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Abstract

We describe a hippocampal neural model
in which spatio-temporal features of the envi-
ronment are extracted by visually driven neu-
rons. The neuronal firing activity implicitly
measures properties like agent-landmark dis-
tance and egocentric orientation to visual cues.
This leads to a neural representation where
populations of place cells encode spatial loca-
tions within the environment. In addition, tem-
porally asymmetric long-term potentiation of
synapses between place cells is used to learn
a vector field representation providing a navi-
gational map. We present experimental results
obtained by testing our model with the mobile
Khepera robot.

1 Introduction

Navigation of perceptually complex an-
imals relies on (more or less explicit)
spatial representation. The Hippocampus
is a much-studied example of a neuro-
physiological structure with such a spatial
representation property. Based on experi-
mental evidence for spatially-tuned neurons
(place cells) in rat hippocampus [14], it has
been suggested that this area of the brain is
involved in mammalian navigation.

The first order correlate of place cell ac-
tivity is the location of the rat within the
environment. Each place cell fires maxi-
mally only when the rat is in a specific re-
gion, which defines the place field of the
cell. Place fields are determined by com-
bination of environmental cues, whose mu-
tual relationships code for the current an-
imal location [14]. Experiments on rats
show that visual landmarks are mainly re-
sponsible for place identification [10]. How-
ever, place cells can maintain stable recep-

tive fields even in absence of reliable orient-
ing cues [13]. This suggests a more complex
architecture where multimodal information
is used for learning and maintaining hip-
pocampal place fields. For instance, in the
dark, proprioceptive information could par-
tially replace external stimuli.

We present a hippocampal model that
relies on this idea of a sensor-fusion pro-
cess for driving place cell activity. Re-
ceptive fields are learned by extracting
spatio-temporal properties of the environ-
ment from visual sensory inputs. Incom-
ing visual stimuli are interpreted by means
of neurons that only respond to combina-
tions of specific visual patterns. Using such
a filtering process, properties like agent-
landmark distance and egocentric orienta-
tion to visual cues may be measured implic-
itly, without image processing. The activ-
ity of the neural filters propagates through
the model yielding place cell activity. Unsu-
pervised Hebbian learning is used to build
the hippocampal neural structure incremen-
tally. In order to interpret the ensemble
place cell activity as spatial locations, we
use population vector coding.

In addition to visual input we also
consider proprioceptive information. An
extra-hippocampal path integrator drives
Gaussian-tuned neurons modeling the inter-
nal movement-related information. During
the agent-environment interaction, synapses
between visually driven place cells and
path-integration neurons are established by
means of Hebbian learning. This allows us
to correlate internal and external stimuli to
obtain a more stable neural representation.

In order to accomplish their functional
role in navigation, hippocampal neural mod-
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Figure 1: Architectural overview of our hippocam-
pal neural model.

els must incorporate knowledge about rela-
tionships between the environment, its ob-
stacles and specific target locations. Given
the hippocampal representation, we derive
a navigational map by applying the ap-
proach proposed by Blum, Abbott, and Ger-
stner [8, 1]. This model relies on two prin-
cipal concepts: (i) population vector cod-
ing of spatial location by large numbers of
hippocampal cells [16], (ii) use of tempo-
ral asymmetry in long-term potentiation to
learn recurrent synapses between place cells
[5].

Our approach is similar in spirit to earlier
work by Burgess, Recce, and O’Keefe [4],
Mallot et al. [12], Trullier and Meyer [15],
Brown and Sharp [3].

2 The Hippocampal Model

Our model, Fig. 1, integrates external
and internal stimuli to build and main-
tain stable place fields (modeling CA1 and
CA3 hippocampal place cells). In the hard-
ware implementation on a Khepera robot,
the vision system is a 64-pixel linear cam-
era (Fig. 2). Internal movement-related in-
formation is provided by dead-reckoning.
A simulated compass system provides the
robot with allocentric orientation informa-
tion. Finally, infrared sensors endow the
robot with obstacle detection capability.

2.1 Learning Place Fields

Relationships between visual landmarks
are interpreted by mapping images into a
filter-activity space. We define a set of
classes of Walsh-like filters [2]. Each class
corresponds to a visual pattern. The set
of filters in that class corresponds to differ-
ent frequencies for that pattern. In total we
have 5 different classes each containing fil-
ters at 10 different frequencies.

Let F}, be one our Walsh filters, where k

Figure 2: The mobile robot Khepera equipped
with the linear-vision turret.

is the index of the filter, and let [ be its
length. The response ay, of filter k to an in-
put x = (z1,...,Ze4) is given by convolution

lp—1

ap = mr?x{ Z Fy.(i) mn+i} (1)

where 0 < n < 64 — ;. Since |z;| < 1, we
find that |ag| < .

Snapshot Cells. The idea is to repre-
sent each image by the cluster of filters hav-
ing the highest correlation value, defined by
Eq. 1. We call the set of active filters

sc={Fy | ar > Cr} (2)

a snapshot cell. Here, C}, = 0.7 - I}, is the
threshold above which a filter is considered
as active.

For each visited location, the robot takes
four snapshots corresponding to the north,
east, south, and west views. Thus, each lo-
cation in the environment is characterized
by four snapshot cells, forming a local view.
During exploration, the robot maintains a
database of snapshot cells, whose activity
depends on the current view. The firing ac-
tivity of a snapshot cell j is given by

Ek]‘ H(akj — Ck)
rj = N, (3)

where > ,; sums over all the Nj filters form-
ing the cell j, and H is the Heaviside func-
tion. The normalization has been chosen so
that 0 < r; < 1. For instance, if a snapshot
cell consists of a cluster of ten filters and
only five of them are maximally activated
by the current view, the resulting firing level
will be 50% of maximum cell activity.

Entorhinal Cells. The snapshot cell activ-
ity depends on the current view, but does
not code for spatial locations. In order to
obtain such a spatial discrimination prop-
erty, we apply unsupervised learning to cre-
ate a population of cells one synapse down-
stream of the snapshot layer (Fig. 1). We



Figure 3: An example of place field in the layer
CA1-CA3 of our model. The darker a region, the
higher the cell firing rate when the robot is in that
region of the environment.

call such units entorhinal cells because (i)
neurons in the entorhinal cortex are the
main cortical input to the rat hippocam-
pus, and (ii) observed entorhinal cells show
spatially correlated firing, but tend to have
place fields less defined than those in the
CA3 or CA1 hippocampal regions [4].

Every time the robot is in a new location,
all simultaneously active snapshot cells are
connected to a newly created entorhinal cell.
Each new synapse is given a random weight
in (0,1). Let ¢ and j be indexes for entorhi-
nal cells and snapshot cells, respectively. If
r; is the firing activity of a snapshot cell j,
then

wi =H(r; —€) mdo, (4)

where ¢ = 0.75 is the activity threshold
above which a neuron is considered maxi-
mally firing, and rndy is a random value
in (0,1). The firing rate of an entorhinal
cell ¢ is given by the average activity of its
presynaptic neurons

2wy
> Wi
Once synapses are established, their efficacy

is changed according to a Hebbian learning
rule

(5)

Ti

Awgj =r1j (ri — wij) (6)
For a given location, new connections from
snapshot cells to entorhinal cells are not cre-

ated if
ZH(W —6)> A (7)

that is, if the number of maximally fir-
ing entorhinal cells at that location exceeds
a threshold A = 10 cells. This simple
technique allows us to control redundancy
in the resulting neural representation. We

call such a learning scheme an unsupervised
growing network (see, e.g., [6]).

Place Cells. Entorhinal cells project
to the layer of hippocampal place cells
(Fig. 1). As learning proceeds, new down-
stream synapses are incrementally created
by means of the above unsupervised grow-
ing network scheme. Simultaneously ac-
tive entorhinal cells are connected to cre-
ate new place cells. If now ¢ and j rep-
resent place cells and entorhinal cells, re-
spectively, synapses are created according to
Eq. 4 and changed on-line by Hebbian learn-
ing (Eq. 6). The firing rate of each place cell
is a weighted average of its presynaptic cells
(Eq. 5).

2.2 Path Integrator

Place cells of the rat hippocampus con-
tinue to show stable fields even in the dark
[13]. In order to compensate for unreliable
visual data using internally generated infor-
mation, we define Gaussian-tuned neurons
driven by the path integrator system. These
hypothetical extra-hippocampal units are
used to model movement-integrated infor-
mation by means of neural activity. Every
time the robot moves, the activity of these
path-integration cells changes according to
the current orientation and velocity of the
robot. During the agent-environment inter-
action, one-shot Hebbian learning is used
to learn synapses between visually driven
place cells and path-integration neurons.
This means that new connections are given
weight equal to 1, and are not changed any
further.

As a consequence, place cell activity de-
pends on the activity of both entorhinal and
path-integration cells. This combination of
internal and external stimuli yields a more
stable neural spatial representation. On the
one hand, unreliable visual data are com-
pensated by means of the path integrator
neural activity. On the other hand, reliable
visual information is used for re-calibrating
the path integrator system (Section 2.4).

Fig. 3 shows a typical place field of a neu-
ron in the layer CA1-CA3 of our architec-
ture.

2.3 Population Vector Coding

The proposed hippocampal model results
in a spatial representation consisting of a
large number of neurons with overlapping
place fields. Fig. 4 shows the experimental



Figure 4: The 60 x 60 cm testing environment and
the Khepera robot within it.

setup: a Khepera robot equipped with a lin-
ear vision system (Fig. 2) within a 60 x 60
cm square arena. Walls are covered by a
fixed random sequence of black and white
stripes of variable width. Combinations of
these stripes form the visual input patterns
for the system. Fig. 5 shows the population
of CA1-CA3 place cells created by the robot
after a learning session of about 2000 time
steps. Each dot represents a place cell, and
its position represents the center of the cell’s
place field. After learning, place cells cover
the environment uniformly and densely. In
Fig. 5 we show the ensemble network activ-
ity modeling the robot location of Fig. 4.
In order to interpret the information rep-
resented by the ensemble pattern of activity,
we use a population vector decoding scheme
[7]. This approach consists of averaging the
activity of the neural population to yield the
encoded spatial location. If r; is the firing
activity of a neuron ¢ and x; is the location
associated with the neuron ¢ during explo-
ration (see below), the population vector p
is the center of mass of the network activity:

p= ZXilt ®
> iTi
Notice that the encoded spatial position is
near, but not necessarily identical to, the
true robot’s location x, that is p ~ x. In
Fig. 5 the center of mass encoding the robot
location is represented by the white cross.

2.4 Exploration

We use an exploration strategy which em-
ulates the exploratory behavior of animals.
The robot starts exploration from an ini-
tial location (e.g., the nest location) and, as
exploration proceeds, it creates new place
cells. Associated with each place cell ¢ is
a vector x; which represents the location
where the robot thinks it is (based on odom-
etry) when it creates the cell 1.
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Figure 5: The learned population of place cells.
The ensemble activity corresponds to the robot po-
sition shown in Fig. 4. The darker a cell, the higher
its firing rate. The white cross represents the center
of mass of the population activity.

After a while, the robot feels the need
to calibrate its path integrator system. It
stops creating place cells and starts follow-
ing the homing vector to return to the start-
ing point. As soon as it finds a previously
visited location, it tries to use the learned
spatial model to localize itself. We con-
sider the entorhinal cell activity (i.e., visu-
ally driven neurons) to perform such a cal-
ibrating process. Let o be the variance of
the entorhinal activity around the center of
mass Pec. If o is smaller than a fixed thresh-
old T, then the spatial location pe. is used
to re-calibrate the robot (Fig. 6). More pre-
cisely, we define a weight coefficient

1-% o<T
— T —
@ = { 0 otherwise ©)

and then we use it to compute the calibrated
robot position p*

P = ape + (1 —a) par (10)

where pg, is the position estimated by the
dead reckoning system.

Once the robot has calibrated itself, it
stops following the homing vector and re-
sumes exploring. This technique keeps the
odometry error within a bounded range.
Fig. 7 shows calibrated versus uncalibrated
odometry errors during exploration.

3 Learning Navigational Maps

In this section we model how the long-
term potentiation of recurrent synapses be-
tween place cells (in particular those in the
hippocampal CA3 region) affects the ensem-
ble activity and yields a shifted encoded lo-
cation. If learning involves a specific target
position, this experience-induced shift pro-
vides a navigational map leading the agent
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Figure 6: The variance of the entorhinal cell activ-
ity around the center of mass pec. When the vari-
ance goes below the fixed threshold 7' the spatial
location pec is used to calibrate the robot position.

toward the target from any position in the
environment [1, 8].

All place cells are coupled by lateral
synapses (modeling collateral synapses be-
tween CA3 and CA1 neurons) that are ad-
justed during a training period. Initially,
the strength W;; of the connection from
presynaptic neuron j to postsynaptic neuron
i is zero. We model synaptic modifications
according to experimental results on tem-
porally asymmetric long-term potentiation:
synapses are strengthened (LTP) if presy-
naptic activity occurs either before or simul-
taneously with postsynaptic activity, other-
wise they are depressed (LTD) [11, 5]. We
model this temporal aspect of synaptic plas-
ticity by a time-window function H (¢) of the
form

[ 7 rexp(—t/7) t>0
H(t) = { —Br texp(t/T) t<0 (1)

where 7 is a time constant and the parame-
ter 3 varies the relative importance of long-
term depression: for # = 0 there is no LTD
at all, for 3 = 1 contributions of LTP and
LTD are of equal magnitude. As a conse-
quence, if presynaptic neuron j fires at a
time ¢’ and postsynaptic neuron ¢ fires at
time ¢, the change in the synaptic efficacy
AW;; is proportional to a factor H(t —t').

After a learning period of duration T,
consisting of a set of exploratory paths lead-
ing to a target location, the resulting synap-
tic strength W;; of the connection from neu-
ron j to neuron i is given by [9, 1]

T T
Wij:/o/o ri(t) H(t — ') ry(t') dt dt

(12)
The t-integral sums over the whole train-
ing time and, for a given ¢, the t'-integral

odometry error {mm)
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Figure 7: Uncalibrated dead reckoning error (a)
versus calibrated robot positioning (b) using en-
torhinal cell activity.

sums over all possible time differences be-
tween pre- and postsynaptic firing activities.

Because of the experience-based coupling
(Eq. 12) established during learning, the ac-
tivity =} of the place cell i is influenced by
the activity of other neurons, and it is given

by

T‘;» =r;+ Z Wij r; (13)

J

The second term is responsible for the
experience-induced shift in the spatial in-
formation encoded by the neural popula-
tion. As a consequence, the ensemble net-
work activity no longer encodes the agent’s
actual position x as in Eq. 8, but a differ-
ent location nearby. If Ap is the experience-
induced shift, and { X} represents the family
of exploratory paths taken during the train-
ing process, then the population vector after
learning is given by

p(x; {X}) =x+Ap(x;{X})  (14)

It turns out [8] that the shift Ap provides
the direction that the animal must follow to
reach the target location.

Fig. 8 and Fig. 9 show some experimen-
tal results obtained by applying the above
technique to derive a navigational map from
the learned spatial model (Fig. 5). Dur-
ing training the robot moves along straight
exploratory paths avoiding collisions with
walls and obstacles. Every exploratory path
starts at a random position and with a ran-
dom orientation and ends when the target is
reached. When the robot reaches the target,
learning continues for about 100 time steps,
while the robot is sitting at the target loca-
tion. The dashed path shown in Fig. 8 is an
example of a training path. Fig. 9 shows the
navigational map obtained after 10 training
paths. We used a time-window function as



Figure 8: The dashed line is an example of training
path leading the robot to the target (dark square).
The solid line is an example of trajectory induced by
the learned navigational map of Fig. 9. The white
rectangle is an obstacle.

in Eq. 11 with time constant 7 = 10 and pa-
rameter 8 = 0.7. The vector field represen-
tation was obtained by rastering uniformly
over the whole environment. Dots represent
sampled positions and arrows indicate the
directions suggested by the shifted popula-
tion vector for each sampled position. Fig. 9
also gives an idea of how the robot shapes
its world internally. Finally, the solid line in
Fig. 8 is an example of a navigation path ob-
tained using the navigational map of Fig. 9.

4 Discussion

We have presented a hippocampal neural
model for learning spatial representations.
The place cell driving system relies on ex-
tracting spatio-temporal properties of the
environment from visual sensory inputs. In-
coming stimuli are interpreted by means of
Walsh-like filters that only respond to spe-
cific visual patterns. The activity of the
filters contributes to place cell firing. At
the very beginning, the robot starts with an
empty model. Unsupervised Hebbian learn-
ing is used to build the hippocampal neural
structure incrementally. New synapses and
new place cells are created on-line to cover
the environment uniformly and densely. In
order to interpret the ensemble network ac-
tivity, a population vector coding scheme is
used.

Given the place fields, simple asymmet-
ric learning rules can be used to guide the
animal (or robot) to a target location [1, 8].
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Figure 9: Vector field representing the naviga-
tional map learned after 10 training trials.
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