directional system.

Anterodorsal nucleus: A brain region of the anterior thalamus possibly involved in head-direction representation.

Back-propagation: Gradient-descent learning algorithm employed for training artificial neural networks.

Caudate nucleus (dorsal striatum): A brain region possibly involved in the rodent directional system.

Cholinergic: From acetylcholine, a neurotransmitter.

Dead-reckoning: Also termed path integration and vector navigation, is the process that allows a navigating
system to infer its position with respect to a departure point (i.e., homing vector) based on purely inertial
self-motion signals.

Declarative memory: Memory of facts, names, and episodes.

Deep entorhinal cortex: Layers IV-VI of the entorhinal region.

Dentate gyrus: Brain region, belonging to the hippocampal formation, possibly involved in space representation.

Dopamine: A neurotransmitter.

Dorsal presubiculum (postsubiculum): A structure, within the hippocampal formation, possibly involved in the
head-direction system.

Dorsal striatum (caudate nucleus): A brain region possibly involved in the rodent directional system.

EEG: ElectroEncephaloGraph.

Efferent signals: Outcoming signals.

Egocentric: Relative to an observer-centered frame of reference.

Entorhinal cortex: Six-layered cortical structure providing most of the cortical inputs to the hippocampal forma-
tion. It is divided into superficial and deep areas. In rat, it is also divided into lateral and medial regions.

Episodic memory: Memory of events (see declarative memory).

Fornix: Fiber bundle connecting the hippocampus and the subiculum to subcortical structures.

GABA: A neurotransmitter, generally inhibitory.

Glutamate: A neurotransmitter, generally excitatory.

Head-direction cell: A neuron whose activity encodes the rodent’s allocentric headings in the horizontal plane.

Hebbian learning: A local learning mechanism based on the correlation between the activity of the pre- and the
post-synaptic neuron.

Hippocampal formation: The group of brain regions including the hippocampus proper and its adjacent regions
(e.g., the dentate gyrus).

Hippocampus proper: The hippocampal region including CA3 and CA1 areas.

Idiothetic stimuli: Internally-generated information such as vestibular and proprioceptive signals.

Latent learning: Form of learning occurring without any explicit reward (i.e., food).

Lateral entorhinal cortex: A portion of the entorhinal cortex.
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Lateral geniculate nucleus: A brain region belonging to the visual pathway (it receives topographically orga-
nized input from both retinae and projects to the visual cortex).

Lateral mammillary nuclei: A brain region possibly involved in head-direction representation.

Laterodorsal nucleus: A thalamic brain region possibly involved in head-direction representation.

Limbic system (medial temporal lobe): A brain area grouping the olfactory cortex, the amygdala, and the hip-
pocampus.

Local-view: Usually, it identifies a spatial representation based on spatio-temporal relationships between an agent
and salient allothetic cues.

Long-term potentiation: A basic learning mechanism in the brain that consists of increasing the synaptic strength
of the connection between two neurons whenever they fire synchronously.

Mammillary bodies: A brain region where the fornix (projecting from the hippocampus) ends.

Medial entorhinal cortex: A portion of the entorhinal cortex.

NMDA (N-methyl-D-aspartate): A neuroreceptor involved in LTP.

Parahippocampal cortex: A primate brain region. The analogous in rats is the postrhinal cortex.

Parasubiculum: A brain region belonging to the subicular cortex.

Path integration: Also termed dead-reckoning and vector navigation, is the process that allows a navigating
system to infer its position with respect to a departure point (i.e., homing vector) based on purely inertial
self-motion signals.

Perforant path: Main neural pathway from the superficial entorhinal cortex to the hippocampus.

Perirhinal cortex: A cortical area possibly involved in novelty detection.

Place cell: Spatially tuned neuron whose activity codes for a localized environmental area (its place field).

Place field: Spatial region in which a place cell exhibits its maximal firing activity.

Posterior cingulate cortex (retrosplenial cortex): A cortical area possibly involved in spatial orientation.

Posterior parietal cortex: Neocortical area possibly involved in spatial cognition.

Postrhinal cortex: A rat brain region. The analogous in primate is the parahippocampal cortex.

Postsubiculum (dorsal presubiculum): A structure, within the hippocampal formation, possibly involved in the
head-direction system.

Presubiculum: A brain region belonging to the subicular cortex.

Procedural memory: Memory of skills learned through practice.

Retrosplenial cortex (posterior cingulate cortex): A cortical area possibly involved in spatial orientation.

Septal nuclei: A brain region providing cholinergic and GABA-ergic input to the hippocampus.

Simple cell: Oriented-bar sensitive neuron in the primary visual cortex (V1).

Subiculum: A brain region belonging to the hippocampal formation.

Superficial entorhinal cortex: Layers II-III of the entorhinal region.

Theta rhythm: EEG sinusoidal signal in the hippocampal formation with a frequency of 7− 12 Hz.

Vector Navigation: Also termed path integration and dead-reckoning, is the process that allows a navigating
system to infer its position with respect to a departure point (i.e., homing vector) based on purely inertial
self-motion signals.

Ventral tegmental area: A structure in the midbrain.

Vestibular system: Has the purpose of keeping tabs on the position and motion of the head in space.
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[313] V. Séguinot, J. Cattet, and S. Benhamou. Path integration in dogs. Animal Behavior, 55:787–797, 1998.
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