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Efficient Learning of Variable-Resolution Cognitive
Maps for Autonomous Indoor Navigation

Angelo Arleo, Joé del R. Millan, and Dario Floreano

Abstract—This paper presents an adaptive method that allows distinct regions of the world and arcs indicate spatial relations
mobile robots to learn cognitive maps of indoor environments petween them.

incrementally and on-line. Our approach models the environment The two paradigms are characterized by complementary

by means of a variable-resolution partitioning that discretizes the h d K Sj id d
world in perceptually homogeneous regions. The resulting model Stréngths and weaknesses [5]. Since occupancy grids reproduce

incorporates both a compact geometrical representation of the the geometrical structure of the environment explicitly, they

environment and a topological map of the spatial relationships are easy to learn and maintain: the position of each observed
between its obstacle-free areas. The efficiency of the learning fegture is mapped into a global absolute frame of reference.
process is based on the use of local memory-based techniques\q 5 consequence, also the robot's position and orientation

for partitioning and of active learning techniques for selecting L . . . o
the most appropriate region to be explored next. In addition, a Within the model are automatically given by its position and

feed-forward neural network is used to interpret sensor readings. orientation within the real world. This allows the robot to
We present experimental results obtained with two different distinguish places of the environment that are perceptually
mobile robots, namely a Nomad 200 and a Khepera. The current gimjjar, However, this approach is limited by its vulnerabil-

implementation of the method relies on the assumption that ob- itv to errors that affect the metric information (i.e.. robot's
stacles are parallel or perpendicular to each other. This results in y (i.e.,

variable-resolution partitionings consisting of simple rectangular POsition and distance to obstacles). In particular, failures of
partitions and reduces the complexity of treating the underlying the robot self-localization capability have devastating effects
geometrical properties. on the map accuracy. In addition, building occupancy grids is

Index Terms—Autonomous mobile robots, exploration, map €Xpensive in terms of memory and time. Indeed, to accurately
learning, neural networks, occupancy grid, topological graph, model each single part of a complex environment, the resolu-
variable-resolution partitioning. tion of the occupancy grid must be high and the learner must
manage a huge amount of data.

Recent research on animals’ behavior suggests a more

HIS N | . thod that all gualitative representation of the world based on a compact
baper presents a map learning metnod that a 0Ws's%rage of a few relevant features of the environment [6],

in ordm:rby: ;?:bOt.rt; aexslgfaﬁgaunkgfg\;n ggc?:lr .iz\r/gg;?;@]. Links between these landmarks are then used to achieve
:':lnd on-line qui patl vigat ! avigation. The topological approach is inspired upon these
: . - findings. Its major advantage is the compactness of the en-
The proposed method integrates the two principal ap- . : )
. ' . ironmental model: the complexity of the learned map is

proaches to map learning for indoor environments, name

: . . . rectly related to the world complexity. This permits to
the geometricalparadigm and theopological paradigm. In L .
88t|m|ze the use of time and space resources. Furthermore,

the former, the geometrical features of the world are modeISI ce topological maps are qualitative representations of the
accurately. Obstacles are modeled according to their absolute polog P d b

i . . orld, they are not necessarily vulnerable to errors in the
geometric relationships. One of the most popular of such™ =’ . . - . .

. . metric information. In addition, since the world is represented

methods consists of representing space by means of a t\go-

dimensional evenly-spaced grid calledcupancy grid(e.g., ty' atgrgph,Athlstr?pproachtperlmlts fasthplagnltng ofdrtobot
[1], [2]). Each grid cell estimates the occupancy probability ofdectores. As in the geometrica’ approach, robots need to use
elf-localization in order to build consistent representations.

the corresponding area of the world. Topological maps (e.§; . tonological q t rel bsolut
[3], [4]) are more qualitative representations of the world. Th Owever, since topological maps do not rely on absolute

model consists of a graph, where nodes represent perce tufe{ _e OT r.efer.ence, the place recognition.problem is SO',VEd
grap P P P b%lscrlmlnatmg sensory data only. That is, landmarks (i.e.,
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areas (i.e.partitions) having different sizes and representing The remainder of this paper is organized as follows.
perceptually homogeneous regions of the environment. T8ection Il reviews related work. Section Il describes the
resulting map provides a compact representation of the geap learning method. Section IV shows experimental results.
ometrical structure of the world, thus optimizing the uskinally, in Section V we discuss limitations and advantages
of memory and of time resources. Indeed, the use of tb& our approach.

variable-resolution directly relates model complexity to world

complexity: the aim is to have a high resolution only in

areas of the world that require more complex navigation. Il. RELATED WORK

Furthermore, the map does not model fine details—which ar€The proposed approach can be thought of as a combination
difficult and expensive to represent. The topological aspestthe geometrical and topological paradigms. The benefits of
of the model derives from the fact that the partitioning Sp'lf@ombmmg both approaches have been a||’eady discussed in
the environment in perceptually homogeneous regions. Thuse literature. Earliest ideas were proposed by Chatila and
it is possible to abstract a graph representing the spatiglumond [14] and Elfes [15], [16]. Chatila and Laumond
connectivity between these regions. This graph is then usgghgested to model objects by polyhedra and to use them to

for motion planning. _ split the space into a limited number of regions corresponding
~ The proposed map learning method addresses the followiag rooms, doors and so on. However, these authors only
ISsues. made a proposal and did not provide algorithmic details. Elfes

1) Model Complexity Instead of building a global mono- developed algorithms for building occupancy maps using com-
lithic model of the environment, we adopt a locaputer vision. He also suggested deriving large-scale topological
learning approach. By means of a variable-resolutianodels but he did not propose an algorithmic solution to this
partitioning the robot’s knowledge is distributed in manyproblem.
simple local models (e.g., [8]). Each local model rep- Recently, Thrun [5] has implemented a method for building
resents a partition and encodes the information abdatge-scale metric-topological maps of indoor environments.
the corresponding region of the world. A local approachfter a global occupancy map has been learned, a topological
helps for reducing the problem ehtastrophic interfer- representation is generated by splitting the metric map into
ence[9] that would arise in the case of using a globah small number of coherent regions. Our method is related
monolithic representation. to Thrun's approach in several respects. The first and most

2) Sensor UncertaintySince perceived data are not errorebvious is the use of the neural sensor interpretation technique
free, the robot needs to interpret its sensor readintggs provide the robot with a robust local perception. In both
effectively. We follow Thrun’s approach [5] of usingmethods the neural sensor interpretation results in a local
a neural sensor interpretation. A feed-forward neuratcupancy grid modeling the space surrounding the robot.
network is used to create a local occupancy grid modédftowever, the two approaches differ in the way this local
ing the space surrounding the robot. This grid providegid is subsequently used. Thrun's robots utilize the local
the robot with a robust local perception. Our approaadirid to acquire global geometrical maps. The neural sensor
differs from Thrun’s approach in the way this local gridnterpretation is constantly used, and subsequent local grids
is used. In Thrun’s approach the local grid is used tare integrated to form a global metric grid. In our approach,
build global geometrical maps directly. In our methodobots use the local occupancy grid only when they need to
the local grid is used to approximate obstacle boundariesdel obstacle boundaries by straight lines. Once a boundary
by straight lines. These lines are then used to build theas been approximated by a straight line, the neural sensor
variable-resolution partitioning. interpretation is not used any further and robots rely on

3) Real-time LearningWe take a memory-based learningheir raw sensor readings. The second similarity between our
approach (e.g., [10], [8], [11]) to build the map on-linanethod and Thrun’s approach concerns the integration in a
and in real time. A memory-based learner is trainesingle method of the geometrical and topological paradigms
by simply storing data in memory, reducing the timéor map learning. Nevertheless, the two approaches build
needed to incorporate new knowledge in the modejuite different geometrical representations: global grid-based
Purely memory-based methods do not attempt any dateps in Thrun’s method versus variable-resolution partitioning
compression (e.g., [8], [11]). The proposed method our method. Finally, our approach abstracts the topolog-
attempts to optimize resources (i.e., memory and time ial map from the geometrical representation on-line, while
manage data) by collecting only significant experienceshrun’s approach does it off-line and only after the whole
that is, those experiences that actually improve the modgbbal map is available.
accuracy. The parti-game algorithm for the acquisition of control

4) Exploration In order to optimize the learning time, wepolicies proposed by Moore and Atkeson [8] also creates a
use an active learning approach (e.g., [12], [13]). Amariable-resolution partitioning, but only for allowing simu-
“active” learner is one that uses its current knowledge tated robots to learn good trajectories to goal regions. There
drive the generation of training data in order to maximizare at least three main differences between parti-game and
the gain of information in the least possible time. Thisur method. First, since parti-game is based only on collision
active behavior is obtained by making the robot alwayisformation, the number of partitions created for a given
explore the least known region of the environment. environment is much higher than ours. Second, one assumption
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Fig. 1. An example of partitioning update. (a) A partition that does not
represent a homogeneous perceptual situation. (b) The resolution of the @ (b)
partitioning is increased to model the obstacle. a

Fig. 2. (a) For a given celli, j) € G, the input of the neural network”

. . . . consists of the readings of the three sensors oriented towar¢i the cell
of parti-game is that the size of the environment has to bg s, andss) and of the polar coordinates of the céll j) with respect

known. Third, parti-game has a high computational cost th@tthe robot. (b) For a given celi, ;) (identified by its polar coordinates
may prevent on-line operation. reflatlve to the robot) and a given sensory pattern (5_:1_, S92, 83),’,the output
o network is interpreted as the conditional probability Rrel; ;|s).

The proposed method also bears some similarities to Tay?or
and Kriegman's approach for allowing a mobile robot to
explore previously unknown environments [17]. Their al- to identify an obstacle edge, it aligns with and follows
gorithm also models the environment by means of local that edge, and it uses the local occupancy grid to find
representations, and it builds a relational map by recording the ~ the approximating line.
relationships between these local models. In their approach3) Partitioning Update Every time the robot perceives
however, exploration relies on vision and each local model is ~an unknown obstacle, it increases the resolution of the
explicitly associated with a visually distinct and recognizable  partitioning? to include it. To do this, it approximates
landmark. Our robots do not use vision, and the concept of all the obstacle edges by straight lines. Once the whole
landmark is just implicitly contained in the relational map perimeter of the obstacle has been modeled, the resolu-

derived from the variable-resolution partitioning. tion of 7 is increased in the local area containing the
obstacle—with the new partitions modeling the obstacle.
. REAL-TIME MAP LEARNING 4) Exploring the EnvironmenfThe robot is always explor-

ing the environment to improve its current map. Given

The proposed method allows a robot to model a struc- the current partitioning?, the explorer module selects

tured indoor environment by means of a variable-resolution o .
o . . as target the partition corresponding to the least known
partitioning 7. Each partitionp € P is a local model that : .
region of the environment.

codifies the robot’s knowledge about the corresponding areas) Planning and ActionGiven the target partition selected
of the world. The aim is to create partitions that represent by the explorer, thelanner computes the optimal path

percept_uall_y homogeneous areas. For '”Star?ce' the partition acrossP. Then, low-level controllers actually bring the
shown in Fig. 1(a) does not meet such a requirement, because robot there

it represents both a free space and an obstacle. We call such . . -

a partition anincoherentpartition. Thg above _modules are described in more detail in the fol-
An important assumption of the current implementation PWiNg sections.

our method is that all meaningful obstacle edges are aligned

with either thez- or they-axis. Such a simplified world allows ,

the robot to create variable-resolution partitionings made By Neural Sensor Interpretation

rectangular partitions only. This reduces the complexity for A proper sensor interpretation is useful because sensor

updating and maintaining the partitionirf§, by making the readings are typically corrupted by noise whose distribution

spatio-geometrical properties of the created partitions simpgegenerally unknown. Another concern is the robot’s require-

to treat. ment to interpret all its sensor readings simultaneously. To
The proposed method relies on a modular architecture. dddress these issues we follow the approach proposed by
particular, five principal modules can be identified. Thrun [5] where a feed-forward neural netwoX builds

1) Neural Sensor InterpretationSensory information is @ local occupancy grid; from sensor readings. The local
interpreted by a feed-forward neural network. This seccupancy grid, which consists afx n cells, is in fact a local
sor interpretation results in a local occupancy grid thitew that moves and rotates with the robot. The choice of the
improves the local perception of the robot. size and the resolution of the gri@ is given by a trade-off

2) Identifying Obstacle BoundarieShe proposed method between computational cost and reliability of edge detection.
consists of approximating obstacle boundaries by For a given cell(i,j) € G, the input of A" consists of
straight lines and using them to build the partitioniig (Fig. 2)

[see Fig. 1(b)]. This is mainly achieved by means of the 1) the readings = (s, s2, s3) of the three sensors oriented
neural sensor interpretation: every time the robot needs in direction of (¢, j);
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2) the polar coordinates; andd;; of the center of the cell
(i,7) with respect to the robot (the angles calculated
with respect to the first of the three closest sensors).

For each cell(i,j) € G, the network A" produces a value

Prol{oce;;|s) that measures the probability of this cell being

occupied given the sensory patteria= (si, s2, $3)-
It is worth noting that once such a network has been trained,|”

it can be used by the robot in several differently structured

indoor environments. Another important feature is that this . .

sensor interpretation strategy fgatform-independentin the (a) (b)

sense that it can be applied on mobile robots having diﬁereﬁé. 3. An example of neural sensor interpretation. (a) A part of the

sensor configurations. environment and the robot within it. The robot is following the horizontal

1) Training the Neural NetworkTraining data are of the wall to approximate it by a straight line. The snapshot has the same area of
g o . the local gridG. The robot sensor readings (sonars in this case) are represented
form <317 52, 83, 92]7 dU ) OU>7 Whereo” 1S Fhe deSIred_ oquut. by radial lines. (b) The corresponding local grid obtained by using the network
They are generated by randomly placing and orienting the and integration over time. The darker a cell, the higher its probability of

robot in a known environment (i.e., an environment whef®ing occupied.
the position of obstacles is known). For each position and

orientation of the robot, the elements,j) of the local ihe jncrementally-built network is better than the performance

grid are randomly sampled. The target outpyf is the of 4 network trained from the beginning with the same final
true occupancy state dfi,j) computed by considering the 5 chitecture.

intersection between the (_:QM, J) and the_known obstacl_es. 2) Integration over Time of Occupancy Probabilitiess pre-

The neural networkV is trained off-line by a gradient \jously mentioned, the robot is using the netwokk as it
descent method [18]. Input and output values are normalized#ilows obstacle boundaries. Then, consecutive neural sensor
the range [0,1]. As stated before, the netwarkproduces the jnterpretations can be integrated over time in order to obtain a
conditional probability Profwcc;;|s) given the sensory pattern,ore reliable local occupancy grid. If, for a given sensory
s = (51,52,53) [5]. It has been shown that the output of gattern at timet, s, the output of A" is the conditional
neural network can be interpreted as a posterior pmbab"ﬂ}’obability Prolgoce;;|st), then, givenN consecutive sensor
if the network is trained by minimizing the cross-entropyeadingSSl’527___7SN the occupancy probability for the cell
error function [19]. We trained the networl/” by using (i,4) can be thought as Pr@lre;,|st,s?, ---,s™). Time in-

back-propagation with momentum term [18] to minimize thgygration is achieved by applying Bayes' rule for estimating

cross-entropy error functiot’ this probability [1], [5]
E=- Z {of; my" +(1—0) In(1-y™)} Prob(occ;;|st, 8%, - - ,s™)

. l Pro iils™
whereX, sums over all training examples, aoy andy™ are —1-{1+ H bloceij|s™)
the target and the actual output associated totheexample, il Prob(occ;;[s™)
respectively.

Fig. 3 shows an example of a local grid built by using
@e network\ to interpret the sensor readings, and by using

ayes’ rule to integrate over time. This example highlights
some benefits of this approach. For instance, it illustrates

is repeated again. This cycle is iterated until the performanggw the neural_mterpretanon can .compensate.errors due to
ecular reflections (e.g., the white ray entering the wall,

of the network does not improve significantly. The rational . . .
P 9 y in the upper right corner). In addition, notice the obstacle

behind this technique is that whenis increased, the weight fﬂ the lower left comner of Fig. 3(a): the integration over

configuration is perturbed so as to climb the walls of the bas't f tive int tati d tabl
of attraction it was in. ime of consecutive interpretations produces an acceptable

The architecture o\ is built incrementally [20]. Initially, reconstruction” [Fig. 3(b)] despite the limited current sensory

the network has just one hidden unit and, as learning proceeI gormauon (ust one of the sensors is currently detecting the

a new hidden unit is added when the current network canmt stacle).

reduce the errorE any further. The new unit is added ) )

either in an existent hidden layer or in a new one. B§:- Modeling Obstacle Boundaries

modifying the network architecture, the shape of the weight The use of a neural network to interpret sensor data has been
space is also changed, which might remove the local minimuwriginally proposed by Thrun [5] to acquire global geometrical
where the network is trapped. Our experimental evidenogaps. In our approach, however, the robot uses thetyanly
shows that when re-training with a new hidden unit tht identify the boundary of the obstacle it is aligned with and
performance of the network improves. This idea can help tace a line (Fig. 3). A boundary consists of those c@llg)

build a “minimum-size” network to solve the task at hand. Iwith Prob(oce;;) >1 — € that are closest to the robot. The
preliminary explorations we observed that the performance pérametere permits to define the threshold above which the

We adopt an adaptive learning ratelnitially n = 7., and
then its value decreases linearly until it reaches a sufficien
small valuen,,,i,. If, at this point, the erro is still higher than
desired, then the value gfis restored to;,,,, and the process
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T using the local grid7 and thex? method. As soon as the robot
‘ gean finds the straight line that approximates this first boundary,
it stops utilizing the local grid, that is, the neural sensor
interpretation. Then, it moves along that line until the end of
the boundary utilizing the raw sensor readings only. Then,
the robot rotates to align with the new boundary and starts
e modeling it by following the edge and using the local gfid
=eas and they? method. Again, as soon as the approximating line
T, SEBE is found, the robot stops using the neural sensor interpretation.
¥+ Sampling Window At this point, it computes the intersection between the current
(@) (b) straight line and the previous one to identify the corner
Fig. 4. (a) The robot uses the grid to identify the boundary of the Previously visited. Then, the robot moves until the end of
obstacle it is aligned with. (b) A boundary consists of cells;) with the boundary using the raw sensor readings only, rotates to
Prok{occ;j) > 1 — e that are closest to the robot. To determineastraightlingngn with the new boundary and repeats the process. This
that goes through these cells we use tfiemethod. process stops when the robot has modeled the whole obstacle
(i.e., when it has traveled around the whole perimeter of the
occupancy probability provided by the neural network cod@gstacle). This stop condition is recognized by taking into
for an obstacle. The problem, then, is to find a straight lingcount the two straight lines modeling the first and the second
that goes through these cells. obstacle boundaries. Every time the robot reaches the end of a
Consider the local grid at time depicted in Fig. 4. A poundary, it checks if it is meeting the line modeling the first
sampling window [Fig. 4(b)] defines the width of the set ofpstacle edge. If this is the case, it rotates to align with the
cells to be fitted by a straight line. Each cgil j) in the new poundary, it models it and it goes to the end of the edge.
sampling window is thought as a poifit,y) (z =1---Nz, |f there it meets the line approximating the second obstacle
y = 1---N,). Now, consider, for eachs, < N, the eqge, it considers the whole obstacle as modeled. Notice that
minimumy,, for which the relationship Prbcc,, ) >1—¢  this procedure results in recognizing the first corer created
holds. This yields a set ofV, points (z;,u»). Then, the guring the obstacle modeling process. However, the fact of
problem is to find the best straight line looking for lines instead of points (corners) provides a more
robust corner identification process despite the odometry error.
Once all corners of an obstacle have been memorized, it
approximating this set of points. To determine this line we u$g possible to increase the resolution of the partitiorihgo
a simple version of the?> method [21]. model the new obstacle: each new corner is connected to the
As previously mentioned, the straight lines modeling th@osest perpendicular edge of one of the existing partitions [see
obstacle edges are used to build the partitioniig[see Fig. 1(b)]. This strategy always creates rectangular partitions.
Fig. 1(b)]. In order to keep the complexity 6? as low as |t js worth noting that the resolution @ is increased only
possible, the robot adopts a simple strategy. Every time it fings|ocal areas containing unknown obstacles. This meets our
the straight linel; modeling the current obstacle boundary, ihim of having a higher map resolution only in critical areas
checks whethef; might be aligned with any of the existingof the environment.
lines. If there is a line; oriented ad;, and the orthogonal  Two adjacent partitions are considered redundant if both
distance? betweerl; and!; is smaller than a threshoil, then  represent either obstacle or free space and they can be merged
the robot makes the ling to be aligned withl,. This simple  to produce a rectangular partition. It might happen that increas-
technique also permits to create a map that fits structufay the resolution generates a redundancy in the partitioning
regularities of the environment (e.g., the two in-line wallp After updating, redundant partitions are removed over
holding a door frame). all P. Thus the resulting model is as compact as possible and
The accuracy ofP depends on two factors, namely thgig computational complexity is kept low.
resolution of the local grid and the accuracy of the straight after updating the partitioningP, the robot stores the
lines approximating the obstacles. The combined effect of tRﬁow|edge concerning physica| transitions between new
neural sensor interpretation and of the line fitting method jsartitions. In particular, the robot keeps a databdeof
such that fine details of the environment are not includeggative experiences memorizing the “forbidden transitions”
in the partitioning process. Indeed, the aim is to model thstween the new partitions containing the obstacle and
Spatial structure of the world qualitatively. Fine details are nﬂﬁe adjacent partitions_ A negative experience between
necessary for high-level planning and they can be handled §Ypartition « and a partition 3 is stored as a triplet

y(x) = y(w;a,b) = a+ba

a low-level reactive module. of the form («, g, false). In the example of Fig. 1(b),
o the databaseD would be updated as followsD =
C. Partitioning Update D U {(a,¢ false), (B,¢, falsc), (v,¢, false), (v,m, false),

Every time the robot perceives an unknown obstacle (¢, 7, false), (e,n, false), (¢, ¢, false)}. The databasé is the
decides to increase the resolution of the partitionfigto robot long-term memonpof the spatial relationships between
model it. The robot approaches the obstacle and aligns wRArtitions and it is used by the planner (Section IlI-E) to derive
one of its boundaries. Then, it follows that boundary and sta@stopological graph from the partitionirig.
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D. Exploring the Environment LOOP

; : . 1 Ezploration: Selection of the next target; i.e., the partition
An important concern of the proposed method is to devise an with the highest Up.

efficient exploration of the environment in order to accelerate 2 Planning: Computation of a trajectory to the target

the map learning process. through the current partitioning.
. . s . ion: 1 th -
Since the environment is initially unknown, the robot begins 3 Acton: The robot actually moves controlled by the reac
with an empty partitioning (i-e-P = (Z)) At this time, it 4 If the robot reaches the target, then it explores it ex-
starts exploring by moving along a straight trajectory in a haustively. _
randomly chosen direction. As soon as it detects an object, it 5 Mop Update: If an incoherency has been detected, then
. . . . . the robot gives up exploration and models the unknown
starts creating the variable-resolution partitioning to model it. obstacle.
When P # 0, exploration is achieved by selecting a target 5.1 The robot approaches the unknown obstacle.
partition, moving across the environment to reach it, and, 5.2 While the robot does not visit a known corner
finall lori h L h ivel 5.2.1 The robot aligns with one of the boundaries of
inally, exploring the target partlthn ex gustlve .y. .As soon as the obstacle.
the robot detects an unknown object (either within the target 5.2.2 Neural Sensor Interpretation + Integration
or along the path leading to it), it gives up exploration and over time + x* method: The robot follows the

boundary and approximates it by a straight line.

starts updating the partitioning. When the unknown object 5.2.3 The robot moves until the end of the boundary.
has been modeled, exploration is resumed by selecting a new 5.2.4 The robot memorizes the corner.
target partition. 5.3 Increase the resolution of the partitioning.
The exploreris the module responsible for the choice of 5.4 Update the database of negative ezperiences D.
.. . . . 5.5 Remove redundant partitions over all P.
the target partition. We adopt an active learning technique 5.6 Abstract a new topological graph.

[12]: the robot selects the next region to be explored so thatgoto LOOP

it obtains an environmental map with the smallest possibﬁg. 5. The map leaming method.

number of exploration steps. This active behavior is obtaine

by making the robot always explore the least known region  partition 3 if («, 3, false) ¢ D, that is the transition

of the environment. «a — (3 is not characterized by a negative experience.
Active exploration is based on estimating the explorationet p the number of partitions forming the variable-resolution

utility U of each existing partition and selecting the one whichatitioningP. Notice that the number of nodes in the graph is

maximizes it [13], [22]. This heuristic real-valued functionyways smaller or equal tB, because only partitions represent-

measures “how much a partition is worth to be explored.” Tag obstacle-free areas are actually mapped into nodes. Then,

definel, , we use a technique calledunter-based exploration starting from the node corresponding to the current partition,

with decay[13]. It gives higher utility to partitions that havethe planner searches the graph for the shortest path to the node

been visited less often and less recently. A countgy keeps associated with the target. Due to the low complexity of the

track of the number of occurrences for each partitiod P |eared partitioningP, this process is not expensive.

(i.e., how many times that partition has been visited). In order once the optimal path has been determined, a low-level

to take into account when a partition has been visited, thganner computes the robot's trajectories between adjacent

counterc(p) is multiplied by a decay factoA < 1. Thus, partitions in the path. In the current implementation the robot

whenever the explorer module is triggered to select a neWyays follows straight trajectories parallel to thandy axes

target partition, it updates the exploration utilities as followssf the environment. This simple motion strategy minimizes

errors in the dead-reckoning system. If the robot has to move

c(p)=A-c(p) YpeP from the partitioni to the adjacent partitiorj, and{ is the
1/e(p) ¢(p)>0 boundary between them, the robot first moves paralléLtatil
Ue(p) = { K c(p) =0 it is in front of its middle point. Then, it moves perpendicular
to [ until it crosses the boundary.
where K > 1 is a constant factor. Finally, a reactive low-level module controls the robot
Finally, the explorer selects as target the partition théisplacements by handling small inconsistencies of the map
maximizesU. : (i.e., fine details not being modeled) and possible moving

obstacles (e.g., people). When modeling new obstacles, this
; o I same reactive module makes the robot follow the obstacle
arget = arg max U (p). i
pCP boundaries.

E. Planning and Action F. Algorithm Overview

Given the target partition, the robot invokes thnner  The proposed map learning method results in a cyclical
to compute a trajectory toward it. The planner derives @ocess dominated by exploration and model update activities.
topological graph from the current partitionirigy where The robot is continuously exploring the environment, and

1) nodes correspond to partitions; exploration is driven by the acquired knowledge. The robot

2) arcs are derived from the long-term memory of exp@nly gives up exploration to incorporate unknown obstacles in

riencesD. The node corresponding to the partition the model by updating the partitioning resolution. An outline
is connected to the node corresponding to the adjacefitthe whole algorithm is given in Fig. 5.
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Fig. 6. (a) TESEO, a Nomad 200 mobile robot. It is equipped with a ring {
16 sonar sensors on the top, a ring of 16 infrared sensors in the middle
20 tactile sensors at the bottom. Each sensor ring covers 360Schematic
top-view of the robot.

(b)

Fig. 8. (a) A corridor of our building used as testing environment. (b) The
corresponding learned map (the right side of the map corresponds to the end
Infrared sensors of the corridor). Black rectangles represent obstacles (i.e., walls and cabinets),
sensars thin lines partitions. The black circle represents the robot at the initial location.
Grey partitions represent areas of the world classified as obstacles by the robot.

The differences between the two robots, especially their sen-
sor capabilities and sensor configurations, made it interesting
to test our method on both of them.

motors

(b)

Fig. 7. (a) The Khepera mobile miniature robot. It has eight infrared sensofg: Experiments with the Nomad 200
Six sensors cover the frontal 180f the robot and two sensors face backward.

(b) Schematic top-view of the robot. Fig. 8 shows one of the corridors of our building and the
corresponding learned map. The variable-resolution partition-
ing consists of only 21 partitions. The portion of the corridor
modeled measures abaki x 2.5 m. The map was built with
all doors closed. For the neural sensor interpretation, we use
In this section we present experimental results obtaingdocal gridg of 28 x 28 cells, each covering an area of about
with two quite different mobile robots, namely a Nomad 2083 x 13 cm. The robot occupies thex 4 central cells. Notice
(Fig. 6) and a Khepera (Fig. 7). how the map does not represent fine details such as small
The Nomad 200 [Fig. 6(a)] has a diameter of about 50 cgaps between cabinets. Also, the map has captured the main
and it is about 80 cm tall. This robot is equipped with 1@nvironmental regularities. This is mainly due to the alignment
ultrasonic (sonar) sensors and 16 infrared sensors providiii@cedure that makes a new boundary line move if there exists
distance information from objects and 20 tactile sensors dete@ﬁ-eady another line that is sufficiently close and has the same
ing collisions. Sonars and infrareds are evenly placed arougmglentation.
the perimeter of the turret, whereas the tactile sensors covern order to illustrate the performance of our approach in a
all the perimeter of the robot below the turret. Sonar sensaffore complex environment, we also report results obtained
can detect objects located at a distance between 15 cm andi§.8imulation [23]. The Nomad 200 simulator models the
m, whereas infrared sensors have a maximum range of ab@Hot's motion system (i.e., translation, steering, and turret
40 cm. Each sensor ring ensures a360verage [Fig. 6(b)]. rotation), and the robot’s sensor system (i.e., tactile, infrared,
Finally, a dead-reckoning system permits self-localization 3hd sonar) adequately. Uncertainty of the motion control is
keeping track of the robot position and orientation. The Nomagdodeled by keeping track of two positions of the simulated
200 has three independent motors. The first motor moves tid®ot, namely the encoder position and the actual position.
three wheels of the robot together, the second one steers The encoder position is calculated by odometry from the ideal
wheels together and the third motor rotates the turret. commanded velocities, while the actual position is calculated
The Khepera platform [Fig. 7(a)] is a miniature robot havinfom perturbed velocities. The perturbation on commanded
a diameter of about 5.6 cm. In the basic configuration used heedocities cares for the uncertainty in the control system,
itis 3.6 cm tall. A set of eight infrared sensors allows the robohodeling robot’s drift and slippage. Sensor data, which are
to perceive objects within a maximum range of about 4 croomputed based on the actual position of the robot, are
Six of the infrared sensors are covering the frontal®180the modeled by considering the presence of noise as well. Both
robot while the remaining two sensors cover approximatetgodels, for motion and sensor readings, rely on a set of
100° on the back side [Fig. 7(b)]. A dead-reckoning system garameters that can be adjusted to fit real data.
used for the auto-localization task. Finally, two motors move Fig. 9 shows the simulated world used for carrying out
the two robot wheels independently. the experiments. It simulates a real environment of about

IV. EXPERIMENTAL RESULTS
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L]

(b)

Fig. 11. (a) Effective infrared sensor coverage. Notice the twd diihd

spots on the left and right sides. (b) Average error distribution obtained by
evaluating the trained network on a test set of 5000 patterns. The darker a
Fig. 9. The environment used for the Nomad 200 simulator. It simulatesCgll: the higher the corresponding average error.

real indoor environment of abod#.5 x 10.5 meters.

For the map of Fig. 8(bx = 0.0737, whereas for the final
map of Fig. 10e¢ = 0.0676.

B. Experiments with the Real Robot Khepera

In this section we present results obtained with a real mobile
robot Khepera. The local gri@j has 14 x 14 cells, each
covering an area of x 1 cm. The robot occupies thg x 6
central cells.

As already mentioned, the Khepera sensor configuration
does not provide a 360-degree coverage [Fig. 11(a)]. More-
10, Th ' Cand the fina Black rectandl over, on-board infrared sensors can only detect objects which
ks Gy P s on st e vk S o apaea very close. Fig. L1(6) shows the rror istribution over the
by the robot. ocal grid surface obtained by evaluating the performance of

the trained network on a test set of 5000 patterns. The darker

14.5 x 10.5 m. The neural sensor interpretation uses the safiecell: the higher the corresponding mean error. Fig. 11(b)
local grid G as the real robot. Fig. 10 shows the environmersfiows that the sensor interpretation provided by the trained

as well as the final map. Qualitatively, the partitioning modeletwork helps to partially compensate for incomplete sensor

the free space quite accurately. Even if the map does f/erage. This extrapolation capability of the neural network

model some small protuberances of the obstacles propefﬁ/,d“e to the fact that the obstacles used to train the network

these “inconsistencies” do not harm the robot performan@E® Walls, whose length scale is typically larger than the 40

since they are useless at planning time and are handledQ{d spot. Notice that, due to the short-range response of
the reactive module. The learned map has a small numberﬂ&ﬁB Sensors, the performance Of the network IS worse In the
variable-resolution partitionéP = 45), which permits a fast PI’OXImItY of the corners of the grid. quever,_whne the_robot

planning of robot trajectories. As discussed in Section I1I-85 Modeling an object boundary, the integration over time of
every time the robot models a boundary by a straight lingonsecutive neural sensor interpretations (see Section 111-A2)

it also checks whether the new line can be aligned with 4!PS to reduce this effect. o
existing one. This strategy results in a map that preserve§” order to improve the self-localization capabilities of

environmental regularities. This can be observed in Fig. {g§'éPera we resort to off-line techniques for measuring and

considering partitions modeling doorways and door frame2Tecting systematic odometry errors. We use the experimen-
procedureUMBmark [24] to calibrate the two dominant

In addition, since new lines are aligned to previously creatd ; .
stematic error sources, namelyequal wheel diameters

lines, this technique permits to create a map that partiaﬁ’% ; X
compensates for cumulative dead-reckoning errors. (£q) and theuncertainty about the effective wheelbdds).

Since partitions are implicitly labeled as either “occupied-’rhiS technique measures errdg and £, quantitatively and

or “free” by the robot, a simple way of measuring quantit_hen derives the compensation factors to be included in the

tatively the accuracy of the learned map is to compute tﬁgntrol software. We also apply another simple procedure for

misclassified fraction of the total area of the world. L&t ©dometry calibration. We make a set oftest runs in which

be the sum of the surface of misclassified partitions (free o€ oot moves straight for a given distanteFor each run
classified as occupied and occupied ones classified as fledie offsete; between the asked nominal distantand the

and letA,., be the total surface of the environment. Now, th@ctual distancel is observed. Then, the expected uncertainty
error ¢ is: offset ¢ is estimated by averaging over all test runs; i.e.,

¢ = (1/n) ¥, ¢. €is used in both the control software
_ Ae (1) and in the odometry computation to compensate the observed
Ator offset.

c
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[m]

(b)

Fig. 12. (a) The environment used for the Khepera and the robot within ftig 13 (a) Topological graph corresponding to the map of Fig. 12(b). (b)

Itis a scaled (about 1:14) wood model of our laboratory covering a surfagghot's trajectory to go from START to GOAL. Given the path highlighted

of about100 x 60 cm. (b) The learned variable-resolution partitioning. Greyy, (), thelow-level planneiis used to compute the actual trajectories between

partitions represent areas of the world classified as obstacles, whereasgj§cent partitions, and the reactive controller brings the robot along them.

black rectangles represent the actual obstacles. Trajectory plots are built using calibrated odometry readings from the physical
robot.

Fig. 12(a) shows the real testing environment. The environ-
ment extends over a surface of ab@06 x 60 cm. Fig. 12(b) !
shows both a two-dimensional representation of the world and
the learned map. The resulting variable-resolution partitioning
has a very small number of partitiofd® = 19). The low
complexity of the model matches the low complexity of the
geometrical structure of the real environment. For the map
shown in Fig. 12(b) the fraction of the total area of the
environment which has been misclassified (13 s 0.1275.

Again, the alignment technique discussed in Section 11I-B
helps to exploit the high regularity of the environmental
structure and to partially compensate for odometry errors. This
results in a very regular partitioning.

Fig. 13(a) shows the topological graph corresponding to the
acquired partitioning. The low complexity of the topological
graph is a consequence of maintaining as compact as possible
the partitioning?. Then, given a target region, planning &9- 14. Exploration performance during the learing process. The diagram
path leading to it i an inexpensive process. Consider the i, 5 49571 mean exploraion uity crves of o acive exploratin)
selected by the planner to go from position START to th@ndom walk mostly in the first part of learning. Then, once the standard
position GOAL. Given this path, the low-level planner comdeviation ofU,,, (t) decreases, random walk reports a closer performance.
putes the actual trajectories between adjacent partitions and the
reactive controller takes the robot along them (Section Ill-Ejghot has run times the map learning algorithm of Fig. 5).
Fig. 13(b) shows the trajectory effectively followed by therhe lower the value ofl/,,, the better the environment is
robot. As mentioned in Section |||, the robot always mOVGéxpk)red. F|g 14 compares the performances of the used
parallelly or orthogonally to the andy axes of the environ- active exploration and of a random exploration during the
ment in order to reduce wheel slippage and drift. map learning process (of the environment of Fig. 12), is

As described in Section I1I-D, the robot tries to optimiz&ept equal to 1 until at least one partition has not yet been
its exploration process by always visiting those partitions th@isited. The diagram shows that active exploration overcomes
maximize the exploration utility/.. In order to evaluate the random walk. The benefit of choosing carefully the next target
exploration process, we define the following utility function:partition is higher in the first part of the learning process. The

small cardinality of the successive partitionings increases the

> Up,t) o . »

probability of randomly selecting the most useful partition to

Un(t) = PEPt) be explored next. Furthermore, as the environment becomes
P(t) uniformly explored, the standard deviation bf,, decreases

where P(¢) is the number of partitions dP at time¢. U,,(¢) and whichever partition is chosen for exploration yields the
gives the global mean exploration utility corresponding tsame information. Therefore, the performance difference be-
the partitioning” after¢ exploring trajectories (i.e., after thetween the two strategies is reduced. This residual difference is

o o o
~ o 0
T T T

=4
»n
T

Mean Exploration Utility

o
15
T

o

o

o

2 4 1 8 10 12
Number of Exploring Trajectories
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proportional to the complexity of the environment. Thus both A critical aspect of our approach is that it relies on good
strategies achieve similar performances after a while. robot self-localization capabilities. Currently, position and
orientation of the robot are determined by dead-reckoning.

We have incorporated some strategies to increase the odom-
V. DISCUSSION etry accuracy, namely off-line compensation of systematic

The proposed map building method attempts to achie@&O0rs (Section IV-B) and generation of straight trajectories
a good trade-off between representation accuracy and led@ection llI-E), that have proven sufficient during all experi-
ing efficiency. Indeed, using variable-resolution representatif}nts carry out so far. However, robots must be endowed with
relates the model complexity to the complexity of the envRn-line calibration techniques if we want them to work for
ronment: the aim is to have a high resolution only in criticdPnger periods of time and to follow more flexible trajectories.
areas (e.g., around obstacles) even if the map does not molthis end, we are incorporating two techniques to the
fine details. The low complexity of the learned variablecurrent approach. The first consists of using known corners
resolution partitioning is a crucial feature for saving memor§s calibration points for the robot. During map building the
and time resources. If, for instance, we applied a standdfPot memorizes the relative position of the corners in every
geometrical approach to learn a global grid-based map of h@'tition. Then, every time it goes through a known corner, it
environment shown in Fig. 12(a), then an appropriate gri@librates its odometry system with the position of that corner.
resolution would consist of cells dfx 1 cm. In this case, the The second technique is based on the idea of using the neural
two-dimensional evenly-spaced grid would consist of abo8€Nsor interpretation to learn a local model of every transition
6000 cells. The computational complexity of managing suchPgtween adjacent partitions. Then, whenever the robot is in
map does not reflect the actual geometrical complexity of tHee vicinity of the boundaries of one of the partitions, it uses
physical environment. Having a fine resolution to represetite correlation of the local grig (constructed on-line as the
large free areas of the world is not appropriate. Anoth&pbot moves) with the learned local model to correct possible
important concern is the high cost of planning trajectories RiTors of the dead-reckoning system [25], [26].
such a representation. Searching an optimal path in a space ofh€ environments used so far for evaluating our method
6000 states is not a trivial and cheap process. On other hatygre all static. The proposed approach could be extended
the map shown in Fig. 12(b) consists of just 19 partitioné0 deal with dynamic environments by modifying the local
This requires a small amount of memory for storing thEePresentation of areas of the environment that have changed.
adjacency structure representing the partitioning, and of tim@¢e use of a decay factor make the explorer drive the robot
for managing it. Moreover, the simplicity of the topologicaf©® regions not recently visited, and thus the robot might detect
graph derived from such a partitioning permits inexpensivynamic regularities such as doors. As a consequence, it might
path planning. modify the model to incorporate changes such as open (closed)

Computational efficiency is further improved by a limitedloors that were previously closed (open). However, the current
use of the neural sensor interpretation—and, consequentfjplementation of our approach does not model this kind of
the integration over time. Building & x n local grid G partitions as “dynamic;” i.e., it does not label them as regions
(Section 111-A) requires x n activations of the neural network Whose occupancy could change over time.
in order to compute the occupancy probability of every cell. In A limitation of our map learning approach is its inappropri-
our method, as mentioned in Section III, the robot uGemly ateness for small, cluttered areas. But in this kind of areas
to approximate the boundary of the obstacle it is following, rgactive strategies have demonstrated their robustness and
process that generally takes only a few steps. Once the rogfficiency, especially when learning is involved (e.g., [10]).
has found a straight line approximating the boundary, it stoe Plan to combine these two complementary approaches
computinggG and relies on its raw sensor readings to reach tiiee-, map learning and reactive learning) in a single navigation
end of the boundary. architecture. If the robot enters a room that it cannot model, it

An important assumption of the current implementation dpight resort to reactive strategies. It is worth noting that once
our method is that all the obstacles are parallel or perpendiculd@ environment has been partitioned into a topological map,
to each other. This orthogonality assumption results in sirffle robot must only learn efficient sensor-based strategies to
ple variable-resolution partitionings consisting of rectangulgfove from a given node to the neighboring ones. Thus the
partitions only. This reduces the complexity of treating th@cquired sensory-motor rules are goal-independent.
underlying geometrical properties (e.g., mutual spatial relation-
ships between adjacent partitions). This assumption also allows
the robot to move along simple trajectories, which reduces the
risk of wheel slippage and drift. In order for the method to The authors would like to thank W. Gerstner for useful
deal with more general environments, this assumption m@tticism.
be removed. In this case, the variable-resolution partitioning
would consist of polygonal partitions, which would make it REEERENCES
more difficult to update and maintain the model.

ACKNOWLEDGMENT

[1] H. P. Moravec, “Sensor fusion in certainty grids for mobile robo#s,”
Mag., vol. 9, pp. 61-74, 1988.
1Given the Khepera features, grids with a lower resolution could fail to[2] H. P. Moravec and A. Elfes, “High resolution maps from wide angle
model the geometrical structure of the world accurately (see Section IV-B). sonar,” inProc. |IEEE Int. Conf. Robot. Automafl985, pp. 116-121.



1000

(3]

(4]

(5]
(6]
(7]
(8]

(9]

(20]

[11]

[12]

[13]

[14]

(18]

[16]

[17]

(18]

[29]

[20]

[21]

[22]

(23]

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 6, DECEMBER 1999

B. J. Kuipers and Y. T. Byun, “A robot exploration and mapping strategy24] J. Borenstein and L. Feng, “Correction of systematic odometry errors

based on a semantic hierarchy of spatial representatidhsiRobot. in mobile robots,” inProc. Int. Conf. Intell. Robots Syst1995, pp.
Auton. Syst.vol. 8, pp. 47-63, 1991. 569-574.

J. Matart, “Integration of representation into goal-driven behavior{25] K. Graves, W. Adams, and A. Schultz, “Continuous localization in
based robots,TEEE Trans. Robot. Automatvol. 8, pp. 304—312, Apr. changing environments,” iRroc. IEEE Int. Symp. Comp. Intell. Robot.
1992. Automat, 1997, pp. 28-30.

S. Thrun, “Learning maps for indoor mobile robot navigatioAftif. ~ [26] B. Yamauchi and P. Langley, “Place recognition in dynamic environ-
Intell., vol. 99, pp. 21-71, 1998. ments,”J. Robot. Systvol. 14, pp. 107-120, 1997.

J. O'Keefe and L. Nadel,The Hippocampus as a Cognitive Map
Oxford, MA: Clarendon, 1978.

N. Burgess, M. Recce, and J. O’Keefe, “A model of hippocampal
function,” Neural Net, vol. 7, pp. 1065-1081, 1994.

A. W. Moore and C. G. Atkeson, “The parti-game algorithm for variable
resolution reinforcement learning in multidimensional state-spaces
Mach. Learn, vol. 21, pp. 199-233, 1995.

S. Schaal, “Nonparametric regression for learning,” Rmoc. Conf.
Prerational Intell.—Adaptive Learning BehavjoBielefeld, Germany,
1994.

J. del R. Millan, “Rapid, safe, and incremental learning of navigatiol
strategies,”IEEE Trans. Syst., Man Cybern, &ol. 26, pp. 408—-420,
1996.

Angelo Arleo received the M.S. degree in computer
science from the University of Mathematical Sci-
ence, Milan, Italy, in 1996 and is currently pursuing
the Ph.D. degree at the Swiss Federal Institute of
Technology Lausanne (EPFL), Lausanne, Switzer-
land.

He is a Researcher at the EPFL. In 1995, he
worked with the Robot Learning Group, Joint Re-

S. Schaal and C. G. Atkeson, “Assessing the quality of learned loc ) search Centre, European Commission, ltaly. His
models,” in Neural Information Processing SystemsJ Cowan, G. 1 research topics concern spatial modeling and navi-
Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmanf, “  gation in neuro-mimetic systems, adaptive robotics,
1994, pp. 160-167. and artificial neural networks.

D. A. Cohn, “Neural network exploration using optimal experiment

design,”Neural Networksvol. 9, pp. 1071-1083, 1996.

S. B. Thrun, “The role of exploration in learning control,” itandbook

of Intelligent Control: Neural, Fuzzy and Adaptive ApproachBs A.

White and D. A. Sofge, Eds. New York: Van Nostrand Reinhold, 1992 Jos del R. Millan received the Ph.D. degree in
R. Chatila and J. P. Laumond, “Position referencing and consistent wo computer science from the Universitat Petinica
modeling for mobile robots,” ifProc. IEEE Int. Conf. Robot. Automat. de Catalunya, Barcelona, Spain, in 1992.

A. Elfes, “Sonar-based real-world mapping and navigatiolsEE segrechlscznltqrg,selzalzfgpesgrl\erggsrtr\%vilg;ié:? Ijglssasean

Trans. Robot. Automatvol. 3, pp. 249-265, Apr. 1987. ; : ar.
, Occupancy Grids: A Probabilistic Framework for Robot Per- gf: '?g{;é:;ﬁ;esdsg rcfgtr;r&r:!;ay%agrscggf;;h?o?T;]vrzre

Eiﬁﬂggi:nhﬂengl%ﬁsnPPri]t-tz bgr';er;flofésgept' Elect. Comp. Eng.| years. His work is mainly focused on the design
C. J. Taylor and D. J. Kriegman, “Exploration strategies for mobil g;gdvigg\r/:blaeg%?(t)ss’i '2;%2‘;:?&%%?3&?#surtztr)oif_
robots,” in Proc. IEEE Int. Conf. Robot. Automat.os Alamitos, CA, terfaces 9 p

1993, vol. 2, pp. 248-253, IEEE Comp. Soc. Press. ’
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errorslidturg vol. 323, pp. 533-536,
1986.

C. M. Bishop,Neural Networks for Pattern RecognitionOxford, U.K.:
Oxford Univ. Press, 1995. Dario Floreano received the M.S. degree in neural
J. M. Renders, J. del R. Mdh, and M. Becquet, “Non-geometrical computation from the University of Stirling, U.K.,
parameters identification for robot kinematic calibration by use of neur and the Ph.D. degree in cognitive science, from the
network techniques,” ifProc. Eur. Robot. Intell. Syst. Confl991. University of Trieste, Trieste, ltaly, in 1992 and
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery 1995, respectively.

Numerical recipes in C Cambridge, U.K.: Cambridge Univ. Press, He is a Senior Researcher with the Swiss
1992. Federal Institute of Technology Lausanne (EPFL),
S. Argamon, S. Kraus, and S. Sina, “Utility-based on-line exploratio Lausanne, Switzerland, with interests in autonomous
for repeated navigation in an embedded graghfif. Intell., vol. 101, robots, evolutionary systems, and artificial life.
pp. 267-284, 1998. Since 1993, he has published about 50 technical
J. del R. Mlllén, and A. Arleo, “Neural network Iearning of variable peer-reviewed papers and bOOkS, Organized two
grid-based maps for the autonomous navigation of robots,Prioc.  |nternational Conferences (ECAL99 and SAB2000), and joined the scientific
IEEE Int. Symp. Comp. Intell. Robot. Automat997, pp. 40-45. committee of more than 20 conferences and journals.




